{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "4f8c2c74", "metadata": {}, "source": [ "# 5. Final Models per person" ] }, { "cell_type": "code", "execution_count": null, "id": "8b2fbb02-b1c7-4229-8f2b-969d6735f27c", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", "from sklearn import linear_model\n", "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", "from sklearn.preprocessing import StandardScaler, RobustScaler\n", "import pickle\n", "import os\n", "import glob\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 12, "id": "35616aba-95b1-46d4-b4e2-d4658878d5de", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
holdtimepuzzlepackpack_namepiece_count_1piece_count_2difficulty_rating_1difficulty_rating_2brand_1brand_2num_puzzles
memberID
member12.939411Artifact Puzzles Justin Hillgrove Word Travels...Artifact Puzzles Justin Hillgrove Word Travels...45654812ArtifactArtifact2
member10.998885DaVici Puzzles Full Moon Feast DaVici Puzzles ...DaVici Puzzles Full Moon Feast DaVici Puzzles ...19522013DaViciDaVici2
member110.865032DaVici Puzzles Flying Frigate DaVici Puzzles H...DaVici Puzzles Flying Frigate DaVici Puzzles H...33216411DaViciDaVici2
member122.083971Liberty Puzzles Haeckel Hummingbirds Nautilus ...Liberty Puzzles Haeckel Hummingbirds Nautilus ...48522222LibertyNautilus2
member15.077603DaVici Puzzles Diana Zimens City Of CatsDaVici Puzzles Diana Zimens City Of Cats700022DaViciDaVici1
\n", "
" ], "text/plain": [ " holdtime puzzlepack \\\n", "memberID \n", "member1 2.939411 Artifact Puzzles Justin Hillgrove Word Travels... \n", "member1 0.998885 DaVici Puzzles Full Moon Feast DaVici Puzzles ... \n", "member1 10.865032 DaVici Puzzles Flying Frigate DaVici Puzzles H... \n", "member1 22.083971 Liberty Puzzles Haeckel Hummingbirds Nautilus ... \n", "member1 5.077603 DaVici Puzzles Diana Zimens City Of Cats \n", "\n", " pack_name piece_count_1 \\\n", "memberID \n", "member1 Artifact Puzzles Justin Hillgrove Word Travels... 456 \n", "member1 DaVici Puzzles Full Moon Feast DaVici Puzzles ... 195 \n", "member1 DaVici Puzzles Flying Frigate DaVici Puzzles H... 332 \n", "member1 Liberty Puzzles Haeckel Hummingbirds Nautilus ... 485 \n", "member1 DaVici Puzzles Diana Zimens City Of Cats 700 \n", "\n", " piece_count_2 difficulty_rating_1 difficulty_rating_2 brand_1 \\\n", "memberID \n", "member1 548 1 2 Artifact \n", "member1 220 1 3 DaVici \n", "member1 164 1 1 DaVici \n", "member1 222 2 2 Liberty \n", "member1 0 2 2 DaVici \n", "\n", " brand_2 num_puzzles \n", "memberID \n", "member1 Artifact 2 \n", "member1 DaVici 2 \n", "member1 DaVici 2 \n", "member1 Nautilus 2 \n", "member1 DaVici 1 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv('data/df_cleaned.csv', index_col=0)\n", "data.head()\n", "#data = data[data.notna().all(axis=1)]" ] }, { "attachments": {}, "cell_type": "markdown", "id": "abdd7aea", "metadata": {}, "source": [ "## 5.1 Linear Regression per Member" ] }, { "cell_type": "code", "execution_count": 13, "id": "0eed8764-30d8-4e7c-8a46-63b97d8122fa", "metadata": {}, "outputs": [], "source": [ "def member_train_test_split(df, test_size = 0.25):\n", " \"\"\"\n", " Creates train and test sets per member based on test_size\n", " assumes rows are in time order so does not shuffle\n", " \"\"\"\n", " train_size = (1 - test_size)\n", " g = df.groupby('memberID')\n", " train_flags = (g.cumcount() + 1) <= g.transform('size') * train_size\n", " test_flags = (g.cumcount() + 1) > g.transform('size') * train_size\n", " \n", " # Split X and y (hold_time)\n", " X_train = df[train_flags].drop('holdtime', axis=1)\n", " X_test = df[test_flags].drop('holdtime', axis=1)\n", " y_train = df[train_flags].holdtime\n", " y_test = df[test_flags].holdtime\n", " \n", " return X_train, X_test, y_train, y_test" ] }, { "cell_type": "code", "execution_count": 14, "id": "083eb208-f54d-491d-af93-87cd0f2e6bb5", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\ipykernel_launcher.py:8: FutureWarning: Dropping invalid columns in DataFrameGroupBy.transform is deprecated. In a future version, a TypeError will be raised. Before calling .transform, select only columns which should be valid for the transforming function.\n", " \n" ] }, { "ename": "TypeError", "evalue": "Transform function invalid for data types", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\generic.py\u001b[0m in \u001b[0;36m_transform_general\u001b[1;34m(self, func, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1316\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1317\u001b[1;33m \u001b[0mpath\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_choose_path\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfast_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mslow_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgroup\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1318\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\generic.py\u001b[0m in \u001b[0;36m_choose_path\u001b[1;34m(self, fast_path, slow_path, group)\u001b[0m\n\u001b[0;32m 1393\u001b[0m \u001b[0mpath\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mslow_path\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1394\u001b[1;33m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mslow_path\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgroup\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1395\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\generic.py\u001b[0m in \u001b[0;36m\u001b[1;34m(group)\u001b[0m\n\u001b[0;32m 1382\u001b[0m slow_path = lambda group: group.apply(\n\u001b[1;32m-> 1383\u001b[1;33m \u001b[1;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1384\u001b[0m )\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36mapply\u001b[1;34m(self, func, axis, raw, result_type, args, **kwargs)\u001b[0m\n\u001b[0;32m 8739\u001b[0m )\n\u001b[1;32m-> 8740\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mop\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 8741\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\apply.py\u001b[0m in \u001b[0;36mapply\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 687\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 688\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply_standard\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 689\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\apply.py\u001b[0m in \u001b[0;36mapply_standard\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 811\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mapply_standard\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 812\u001b[1;33m \u001b[0mresults\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mres_index\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply_series_generator\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 813\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\apply.py\u001b[0m in \u001b[0;36mapply_series_generator\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 827\u001b[0m \u001b[1;31m# ignore SettingWithCopy here in case the user mutates\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 828\u001b[1;33m \u001b[0mresults\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mv\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 829\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresults\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mABCSeries\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\generic.py\u001b[0m in \u001b[0;36m\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1382\u001b[0m slow_path = lambda group: group.apply(\n\u001b[1;32m-> 1383\u001b[1;33m \u001b[1;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1384\u001b[0m )\n", "\u001b[1;31mTypeError\u001b[0m: 'int' object is not callable", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32mC:\\conda_tmp\\ipykernel_9624\\731815928.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# Split train/test\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mX_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmember_train_test_split\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX_test\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mC:\\conda_tmp\\ipykernel_9624\\48851854.py\u001b[0m in \u001b[0;36mmember_train_test_split\u001b[1;34m(df, test_size)\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mtrain_size\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;36m1\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mtest_size\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[0mg\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'memberID'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 8\u001b[1;33m \u001b[0mtrain_flags\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcumcount\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m<=\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'size'\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mtrain_size\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 9\u001b[0m \u001b[0mtest_flags\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcumcount\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m>\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'size'\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mtrain_size\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\generic.py\u001b[0m in \u001b[0;36mtransform\u001b[1;34m(self, func, engine, engine_kwargs, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1356\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mtransform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mengine_kwargs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1357\u001b[0m return self._transform(\n\u001b[1;32m-> 1358\u001b[1;33m \u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mengine\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mengine_kwargs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mengine_kwargs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1359\u001b[0m )\n\u001b[0;32m 1360\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\groupby.py\u001b[0m in \u001b[0;36m_transform\u001b[1;34m(self, func, engine, engine_kwargs, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1468\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1469\u001b[0m \u001b[1;31m# only reached for DataFrameGroupBy\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1470\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_transform_general\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1471\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1472\u001b[0m \u001b[1;31m# -----------------------------------------------------------------\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\generic.py\u001b[0m in \u001b[0;36m_transform_general\u001b[1;34m(self, func, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1317\u001b[0m \u001b[0mpath\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_choose_path\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfast_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mslow_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgroup\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1318\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1319\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_transform_item_by_item\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfast_path\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1320\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1321\u001b[0m \u001b[0mmsg\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"transform must return a scalar value for each group\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\Users\\Hannah Luebbering\\.conda\\envs\\cse160\\lib\\site-packages\\pandas\\core\\groupby\\generic.py\u001b[0m in \u001b[0;36m_transform_item_by_item\u001b[1;34m(self, obj, wrapper)\u001b[0m\n\u001b[0;32m 1446\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1447\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0moutput\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1448\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Transform function invalid for data types\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1449\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1450\u001b[0m \u001b[0mcolumns\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtake\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mTypeError\u001b[0m: Transform function invalid for data types" ] } ], "source": [ "# Split train/test\n", "X_train, X_test, y_train, y_test = member_train_test_split(data)\n", "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" ] }, { "cell_type": "code", "execution_count": 282, "id": "e8294468-36d1-4cc3-9615-acea99fa80fb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"\\nReplaced with order based split to account for time\\n# Split train/test\\nX_train, X_test, y_train, y_test = train_test_split(data.drop('hold_time', axis=1), data['hold_time'], random_state = 123)\\nprint(X_train.shape, y_train.shape, X_test.shape, y_test.shape)\\n\"" ] }, "execution_count": 282, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"\n", "Replaced with order based split to account for time\n", "# Split train/test\n", "X_train, X_test, y_train, y_test = train_test_split(data.drop('hold_time', axis=1), data['hold_time'], random_state = 123)\n", "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": 283, "id": "ad759df2-9a63-4d82-a011-9e72d53ecca5", "metadata": {}, "outputs": [], "source": [ "# Dropping difficulty as difficulty should be encoded by splitting piece counts up by difficulty\n", "X_train = X_train.drop(['diff_0', 'diff_1'], axis=1)\n", "X_test = X_test.drop(['diff_0', 'diff_1'], axis=1)" ] }, { "cell_type": "code", "execution_count": 284, "id": "ce43fd87-a960-486d-abec-a2e616d502e5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "13132\n", "1094\n", "12038\n" ] } ], "source": [ "print(len(X_train))\n", "print(len(X_train[X_train.isna().any(axis=1)]))\n", "print(len(X_train[X_train.notna().all(axis=1)]))" ] }, { "cell_type": "code", "execution_count": 285, "id": "3aac5a0a-ea7e-4465-8abb-e9f2fc1915b4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4703\n", "298\n", "4405\n" ] } ], "source": [ "print(len(X_test))\n", "print(len(X_test[X_test.isna().any(axis=1)]))\n", "print(len(X_test[X_test.notna().all(axis=1)]))" ] }, { "cell_type": "code", "execution_count": 286, "id": "a9e1735a-46af-4196-a7fd-911962b46f4f", "metadata": {}, "outputs": [], "source": [ "# Handle puzzles with no info, this is quite common\n", "# Drop them from training as to not introduce non-existant signal\n", "y_train = y_train[X_train.notna().all(axis=1)]\n", "X_train = X_train[X_train.notna().all(axis=1)]\n", "\n", "# Can't drop from test as we still need to predict something for these people\n", "# Try filling with median?\n", "X_test_not_missing = X_test.notna().all(axis=1)\n", "X_test['pieces_d1'] = X_test.pieces_d1.fillna(X_train.pieces_d1.mean())\n", "X_test['pieces_d2'] = X_test.pieces_d2.fillna(X_train.pieces_d2.mean())\n", "X_test['pieces_d3'] = X_test.pieces_d3.fillna(X_train.pieces_d3.mean())\n", "X_test['pieces_d4'] = X_test.pieces_d4.fillna(X_train.pieces_d4.mean())\n", "X_test.num_puzzles = X_test.num_puzzles.fillna(2) # just doing this manually as basically every pack has 2 puzzles" ] }, { "cell_type": "code", "execution_count": 287, "id": "780d9bda-34a5-4285-86eb-0d6037ed159d", "metadata": {}, "outputs": [], "source": [ "# Calculate global distribution info for each puzzle\n", "full_training_set = X_train.copy()\n", "full_training_set['hold_time'] = y_train.copy()\n", "hold_summary_by_pack = full_training_set.groupby(by=['pack_name'])['hold_time'].describe()\n", "\n", "# Some packs only have 1 data point so std dev is NaN, fill with avg std dev from the entire set\n", "hold_summary_by_pack['std'] = hold_summary_by_pack['std'].fillna(hold_summary_by_pack['std'].mean())\n", "\n", "# There are likely going to be instances in the test set where we don't have data for a pack, use the global averages for now\n", "# TODO come up with a more sophisticated way to handle packs we don't have data for" ] }, { "cell_type": "code", "execution_count": 288, "id": "6ae615a3-1761-48df-89c0-432356986025", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
memberpack_namepieces_d1pieces_d2pieces_d3pieces_d4num_puzzles
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [member, pack_name, pieces_d1, pieces_d2, pieces_d3, pieces_d4, num_puzzles]\n", "Index: []" ] }, "execution_count": 288, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_test[X_test.isna().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 289, "id": "c0e919e6-7454-4355-8372-f1749f733e33", "metadata": {}, "outputs": [], "source": [ "# Join the training data with the per pack info, just going to use mean and std for now\n", "# TODO try out other variations on pack hold-time distribution information\n", "X_train = pd.merge(X_train, hold_summary_by_pack[['count','std', 'mean']], left_on='pack_name', right_index=True, how='left')\n", "X_train['pack_hold_time_std'] = X_train['std']\n", "X_train['pack_hold_time_mean'] = X_train['mean']\n", "X_train['pack_hold_time_count'] = X_train['count']\n", "X_train = X_train.drop(['std', 'mean', 'count'], axis=1)\n", "\n" ] }, { "cell_type": "code", "execution_count": 290, "id": "b7e283d9-b77c-41a4-aef5-6f8098eef5d1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
memberpack_namepieces_d1pieces_d2pieces_d3pieces_d4num_puzzlespack_hold_time_stdpack_hold_time_meanpack_hold_time_count
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [member, pack_name, pieces_d1, pieces_d2, pieces_d3, pieces_d4, num_puzzles, pack_hold_time_std, pack_hold_time_mean, pack_hold_time_count]\n", "Index: []" ] }, "execution_count": 290, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train[X_train.isna().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 291, "id": "dac35f7a-384b-4533-b7f7-e9129605842b", "metadata": {}, "outputs": [], "source": [ "# Add pack hold_time avg and std dev from training set to test set data\n", "X_test = pd.merge(X_test, hold_summary_by_pack[['count', 'std', 'mean']], left_on='pack_name', right_index=True, how='left')\n", "X_test['pack_hold_time_std'] = X_test['std']\n", "X_test['pack_hold_time_mean'] = X_test['mean']\n", "X_test['pack_hold_time_count'] = X_test['count']\n", "X_test = X_test.drop(['mean', 'std', 'count'], axis=1)\n", "\n", "# For packs from the test set with pack hold time data, fill with the means from the hold_time summary created using only training data\n", "X_test['pack_hold_time_mean'] = X_test['pack_hold_time_mean'].fillna(hold_summary_by_pack['mean'].mean())\n", "X_test['pack_hold_time_std'] = X_test['pack_hold_time_std'].fillna(hold_summary_by_pack['std'].mean())\n", "X_test['pack_hold_time_count'] = X_test['pack_hold_time_count'].fillna(hold_summary_by_pack['count'].mean())" ] }, { "cell_type": "code", "execution_count": 292, "id": "e091d4aa-a6f9-4cb9-b812-fd66516656b9", "metadata": {}, "outputs": [], "source": [ "# Similar hold time distribution info per member, if hold-time data not present use global avg\n", "hold_summary_by_member = full_training_set.groupby(by='member')['hold_time'].describe()\n", "X_train = pd.merge(X_train, hold_summary_by_member[['count', 'mean', 'std']].rename(columns={'count': 'member_hold_time_count', 'mean': 'member_hold_time_mean', 'std': 'member_hold_time_std'}), left_on='member', right_index=True, how='left')\n", "X_test = pd.merge(X_test, hold_summary_by_member[['count', 'mean', 'std']].rename(columns={'count': 'member_hold_time_count', 'mean': 'member_hold_time_mean', 'std': 'member_hold_time_std'}), left_on='member', right_index=True, how='left')\n", "\n", "# For missing hold time summary data impute with global avg of the training set\n", "#Filling train\n", "X_train['member_hold_time_mean'] = X_train['member_hold_time_mean'].fillna(hold_summary_by_member['mean'].mean())\n", "X_train['member_hold_time_std'] = X_train['member_hold_time_std'].fillna(hold_summary_by_member['std'].mean())\n", "X_train['member_hold_time_count'] = X_train['member_hold_time_count'].fillna(hold_summary_by_member['count'].mean())\n", "# Filling test\n", "X_test['member_hold_time_mean'] = X_test['member_hold_time_mean'].fillna(hold_summary_by_member['mean'].mean())\n", "X_test['member_hold_time_std'] = X_test['member_hold_time_std'].fillna(hold_summary_by_member['std'].mean())\n", "X_test['member_hold_time_count'] = X_test['member_hold_time_count'].fillna(hold_summary_by_member['count'].mean())\n" ] }, { "cell_type": "code", "execution_count": 293, "id": "1fa81445-28b2-4579-babd-a76d67d88bbf", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[]], dtype=object)" ] }, "execution_count": 293, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGxCAYAAADCo9TSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsPklEQVR4nO3df3TTVZ7/8VcoaWihxYFOaSu1lBV/VnQWFEGlZcYWEfFHZ0fHqsDZ3aOuyNrpuMiPdQkzUjicsxz0MLKrx2XxuD1wXJB1BwXCjhRdBq2VjpVZEXfLD5HKAaEpFEOg9/vHfJtj2gSaNrklyfNxTo7ncz8393M/74Tm5SfJjcMYYwQAAGBJv76eAAAASC6EDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgCE5Ha75XA49Omnn+pnP/uZBg8erCFDhqiqqkrnzp3T3r17dddddykjI0MjRozQsmXLgu7v9Xr17LPPqrCwUKmpqbr88stVWVmp06dPB/X7zW9+o4kTJyo7O1sDBw7UDTfcoGXLlsnv9wf1KykpUVFRkerq6nTHHXcoPT1dI0eO1NKlS9Xe3h7zegCInv59PQEAl7YHH3xQjz76qJ544gl5PJ5AMNi2bZueeuopPfvss6qpqdFzzz2nK6+8UuXl5Wpra1NxcbG++uorzZ8/X6NHj9aePXv0D//wD2psbNS2bdvkcDgkSf/7v/+rioqKQEj5wx/+oMWLF+vzzz/Xv/zLvwTNpbm5WY888oh++ctfauHChXrrrbc0b9485eXlafr06X1RHgA9YQAghIULFxpJ5h//8R+D2m+66SYjyWzYsCHQ5vf7zQ9/+ENTXl5ujDFmyZIlpl+/fqauri7ovv/+7/9uJJl33nkn5DHPnz9v/H6/ef31101KSor59ttvA/uKi4uNJPPhhx8G3ee6664zkydP7tW5ArCLt10AXNA999wTtH3ttdfK4XBoypQpgbb+/fvryiuv1IEDByRJv/3tb1VUVKSbbrpJ586dC9wmT54sh8Oh7du3B+67e/du3XvvvRo6dKhSUlLkdDo1ffp0nT9/Xl988UXQsXNycnTLLbcEtY0ePTpwXADxgbddAFzQkCFDgrZTU1OVnp6uAQMGdGn3er2SpG+++UZffvmlnE5nyDGPHTsmSTp48KDuuOMOXX311XrxxRc1YsQIDRgwQB999JFmzZqlM2fOBN1v6NChXcZyuVxd+gG4tBE+AERdVlaW0tLSunxm4/v7JWnjxo06ffq0NmzYoIKCgsD+hoYGG9ME0EcIHwCi7p577lF1dbWGDh2qwsLCsP06PnTqcrkCbcYYvfrqqzGfI4C+Q/gAEHWVlZVav369Jk6cqF/84hcaPXq02tvbdfDgQW3dulW//OUvNW7cOJWWlio1NVUPP/yw5syZo++++06rVq3SiRMn+voUAMQQHzgFEHUDBw7U+++/r5kzZ+qVV17R1KlT9eCDD+qll17S8OHDNWLECEnSNddco/Xr1+vEiRMqLy/X7NmzddNNN+mll17q2xMAEFMOY4zp60kAAIDkwZUPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFh1yS0y1t7erq+//loZGRmB1Q8BAMClzRij1tZW5eXlqV+/C1/buOTCx9dff638/Py+ngYAAOiBQ4cOafjw4Rfsc8mFj4yMDEl/mnxmZmZUxvT7/dq6davKysrC/spmMqIu4VGb8KhNeNQmNOoSXiLVxuv1Kj8/P/A6fiGXXPjoeKslMzMzquEjPT1dmZmZcf/gRhN1CY/ahEdtwqM2oVGX8BKxNt35yAQfOAUAAFb1KnwsWbJEDodDlZWVgTZjjNxut/Ly8pSWlqaSkhLt2bOnt/MEAAAJosfho66uTq+88opGjx4d1L5s2TItX75cK1euVF1dnXJyclRaWqrW1tZeTxYAAMS/HoWPU6dO6ZFHHtGrr76qH/zgB4F2Y4xWrFihBQsWqLy8XEVFRVqzZo3a2tpUU1MTtUkDAID41aMPnM6aNUtTp07VnXfeqRdeeCHQ3tTUpObmZpWVlQXaXC6XiouLtXPnTj3xxBNdxvL5fPL5fIFtr9cr6U8fwvH7/T2ZXhcd40RrvERBXcKjNuFRm/CoTWjUJbxEqk0k5xBx+Fi7dq0++eQT1dXVddnX3NwsSRo2bFhQ+7Bhw3TgwIGQ4y1ZskSLFi3q0r5161alp6dHOr0L8ng8UR0vUVCX8KhNeNQmPGoTGnUJLxFq09bW1u2+EYWPQ4cO6ZlnntHWrVs1YMCAsP06f83GGBP2qzfz5s1TVVVVYLvje8JlZWVR/aqtx+NRaWlpwnyVKRqoS3jUJjxqEx61CY26hJdItel456I7Igof9fX1Onr0qMaMGRNoO3/+vHbs2KGVK1dq7969kv50BSQ3NzfQ5+jRo12uhnRwuVxyuVxd2p1OZ9QfiFiMmQioS3jUJjxqEx61CY26hJcItYlk/hF94PQnP/mJGhsb1dDQELiNHTtWjzzyiBoaGjRy5Ejl5OQEXT46e/asamtrNWHChEgOBQAAElREVz4yMjJUVFQU1DZw4EANHTo00F5ZWanq6mqNGjVKo0aNUnV1tdLT01VRURG9WQMAgLgV9eXV58yZozNnzuipp57SiRMnNG7cOG3durVba70DAIDE1+vwsX379qBth8Mht9stt9vd26EBAEAC4rddAACAVYQPAABgVdQ/84ELGzF3U9D2/qVT+2gmAAD0Da58AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKxikbE40HlhMonFyQAA8YsrHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrWGTsEhRqUTEAABIFVz4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVrHIWAyxWBgAAF1x5QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWBVR+Fi1apVGjx6tzMxMZWZmavz48Xr33XcD+2fOnCmHwxF0u/XWW6M+aQAAEL8i+qrt8OHDtXTpUl155ZWSpDVr1ui+++7T7t27df3110uS7rrrLq1evTpwn9TU1ChOFwAAxLuIwse0adOCthcvXqxVq1Zp165dgfDhcrmUk5PT7TF9Pp98Pl9g2+v1SpL8fr/8fn8k0wurY5xojdddrhRz0T6h5tTT+0Wqr+oSD6hNeNQmPGoTGnUJL5FqE8k5OIwxF3+lC+H8+fN68803NWPGDO3evVvXXXedZs6cqY0bNyo1NVWXXXaZiouLtXjxYmVnZ4cdx+12a9GiRV3aa2pqlJ6e3pOpAQAAy9ra2lRRUaGWlhZlZmZesG/E4aOxsVHjx4/Xd999p0GDBqmmpkZ33323JGndunUaNGiQCgoK1NTUpOeff17nzp1TfX29XC5XyPFCXfnIz8/XsWPHLjr57vL7/fJ4PCotLZXT6YzKmKEUubfEbOzOPnNP7vUYtuoSj6hNeNQmPGoTGnUJL5Fq4/V6lZWV1a3wEfHy6ldffbUaGhp08uRJrV+/XjNmzFBtba2uu+46PfTQQ4F+RUVFGjt2rAoKCrRp0yaVl5eHHM/lcoUMJk6nM+oPRCzG/D7feUfMxu4smucR67rEM2oTHrUJj9qERl3CS4TaRDL/iMNHampq4AOnY8eOVV1dnV588UX98z//c5e+ubm5Kigo0L59+yI9DAAASFC9XufDGBP0tsn3HT9+XIcOHVJubm5vDwMAABJERFc+5s+frylTpig/P1+tra1au3attm/frs2bN+vUqVNyu9366U9/qtzcXO3fv1/z589XVlaWHnjggVjNHwAAxJmIwsc333yjxx57TEeOHNHgwYM1evRobd68WaWlpTpz5owaGxv1+uuv6+TJk8rNzdWkSZO0bt06ZWRkxGr+AAAgzkQUPl577bWw+9LS0rRli71vewAAgPjEb7sAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsKp/X08A0TFi7qYubfuXTu2DmQAAcGFc+QAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFURhY9Vq1Zp9OjRyszMVGZmpsaPH6933303sN8YI7fbrby8PKWlpamkpER79uyJ+qQBAED8iih8DB8+XEuXLtXHH3+sjz/+WD/+8Y913333BQLGsmXLtHz5cq1cuVJ1dXXKyclRaWmpWltbYzJ5AAAQfyIKH9OmTdPdd9+tq666SldddZUWL16sQYMGadeuXTLGaMWKFVqwYIHKy8tVVFSkNWvWqK2tTTU1NbGaPwAAiDP9e3rH8+fP680339Tp06c1fvx4NTU1qbm5WWVlZYE+LpdLxcXF2rlzp5544omQ4/h8Pvl8vsC21+uVJPn9fvn9/p5OL0jHONEaLxxXionp+N/X+VxCHfti52urLvGI2oRHbcKjNqFRl/ASqTaRnIPDGBPRK2ZjY6PGjx+v7777ToMGDVJNTY3uvvtu7dy5U7fddpsOHz6svLy8QP/HH39cBw4c0JYtW0KO53a7tWjRoi7tNTU1Sk9Pj2RqAACgj7S1tamiokItLS3KzMy8YN+Ir3xcffXVamho0MmTJ7V+/XrNmDFDtbW1gf0OhyOovzGmS9v3zZs3T1VVVYFtr9er/Px8lZWVXXTy3eX3++XxeFRaWiqn0xmVMYvcocOULZ+5Jwdth5pP5z6dxaIuiYLahEdtwqM2oVGX8BKpNh3vXHRHxOEjNTVVV155pSRp7Nixqqur04svvqjnnntOktTc3Kzc3NxA/6NHj2rYsGFhx3O5XHK5XF3anU5n1B+IaI7pOx8+UNnQ+TxCzae75xqLWicKahMetQmP2oRGXcJLhNpEMv9er/NhjJHP51NhYaFycnLk8XgC+86ePava2lpNmDCht4cBAAAJIqIrH/Pnz9eUKVOUn5+v1tZWrV27Vtu3b9fmzZvlcDhUWVmp6upqjRo1SqNGjVJ1dbXS09NVUVERq/kDAIA4E1H4+Oabb/TYY4/pyJEjGjx4sEaPHq3NmzertLRUkjRnzhydOXNGTz31lE6cOKFx48Zp69atysjIiMnkAQBA/IkofLz22msX3O9wOOR2u+V2u3szJwAAkMD4bRcAAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWRfTbLrh0jJi7qa+nAABAj3DlAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABY1b+vJxAvRszd1NdTAAAgIXDlAwAAWEX4AAAAVhE+AACAVYQPAABgVUThY8mSJbr55puVkZGh7Oxs3X///dq7d29Qn5kzZ8rhcATdbr311qhOGgAAxK+Iwkdtba1mzZqlXbt2yePx6Ny5cyorK9Pp06eD+t111106cuRI4PbOO+9EddIAACB+RfRV282bNwdtr169WtnZ2aqvr9fEiRMD7S6XSzk5OdGZIQAASCi9WuejpaVFkjRkyJCg9u3btys7O1uXXXaZiouLtXjxYmVnZ4ccw+fzyefzBba9Xq8kye/3y+/392Z6AR3j9GY8V4qJylxsutj5RqMuiYrahEdtwqM2oVGX8BKpNpGcg8MY06NXVWOM7rvvPp04cULvv/9+oH3dunUaNGiQCgoK1NTUpOeff17nzp1TfX29XC5Xl3HcbrcWLVrUpb2mpkbp6ek9mRoAALCsra1NFRUVamlpUWZm5gX79jh8zJo1S5s2bdIHH3yg4cOHh+135MgRFRQUaO3atSovL++yP9SVj/z8fB07duyik+8uv98vj8ej0tJSOZ3OHo1R5N4SlbnY9Jl78gX3R6MuiYrahEdtwqM2oVGX8BKpNl6vV1lZWd0KHz1622X27Nl6++23tWPHjgsGD0nKzc1VQUGB9u3bF3K/y+UKeUXE6XRG/YHozZi+846ozsWG7p5rLGqdKKhNeNQmPGoTGnUJLxFqE8n8IwofxhjNnj1bb731lrZv367CwsKL3uf48eM6dOiQcnNzIzkUAABIUBF91XbWrFl64403VFNTo4yMDDU3N6u5uVlnzpyRJJ06dUrPPvusfv/732v//v3avn27pk2bpqysLD3wwAMxOQEAABBfIrrysWrVKklSSUlJUPvq1as1c+ZMpaSkqLGxUa+//rpOnjyp3NxcTZo0SevWrVNGRkbUJg0AAOJXxG+7XEhaWpq2bIm/D2YCAAB7+G0XAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVkX02y5IfCPmburStn/p1D6YCQAgUXHlAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAVi4wlsM4LhrFYGADgUsCVDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVLDKWRDovOuZKMVp2Sx9NBgCQtLjyAQAArCJ8AAAAqwgfAADAKsIHAACwKqLwsWTJEt18883KyMhQdna27r//fu3duzeojzFGbrdbeXl5SktLU0lJifbs2RPVSQMAgPgVUfiora3VrFmztGvXLnk8Hp07d05lZWU6ffp0oM+yZcu0fPlyrVy5UnV1dcrJyVFpaalaW1ujPnkAABB/Ivqq7ebNm4O2V69erezsbNXX12vixIkyxmjFihVasGCBysvLJUlr1qzRsGHDVFNToyeeeCJ6MwcAAHGpV+t8tLS0SJKGDBkiSWpqalJzc7PKysoCfVwul4qLi7Vz586Q4cPn88nn8wW2vV6vJMnv98vv9/dmegEd4/RmPFeKicpcLiWufn86p+/XJdR5RutxiCfReM4kKmoTHrUJjbqEl0i1ieQcHMaYHr2qGmN033336cSJE3r//fclSTt37tRtt92mw4cPKy8vL9D38ccf14EDB7Rly5Yu47jdbi1atKhLe01NjdLT03syNQAAYFlbW5sqKirU0tKizMzMC/bt8ZWPp59+Wp9++qk++OCDLvscDkfQtjGmS1uHefPmqaqqKrDt9XqVn5+vsrKyi06+u/x+vzwej0pLS+V0Ons0RpG7a3CKd65+Rr8e2x5Ul1Dn+Zl7su2p9bloPGcSFbUJj9qERl3CS6TadLxz0R09Ch+zZ8/W22+/rR07dmj48OGB9pycHElSc3OzcnNzA+1Hjx7VsGHDQo7lcrnkcrm6tDudzqg/EL0Z03c+dHhKBN+vS6jzjPd/EL0Ri+dhoqA24VGb0KhLeIlQm0jmH9G3XYwxevrpp7Vhwwb97ne/U2FhYdD+wsJC5eTkyOPxBNrOnj2r2tpaTZgwIZJDAQCABBXRlY9Zs2appqZG//Ef/6GMjAw1NzdLkgYPHqy0tDQ5HA5VVlaqurpao0aN0qhRo1RdXa309HRVVFTE5AQAAEB8iSh8rFq1SpJUUlIS1L569WrNnDlTkjRnzhydOXNGTz31lE6cOKFx48Zp69atysjIiMqEAQBAfIsofHTnizEOh0Nut1tut7uncwIAAAmM33YBAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFb17+sJXApGzN0UtL1/6dQ+mknfKHJvke+8I+z+ZK8PACC6uPIBAACsInwAAACrCB8AAMAqwgcAALAq4vCxY8cOTZs2TXl5eXI4HNq4cWPQ/pkzZ8rhcATdbr311mjNFwAAxLmIw8fp06d14403auXKlWH73HXXXTpy5Ejg9s477/RqkgAAIHFE/FXbKVOmaMqUKRfs43K5lJOT0+NJAQCAxBWTdT62b9+u7OxsXXbZZSouLtbixYuVnZ0dsq/P55PP5wtse71eSZLf75ff74/KfDrGCTeeK8WE7H+hPonA1c8E/be7ovW4XMou9pxJZtQmPGoTGnUJL5FqE8k5OIwxPX5VdTgceuutt3T//fcH2tatW6dBgwapoKBATU1Nev7553Xu3DnV19fL5XJ1GcPtdmvRokVd2mtqapSent7TqQEAAIva2tpUUVGhlpYWZWZmXrBv1MNHZ0eOHFFBQYHWrl2r8vLyLvtDXfnIz8/XsWPHLjr57vL7/fJ4PCotLZXT6eyyv8i9JWj7M/fki/ZJBK5+Rr8e267nP+4nX3v4FU47C1WfRHOx50wyozbhUZvQqEt4iVQbr9errKysboWPmC+vnpubq4KCAu3bty/kfpfLFfKKiNPpjPoDEW7MzkuLd6dPIvG1OyI6v3j/BxKJWDwPEwW1CY/ahEZdwkuE2kQy/5iv83H8+HEdOnRIubm5sT4UAACIAxFf+Th16pS+/PLLwHZTU5MaGho0ZMgQDRkyRG63Wz/96U+Vm5ur/fv3a/78+crKytIDDzwQ1YkDAID4FHH4+PjjjzVp0qTAdlVVlSRpxowZWrVqlRobG/X666/r5MmTys3N1aRJk7Ru3TplZGREb9YAACBuRRw+SkpKdKHPqG7ZkngfzAQAANHDb7sAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwKuLfdgG6Y8TcTV3a9i+d2gczAQBcarjyAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCKRcZCCLVAFgAAiA6ufAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsYpExRCzUImz7l07tg5kAAOIRVz4AAIBVhA8AAGAV4QMAAFhF+AAAAFZFHD527NihadOmKS8vTw6HQxs3bgzab4yR2+1WXl6e0tLSVFJSoj179kRrvgAAIM5FHD5Onz6tG2+8UStXrgy5f9myZVq+fLlWrlypuro65eTkqLS0VK2trb2eLAAAiH8Rf9V2ypQpmjJlSsh9xhitWLFCCxYsUHl5uSRpzZo1GjZsmGpqavTEE0/0brYAACDuRXWdj6amJjU3N6usrCzQ5nK5VFxcrJ07d4YMHz6fTz6fL7Dt9XolSX6/X36/Pyrz6hgn3HiuFBOV48QbVz8T9N/e6FzbUDWN1uNpw8WeM8mM2oRHbUKjLuElUm0iOQeHMabHrzwOh0NvvfWW7r//fknSzp07ddttt+nw4cPKy8sL9Hv88cd14MABbdmypcsYbrdbixYt6tJeU1Oj9PT0nk4NAABY1NbWpoqKCrW0tCgzM/OCfWOywqnD4QjaNsZ0aeswb948VVVVBba9Xq/y8/NVVlZ20cl3l9/vl8fjUWlpqZxOZ5f9Re6uoSgZuPoZ/Xpsu57/uJ987aEfn+76zD05aDtUTTv3uZRd7DmTzKhNeNQmNOoSXiLVpuOdi+6IavjIycmRJDU3Nys3NzfQfvToUQ0bNizkfVwul1wuV5d2p9MZ9Qci3Ji+87174Y13vnZHr2vQua6hxovHf1ixeB4mCmoTHrUJjbqElwi1iWT+UV3no7CwUDk5OfJ4PIG2s2fPqra2VhMmTIjmoQAAQJyK+MrHqVOn9OWXXwa2m5qa1NDQoCFDhuiKK65QZWWlqqurNWrUKI0aNUrV1dVKT09XRUVFVCcOAADiU8Th4+OPP9akSZMC2x2f15gxY4b+9V//VXPmzNGZM2f01FNP6cSJExo3bpy2bt2qjIyM6M0aAADErYjDR0lJiS70BRmHwyG32y23292beQEAgATFb7sAAACrCB8AAMCqmKzzAcTSiLmbgrb3L5160T6hhLpfpMfu6TgAkMy48gEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwikXGEBXdWdSrO/dhwS4ASHxc+QAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYlXSLjPVkMSwAABA9XPkAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWJV0i4zh0tZ5Ebj9S6f20UwAALHClQ8AAGAV4QMAAFhF+AAAAFYRPgAAgFVRDx9ut1sOhyPolpOTE+3DAACAOBWTb7tcf/312rZtW2A7JSUlFocBAABxKCbho3///lztAAAAIcUkfOzbt095eXlyuVwaN26cqqurNXLkyJB9fT6ffD5fYNvr9UqS/H6//H5/VObTMY7f75crxURlzETg6meC/htrnR/P7jwWoZ4Dne/XnT7dHbvzvu7MOVrP03gRrjagNuFQl/ASqTaRnIPDGBPVV553331XbW1tuuqqq/TNN9/ohRde0Oeff649e/Zo6NChXfq73W4tWrSoS3tNTY3S09OjOTUAABAjbW1tqqioUEtLizIzMy/YN+rho7PTp0/rz/7szzRnzhxVVVV12R/qykd+fr6OHTt20cl3l9/vl8fjUWlpqX60+HdRGTMRuPoZ/Xpsu57/uJ987Y6+no51n7knh933/eeM0+kMtBe5t1x0nO70iWfhagNqEw51CS+RauP1epWVldWt8BHz5dUHDhyoG264Qfv27Qu53+VyyeVydWl3Op1RfyCcTqd855PvRfZifO2OpKxLd55fnZ+HoerUeZzu9EkEsfg3miioTWjUJbxEqE0k84/5Oh8+n0//8z//o9zc3FgfCgAAxIGoh49nn31WtbW1ampq0ocffqi/+Iu/kNfr1YwZM6J9KAAAEIei/rbLV199pYcffljHjh3TD3/4Q916663atWuXCgoKon0oAAAQh6IePtauXRvtIQEAQALht10AAIBVhA8AAGBVzL9qC1yqRszdFLS9f+nUPppJaJ3nJ116cwSAnuDKBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqFhkDeinUYmAAgPC48gEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwikXGgP/v+4uFuVKMlt0iFbm3yHfeEdNj9YWeHH//0qkxmEl0dee84uE8uqPzuSbKeSE5cOUDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBWLjAEWRGtRsb5cnKzj2N9fgG3v4ntieqyLidXCWqGO351jFbm3BC1O19P59fUidJ3ZXNCsLxdP6+njblNP6nMpnhdXPgAAgFWEDwAAYBXhAwAAWEX4AAAAVsUsfLz88ssqLCzUgAEDNGbMGL3//vuxOhQAAIgjMQkf69atU2VlpRYsWKDdu3frjjvu0JQpU3Tw4MFYHA4AAMSRmISP5cuX66/+6q/013/917r22mu1YsUK5efna9WqVbE4HAAAiCNRX+fj7Nmzqq+v19y5c4Pay8rKtHPnzi79fT6ffD5fYLulpUWS9O2338rv90dlTn6/X21tbTp+/Lj6nzsdlTETQf92o7a2dvX399P5dkdfT+eSQm3C+35tjh8/HptjdPPfaefjd+d+3ZlzqHG6dT//6aDnTU/r05O/U7F6LKSu84n0WN//G+x0OmN6rN7o6ePeG5HURupZfWydV2trqyTJGHPxzibKDh8+bCSZ//7v/w5qX7x4sbnqqqu69F+4cKGRxI0bN27cuHFLgNuhQ4cumhVitsKpwxH8f4vGmC5tkjRv3jxVVVUFttvb2/Xtt99q6NChIfv3hNfrVX5+vg4dOqTMzMyojJkIqEt41CY8ahMetQmNuoSXSLUxxqi1tVV5eXkX7Rv18JGVlaWUlBQ1NzcHtR89elTDhg3r0t/lcsnlcgW1XXbZZdGeliQpMzMz7h/cWKAu4VGb8KhNeNQmNOoSXqLUZvDgwd3qF/UPnKampmrMmDHyeDxB7R6PRxMmTIj24QAAQJyJydsuVVVVeuyxxzR27FiNHz9er7zyig4ePKgnn3wyFocDAABxJCbh46GHHtLx48f1q1/9SkeOHFFRUZHeeecdFRQUxOJwF+VyubRw4cIub+8kO+oSHrUJj9qER21Coy7hJWttHMZ05zsxAAAA0cFvuwAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqxI+fLz88ssqLCzUgAEDNGbMGL3//vt9PSWrlixZoptvvlkZGRnKzs7W/fffr7179wb1McbI7XYrLy9PaWlpKikp0Z49e/poxn1nyZIlcjgcqqysDLQlc20OHz6sRx99VEOHDlV6erpuuukm1dfXB/Yna23OnTunv//7v1dhYaHS0tI0cuRI/epXv1J7e3ugTzLUZseOHZo2bZry8vLkcDi0cePGoP3dqYHP59Ps2bOVlZWlgQMH6t5779VXX31l8Sxi40K18fv9eu6553TDDTdo4MCBysvL0/Tp0/X1118HjZGotQno7Q/JXcrWrl1rnE6nefXVV80f//hH88wzz5iBAweaAwcO9PXUrJk8ebJZvXq1+eyzz0xDQ4OZOnWqueKKK8ypU6cCfZYuXWoyMjLM+vXrTWNjo3nooYdMbm6u8Xq9fThzuz766CMzYsQIM3r0aPPMM88E2pO1Nt9++60pKCgwM2fONB9++KFpamoy27ZtM19++WWgT7LW5oUXXjBDhw41v/3tb01TU5N58803zaBBg8yKFSsCfZKhNu+8845ZsGCBWb9+vZFk3nrrraD93anBk08+aS6//HLj8XjMJ598YiZNmmRuvPFGc+7cOctnE10Xqs3JkyfNnXfeadatW2c+//xz8/vf/96MGzfOjBkzJmiMRK1Nh4QOH7fccot58skng9quueYaM3fu3D6aUd87evSokWRqa2uNMca0t7ebnJwcs3Tp0kCf7777zgwePNj80z/9U19N06rW1lYzatQo4/F4THFxcSB8JHNtnnvuOXP77beH3Z/MtZk6dar5y7/8y6C28vJy8+ijjxpjkrM2nV9gu1ODkydPGqfTadauXRvoc/jwYdOvXz+zefNma3OPtVDBrLOPPvrISAr8j3Ey1CZh33Y5e/as6uvrVVZWFtReVlamnTt39tGs+l5LS4skaciQIZKkpqYmNTc3B9XJ5XKpuLg4aeo0a9YsTZ06VXfeeWdQezLX5u2339bYsWP1s5/9TNnZ2frRj36kV199NbA/mWtz++2367/+67/0xRdfSJL+8Ic/6IMPPtDdd98tKblr06E7Naivr5ff7w/qk5eXp6KioqSpU4eWlhY5HI7Aj6omQ21isrz6peDYsWM6f/58l1/SHTZsWJdf3E0WxhhVVVXp9ttvV1FRkSQFahGqTgcOHLA+R9vWrl2rTz75RHV1dV32JXNt/u///k+rVq1SVVWV5s+fr48++kh/+7d/K5fLpenTpyd1bZ577jm1tLTommuuUUpKis6fP6/Fixfr4YcflpTcz5sO3alBc3OzUlNT9YMf/KBLn2T6G/3dd99p7ty5qqioCPyqbTLUJmHDRweHwxG0bYzp0pYsnn76aX366af64IMPuuxLxjodOnRIzzzzjLZu3aoBAwaE7ZeMtWlvb9fYsWNVXV0tSfrRj36kPXv2aNWqVZo+fXqgXzLWZt26dXrjjTdUU1Oj66+/Xg0NDaqsrFReXp5mzJgR6JeMtemsJzVIpjr5/X79/Oc/V3t7u15++eWL9k+k2iTs2y5ZWVlKSUnpkhKPHj3aJY0ng9mzZ+vtt9/We++9p+HDhwfac3JyJCkp61RfX6+jR49qzJgx6t+/v/r376/a2lq99NJL6t+/f+D8k7E2ubm5uu6664Larr32Wh08eFBScj9v/u7v/k5z587Vz3/+c91www167LHH9Itf/EJLliyRlNy16dCdGuTk5Ojs2bM6ceJE2D6JzO/368EHH1RTU5M8Hk/gqoeUHLVJ2PCRmpqqMWPGyOPxBLV7PB5NmDChj2ZlnzFGTz/9tDZs2KDf/e53KiwsDNpfWFionJycoDqdPXtWtbW1CV+nn/zkJ2psbFRDQ0PgNnbsWD3yyCNqaGjQyJEjk7Y2t912W5evZH/xxReBX6ZO5udNW1ub+vUL/tOZkpIS+KptMtemQ3dqMGbMGDmdzqA+R44c0WeffZbwdeoIHvv27dO2bds0dOjQoP1JUZu++qSrDR1ftX3ttdfMH//4R1NZWWkGDhxo9u/f39dTs+Zv/uZvzODBg8327dvNkSNHAre2trZAn6VLl5rBgwebDRs2mMbGRvPwww8n3NcCu+v733YxJnlr89FHH5n+/fubxYsXm3379pl/+7d/M+np6eaNN94I9EnW2syYMcNcfvnlga/abtiwwWRlZZk5c+YE+iRDbVpbW83u3bvN7t27jSSzfPlys3v37sA3NrpTgyeffNIMHz7cbNu2zXzyySfmxz/+cUJ8nfRCtfH7/ebee+81w4cPNw0NDUF/l30+X2CMRK1Nh4QOH8YY85vf/MYUFBSY1NRU8+d//ueBr5gmC0khb6tXrw70aW9vNwsXLjQ5OTnG5XKZiRMnmsbGxr6bdB/qHD6SuTb/+Z//aYqKiozL5TLXXHONeeWVV4L2J2ttvF6veeaZZ8wVV1xhBgwYYEaOHGkWLFgQ9MKRDLV57733Qv5tmTFjhjGmezU4c+aMefrpp82QIUNMWlqaueeee8zBgwf74Gyi60K1aWpqCvt3+b333guMkai16eAwxhh711kAAECyS9jPfAAAgEsT4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABW/T9xVZrUD0f+iQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGxCAYAAABfrt1aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkD0lEQVR4nO3dfXBU5eH28WtJwkIgoQJCWAkkSBA1IBaUBlTSakIxWJ3M+BYUGOuABSwxWl7bsvQngWGmDDooHailODaDY3kpFZWEKgGbUQIlgrGNWsNL0ZgRkEQCy5Lczx+d7MOygbLJhjs5+X5mduy5z9mz95WzwNWzOWddxhgjAAAACzrZngAAAOi4KCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwBqKCAAAsIYiAgAArKGIAAAAaygiAADAGooIAACwhiICAACsoYgAaJLX65XL5dKBAwf04IMPqkePHurZs6fy8vJ0/vx5VVRU6Mc//rHi4uKUlJSk5cuXBz2/pqZGzz33nJKTk9W5c2ddd911ys3N1enTp4O2e+mll3TXXXepT58+6tatm4YNG6bly5fL7/cHbZeenq7U1FSVlpbqzjvvVGxsrAYNGqRly5apoaGh1X8eAFpHtO0JAGjbHnroIT322GOaPn26ioqKAiVhx44dmjFjhp577jkVFBRo7ty5Gjx4sLKzs1VXV6dx48bpP//5jxYsWKDhw4ervLxcv/71r3Xw4EHt2LFDLpdLkvTvf/9bOTk5gcLy0UcfacmSJfrXv/6lP/zhD0Fzqaqq0qRJk/Tss89q0aJF2rx5s+bPny+Px6PJkyfb+PEAaCkDAE1YtGiRkWR++9vfBo2PGDHCSDKbNm0KjPn9fnPttdea7OxsY4wxS5cuNZ06dTKlpaVBz/3zn/9sJJm33nqrydesr683fr/fvPrqqyYqKsqcOHEisG7cuHFGkvnwww+DnnPTTTeZ8ePHtygrAHv4aAbAZU2cODFo+cYbb5TL5dKECRMCY9HR0Ro8eLAOHz4sSXrzzTeVmpqqESNG6Pz584HH+PHj5XK5tHPnzsBz9+/fr5/85Cfq1auXoqKiFBMTo8mTJ6u+vl6ffvpp0GsnJCTo9ttvDxobPnx44HUBtD98NAPgsnr27Bm03LlzZ8XGxqpLly4h4zU1NZKkr7/+Wp9//rliYmKa3Oc333wjSTpy5IjuvPNO3XDDDXrhhReUlJSkLl26aM+ePZo5c6bOnDkT9LxevXqF7MvtdodsB6D9oIgAiLjevXura9euIb/jceF6SdqyZYtOnz6tTZs2aeDAgYH1ZWVlV2OaANoAigiAiJs4caLy8/PVq1cvJScnX3K7xl9YdbvdgTFjjNauXdvqcwTQNlBEAERcbm6uNm7cqLvuukvPPPOMhg8froaGBh05ckSFhYV69tlnNXr0aGVkZKhz58569NFHNWfOHJ09e1arV6/WyZMnbUcAcJXwy6oAIq5bt27avXu3pk6dqjVr1igrK0sPPfSQXnzxRfXv319JSUmSpKFDh2rjxo06efKksrOz9fTTT2vEiBF68cUX7QYAcNW4jDHG9iQAAEDHxBkRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFjT5m5o1tDQoC+//FJxcXGBuy4CAIC2zRij2tpaeTwedep05ec52lwR+fLLL5WYmGh7GgAAoBmOHj2q/v37X/H2ba6IxMXFSfpvkPj4+Ijs0+/3q7CwUJmZmZf8NlCn6ChZO0pOiaxO1FFySmR1okvlrKmpUWJiYuDf8SvV5opI48cx8fHxES0isbGxio+Pd/SbQ+o4WTtKTomsTtRRckpkdaL/lTPcX6vgl1UBAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGBNtO0JoO1LmrctaPnQsixLMwEAOA1nRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYE207Qng6kmaty1k7NCyLAszAQDgvzgjAgAArKGIAAAAa1pURJYuXSqXy6Xc3NzAmDFGXq9XHo9HXbt2VXp6usrLy1s6TwAA4EDNLiKlpaVas2aNhg8fHjS+fPlyrVixQqtWrVJpaakSEhKUkZGh2traFk8WAAA4S7OKyHfffadJkyZp7dq1uuaaawLjxhitXLlSCxcuVHZ2tlJTU7V+/XrV1dWpoKAgYpMGAADO0KyrZmbOnKmsrCzdc889ev755wPjlZWVqqqqUmZmZmDM7XZr3LhxKikp0fTp00P25fP55PP5Ass1NTWSJL/fL7/f35zphWjcT6T215ZdLqs7ylxy+8u5+Hlt4efIMXWmjpK1o+SUyOpEl8rZ3NwuY0zov06XsWHDBi1ZskSlpaXq0qWL0tPTNWLECK1cuVIlJSUaO3asjh07Jo/HE3jOtGnTdPjwYW3fvj1kf16vV4sXLw4ZLygoUGxsbDMiAQCAq62urk45OTk6deqU4uPjr/h5YZ0ROXr0qGbPnq3CwkJ16dLlktu5XK6gZWNMyFij+fPnKy8vL7BcU1OjxMREZWZmhhXkcvx+v4qKipSRkaGYmJiI7LOtulzWVG9oEfzYO/5/7vPi513Jc1obx9SZOkrWjpJTIqsTXSpn4yca4QqriOzbt0/V1dUaOXJkYKy+vl67du3SqlWrVFFRIUmqqqpSv379AttUV1erb9++Te7T7XbL7XaHjMfExET8QLbGPtuqprL66kPL4JX8PC5+Xlv6GXb0Y+pUHSVrR8kpkdWJLs7Z3Mxh/bLq3XffrYMHD6qsrCzwGDVqlCZNmqSysjINGjRICQkJKioqCjzn3LlzKi4u1pgxY5o1QQAA4FxhnRGJi4tTampq0Fi3bt3Uq1evwHhubq7y8/OVkpKilJQU5efnKzY2Vjk5OZGbNQAAcISIf9fMnDlzdObMGc2YMUMnT57U6NGjVVhYqLi4uEi/FAAAaOdaXER27twZtOxyueT1euX1elu6awAA4HB81wwAALAm4h/NoO1ImrfN9hQAALgszogAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwBou3+3guMQXAGATZ0QAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFgTbXsCaH+S5m0LGTu0LMvCTAAA7R1nRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDZfvolVwiS8A4EpwRgQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANdxHpB3gnhwAAKfijAgAALCGIgIAAKyhiAAAAGsoIgAAwBqKCAAAsIYiAgAArKGIAAAAaygiAADAGooIAACwhiICAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwBqKCAAAsIYiAgAArKGIAAAAaygiAADAGooIAACwhiICAACsibY9AURG0rxtkiR3lNHy26VU73ZJrqv++gAAhIMzIgAAwBqKCAAAsIYiAgAArAmriKxevVrDhw9XfHy84uPjlZaWprfffjuw3hgjr9crj8ejrl27Kj09XeXl5RGfNAAAcIawikj//v21bNky7d27V3v37tWPfvQj3X///YGysXz5cq1YsUKrVq1SaWmpEhISlJGRodra2laZPAAAaN/CKiL33Xef7r33Xg0ZMkRDhgzRkiVL1L17d33wwQcyxmjlypVauHChsrOzlZqaqvXr16uurk4FBQWtNX8AANCONfvy3fr6er3xxhs6ffq00tLSVFlZqaqqKmVmZga2cbvdGjdunEpKSjR9+vQm9+Pz+eTz+QLLNTU1kiS/3y+/39/c6QVp3E+k9ne1uaNMyNjFWRq3cXcK/m9bEsmff3s/puEgq/N0lJwSWZ3oUjmbm9tljAnrX6yDBw8qLS1NZ8+eVffu3VVQUKB7771XJSUlGjt2rI4dOyaPxxPYftq0aTp8+LC2b9/e5P68Xq8WL14cMl5QUKDY2Ngw4wAAABvq6uqUk5OjU6dOKT4+/oqfF/YZkRtuuEFlZWX69ttvtXHjRk2ZMkXFxcWB9S5X8E20jDEhYxeaP3++8vLyAss1NTVKTExUZmZmWEEux+/3q6ioSBkZGYqJiYnIPq+m/96cLNjH3vFNbuPuZPR/oxr0q72d5Gu4ejc0uxIXz7kl2vsxDQdZnaej5JTI6kSXytn4iUa4wi4inTt31uDBgyVJo0aNUmlpqV544QXNnTtXklRVVaV+/foFtq+urlbfvn0vuT+32y232x0yHhMTE/ED2Rr7vBp89aGF4uIcF2/ja3A1+TybWuNn316PaXOQ1Xk6Sk6JrE50cc7mZm7xfUSMMfL5fEpOTlZCQoKKiooC686dO6fi4mKNGTOmpS8DAAAcKKwzIgsWLNCECROUmJio2tpabdiwQTt37tQ777wjl8ul3Nxc5efnKyUlRSkpKcrPz1dsbKxycnJaa/4AAKAdC6uIfP3113r88cf11VdfqUePHho+fLjeeecdZWRkSJLmzJmjM2fOaMaMGTp58qRGjx6twsJCxcXFtcrkAQBA+xZWEXnllVcuu97lcsnr9crr9bZkTgAAoIPgu2YAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1oT9pXdAcyXN2xa0fGhZlqWZAADaCs6IAAAAaygiAADAGooIAACwhiICAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwBqKCAAAsIYiAgAArKGIAAAAaygiAADAGooIAACwhiICAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwJpo2xNA8yTN22Z7CgAAtBhnRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYw31ELON+IACAjowzIgAAwBqKCAAAsIYiAgAArKGIAAAAaygiAADAGooIAACwhiICAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwBqKCAAAsIYiAgAArKGIAAAAaygiAADAGooIAACwhiICAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwJqwisjSpUt12223KS4uTn369NEDDzygioqKoG2MMfJ6vfJ4POratavS09NVXl4e0UkDAABnCKuIFBcXa+bMmfrggw9UVFSk8+fPKzMzU6dPnw5ss3z5cq1YsUKrVq1SaWmpEhISlJGRodra2ohPHgAAtG/R4Wz8zjvvBC2vW7dOffr00b59+3TXXXfJGKOVK1dq4cKFys7OliStX79effv2VUFBgaZPnx65mQMAgHYvrCJysVOnTkmSevbsKUmqrKxUVVWVMjMzA9u43W6NGzdOJSUlTRYRn88nn88XWK6pqZEk+f1++f3+lkwvoHE/kdpfJLmjTGT318kE/bcta8nxaMvHNNLI6jwdJadEVie6VM7m5nYZY5r1L5YxRvfff79Onjyp3bt3S5JKSko0duxYHTt2TB6PJ7DttGnTdPjwYW3fvj1kP16vV4sXLw4ZLygoUGxsbHOmBgAArrK6ujrl5OTo1KlTio+Pv+LnNfuMyKxZs3TgwAG9//77IetcLlfQsjEmZKzR/PnzlZeXF1iuqalRYmKiMjMzwwpyOX6/X0VFRcrIyFBMTExE9hkpqd7QctYS7k5G/zeqQb/a20m+hqZ/5m3Fx97xzX5uWz6mkUZW5+koOSWyOtGlcjZ+ohGuZhWRp59+Wlu3btWuXbvUv3//wHhCQoIkqaqqSv369QuMV1dXq2/fvk3uy+12y+12h4zHxMRE/EC2xj5bylffOmXB1+BqtX1HSiSORVs8pq2FrM7TUXJKZHWii3M2N3NYV80YYzRr1ixt2rRJ7777rpKTk4PWJycnKyEhQUVFRYGxc+fOqbi4WGPGjGnWBAEAgHOFdUZk5syZKigo0F/+8hfFxcWpqqpKktSjRw917dpVLpdLubm5ys/PV0pKilJSUpSfn6/Y2Fjl5OS0SgAAANB+hVVEVq9eLUlKT08PGl+3bp2mTp0qSZozZ47OnDmjGTNm6OTJkxo9erQKCwsVFxcXkQkDAADnCKuIXMkFNi6XS16vV16vt7lzAgAAHQTfNQMAAKxp0Q3NgJZImrctZOzQsiwLMwEA2MIZEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFgTbXsCHU3SvG22pwAAQJvBGREAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWMPlu2jTLnW5szvKaPntUqp3uyqWTLzKswIARApnRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANRQRAABgDUUEAABYw31Emqmp+1scWpZlYSYAALRfnBEBAADWUEQAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA33EWlFTd1rBAAA/H+cEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANVy+e4Wu5FJcLtdtOX6GANCxcEYEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWEMRAQAA1lBEAACANWEXkV27dum+++6Tx+ORy+XSli1bgtYbY+T1euXxeNS1a1elp6ervLw8UvMFAAAOEnYROX36tG655RatWrWqyfXLly/XihUrtGrVKpWWliohIUEZGRmqra1t8WQBAICzhP3tuxMmTNCECROaXGeM0cqVK7Vw4UJlZ2dLktavX6++ffuqoKBA06dPb9lsAQCAo4RdRC6nsrJSVVVVyszMDIy53W6NGzdOJSUlTRYRn88nn88XWK6pqZEk+f1++f3+iMyrcT8t2Z87ykRkLq3N3ckE/depLswZqfdJWxWJ92970VGydpScElmd6FI5m5vbZYxp9r9YLpdLmzdv1gMPPCBJKikp0dixY3Xs2DF5PJ7AdtOmTdPhw4e1ffv2kH14vV4tXrw4ZLygoECxsbHNnRoAALiK6urqlJOTo1OnTik+Pv6KnxfRMyKNXC5X0LIxJmSs0fz585WXlxdYrqmpUWJiojIzM8MKcjl+v19FRUXKyMhQTExMs/aR6g0tUW2Ru5PR/41q0K/2dpKvoemfuRP8r5wfe8dbmFXriMT7t73oKFk7Sk6JrE50qZyNn2iEK6JFJCEhQZJUVVWlfv36Bcarq6vVt2/fJp/jdrvldrtDxmNiYiJ+IFuyT199+/pH3dfgandzbo5L5XTiXwKt8WeireooWTtKTomsTnRxzuZmjuh9RJKTk5WQkKCioqLA2Llz51RcXKwxY8ZE8qUAAIADhH1G5LvvvtPnn38eWK6srFRZWZl69uypAQMGKDc3V/n5+UpJSVFKSory8/MVGxurnJyciE4cAAC0f2EXkb179+qHP/xhYLnx9zumTJmiP/7xj5ozZ47OnDmjGTNm6OTJkxo9erQKCwsVFxcXuVkDAABHCLuIpKen63IX2rhcLnm9Xnm93pbMCwAAdAB81wwAALCGIgIAAKyhiAAAAGsoIgAAwBqKCAAAsIYiAgAArKGIAAAAaygiAADAmlb59l2grUmaty1k7NCyLAszAQBciDMiAADAGooIAACwhiICAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKzhPiJwpKbuGwIAaHs4IwIAAKyhiAAAAGsoIgAAwBqKCAAAsIYiAgAArKGIAAAAa7h8twlc+tkxXHycDy3LsjQTAOi4OCMCAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGsoIgAAwJoOdx+Rpu4Rwv0jIEXuvcF7DACuHGdEAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFjT4e4jAkRaU/cNAQBcGc6IAAAAaygiAADAGooIAACwhiICAACsoYgAAABrKCIAAMAaLt8Vl1+ibWp8X7qjjJbfLqV6t6tiyUTLswKAyOKMCAAAsIYiAgAArKGIAAAAaygiAADAGooIAACwhiICAACsoYgAAABruI8IcBkX32Pm0LIsq/vpyJq63w8/R6D944wIAACwhiICAACsoYgAAABrKCIAAMAaiggAALCGIgIAAKyhiAAAAGu4jwgQhqbuZRGp/VzJPTGacz+SK3mtqzmfy+3HHWW0/Pbwn9fS17+akuZtC+RM9W5XxZKJtqeENipS985p6/fg4YwIAACwhiICAACsabUi8vLLLys5OVldunTRyJEjtXv37tZ6KQAA0E61ShF5/fXXlZubq4ULF2r//v268847NWHCBB05cqQ1Xg4AALRTrVJEVqxYoZ/+9Kd68skndeONN2rlypVKTEzU6tWrW+PlAABAOxXxq2bOnTunffv2ad68eUHjmZmZKikpCdne5/PJ5/MFlk+dOiVJOnHihPx+f0Tm5Pf7VVdXp+PHjyv6/OmI7LOtim4wqqtrULS/k+obXLan02qcmPP48eNBy43v1ctlvfg5TWnqPX+p12rpvq/kOZfbT2PW48ePKyYm5n/O8WLNff2rKfr86aBj2h7m3BIX/v178TF1mkhnbe6fy9baT6NL5aytrZUkGWPC26GJsGPHjhlJ5u9//3vQ+JIlS8yQIUNCtl+0aJGRxIMHDx48ePBwwOPo0aNh9YZWu4+IyxX8/9yMMSFjkjR//nzl5eUFlhsaGnTixAn16tWrye2bo6amRomJiTp69Kji4+Mjss+2qqNk7Sg5JbI6UUfJKZHViS6V0xij2tpaeTyesPYX8SLSu3dvRUVFqaqqKmi8urpaffv2Ddne7XbL7XYHjX3ve9+L9LQkSfHx8Y5+c1yoo2TtKDklsjpRR8kpkdWJmsrZo0ePsPcT8V9W7dy5s0aOHKmioqKg8aKiIo0ZMybSLwcAANqxVvloJi8vT48//rhGjRqltLQ0rVmzRkeOHNFTTz3VGi8HAADaqVYpIg8//LCOHz+u3/zmN/rqq6+Umpqqt956SwMHDmyNl/uf3G63Fi1aFPIRkBN1lKwdJadEVifqKDklsjpRpHO6jAn3OhsAAIDI4LtmAACANRQRAABgDUUEAABYQxEBAADWUEQAAIA1ji8iL7/8spKTk9WlSxeNHDlSu3fvtj2lFtu1a5fuu+8+eTweuVwubdmyJWi9MUZer1cej0ddu3ZVenq6ysvL7Uy2BZYuXarbbrtNcXFx6tOnjx544AFVVFQEbeOUrKtXr9bw4cMDdypMS0vT22+/HVjvlJxNWbp0qVwul3JzcwNjTsnr9XrlcrmCHgkJCYH1TskpSceOHdNjjz2mXr16KTY2ViNGjNC+ffsC652SNSkpKeSYulwuzZw5U5JzckrS+fPn9ctf/lLJycnq2rWrBg0apN/85jdqaGgIbBORvGF/q107smHDBhMTE2PWrl1rPvnkEzN79mzTrVs3c/jwYdtTa5G33nrLLFy40GzcuNFIMps3bw5av2zZMhMXF2c2btxoDh48aB5++GHTr18/U1NTY2fCzTR+/Hizbt068/HHH5uysjKTlZVlBgwYYL777rvANk7JunXrVrNt2zZTUVFhKioqzIIFC0xMTIz5+OOPjTHOyXmxPXv2mKSkJDN8+HAze/bswLhT8i5atMjcfPPN5quvvgo8qqurA+udkvPEiRNm4MCBZurUqebDDz80lZWVZseOHebzzz8PbOOUrNXV1UHHs6ioyEgy7733njHGOTmNMeb55583vXr1Mm+++aaprKw0b7zxhunevbtZuXJlYJtI5HV0Ebn99tvNU089FTQ2dOhQM2/ePEsziryLi0hDQ4NJSEgwy5YtC4ydPXvW9OjRw/zud7+zMMPIqa6uNpJMcXGxMcbZWY0x5pprrjG///3vHZuztrbWpKSkmKKiIjNu3LhAEXFS3kWLFplbbrmlyXVOyjl37lxzxx13XHK9k7JebPbs2eb66683DQ0NjsuZlZVlnnjiiaCx7Oxs89hjjxljIndcHfvRzLlz57Rv3z5lZmYGjWdmZqqkpMTSrFpfZWWlqqqqgnK73W6NGzeu3ec+deqUJKlnz56SnJu1vr5eGzZs0OnTp5WWlubYnDNnzlRWVpbuueeeoHGn5f3ss8/k8XiUnJysRx55RF988YUkZ+XcunWrRo0apQcffFB9+vTRrbfeqrVr1wbWOynrhc6dO6fXXntNTzzxhFwul+Ny3nHHHfrb3/6mTz/9VJL00Ucf6f3339e9994rKXLHtVVu8d4WfPPNN6qvrw/5xt++ffuGfDOwkzRmayr34cOHbUwpIowxysvL0x133KHU1FRJzst68OBBpaWl6ezZs+revbs2b96sm266KfAH2ik5JWnDhg36xz/+odLS0pB1Tjquo0eP1quvvqohQ4bo66+/1vPPP68xY8aovLzcUTm/+OILrV69Wnl5eVqwYIH27Nmjn//853K73Zo8ebKjsl5oy5Yt+vbbbzV16lRJznrvStLcuXN16tQpDR06VFFRUaqvr9eSJUv06KOPSopcXscWkUYulyto2RgTMuZETss9a9YsHThwQO+//37IOqdkveGGG1RWVqZvv/1WGzdu1JQpU1RcXBxY75ScR48e1ezZs1VYWKguXbpccjsn5J0wYULgfw8bNkxpaWm6/vrrtX79ev3gBz+Q5IycDQ0NGjVqlPLz8yVJt956q8rLy7V69WpNnjw5sJ0Tsl7olVde0YQJE+TxeILGnZLz9ddf12uvvaaCggLdfPPNKisrU25urjwej6ZMmRLYrqV5HfvRTO/evRUVFRVy9qO6ujqkvTlJ42/kOyn3008/ra1bt+q9995T//79A+NOy9q5c2cNHjxYo0aN0tKlS3XLLbfohRdecFzOffv2qbq6WiNHjlR0dLSio6NVXFysF198UdHR0YFMTsl7oW7dumnYsGH67LPPHHVc+/Xrp5tuuilo7MYbb9SRI0ckOe/PqiQdPnxYO3bs0JNPPhkYc1rOX/ziF5o3b54eeeQRDRs2TI8//rieeeYZLV26VFLk8jq2iHTu3FkjR45UUVFR0HhRUZHGjBljaVatLzk5WQkJCUG5z507p+Li4naX2xijWbNmadOmTXr33XeVnJwctN5JWZtijJHP53NczrvvvlsHDx5UWVlZ4DFq1ChNmjRJZWVlGjRokKPyXsjn8+mf//yn+vXr56jjOnbs2JBL6z/99NPAN647KWujdevWqU+fPsrKygqMOS1nXV2dOnUKrglRUVGBy3cjlrf5v0/b9jVevvvKK6+YTz75xOTm5ppu3bqZQ4cO2Z5ai9TW1pr9+/eb/fv3G0lmxYoVZv/+/YHLkpctW2Z69OhhNm3aZA4ePGgeffTRdnn52M9+9jPTo0cPs3PnzqDL5erq6gLbOCXr/Pnzza5du0xlZaU5cOCAWbBggenUqZMpLCw0xjgn56VceNWMMc7J++yzz5qdO3eaL774wnzwwQdm4sSJJi4uLvB3kFNy7tmzx0RHR5slS5aYzz77zPzpT38ysbGx5rXXXgts45SsxhhTX19vBgwYYObOnRuyzkk5p0yZYq677rrA5bubNm0yvXv3NnPmzAlsE4m8ji4ixhjz0ksvmYEDB5rOnTub73//+4FLP9uz9957z0gKeUyZMsUY899LqhYtWmQSEhKM2+02d911lzl48KDdSTdDUxklmXXr1gW2cUrWJ554IvA+vfbaa83dd98dKCHGOCfnpVxcRJySt/GeCjExMcbj8Zjs7GxTXl4eWO+UnMYY89e//tWkpqYat9tthg4datasWRO03klZt2/fbiSZioqKkHVOyllTU2Nmz55tBgwYYLp06WIGDRpkFi5caHw+X2CbSOR1GWNMc0/bAAAAtIRjf0cEAAC0fRQRAABgDUUEAABYQxEBAADWUEQAAIA1FBEAAGANRQQAAFhDEQEAANZQRAAAgDUUEQAAYA1FBAAAWPP/ANTIRz20AdKAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hold_summary_by_member.hist('mean', bins=100)\n", "hold_summary_by_pack.hist('mean', bins=100)" ] }, { "cell_type": "code", "execution_count": 294, "id": "25f483c5-e209-4f23-955c-7bf74354eea8", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/vs/2pyq73711mgf5lg0y3w7rllm0000gn/T/ipykernel_9105/2997534890.py:12: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.\n", " dataplot = sns.heatmap(X_train_numeric.corr(), cmap=\"YlGnBu\", annot=True)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABRwAAAVaCAYAAACIY7UAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTVeMH8G9GMzrS3aR7l7bsJeJAEBAEUYYiwguKCqLiQsWtr/gq6k/F7au+uAVUUGRvkCmjZRQoUDro3k3SNmnSNPn9kZI2bTqAlEr5fp4nz0PSc2/Ol3Pvzc3JuecKLBaLBUREREREREREREROIOzsChAREREREREREVHXwQ5HIiIiIiIiIiIichp2OBIREREREREREZHTsMORiIiIiIiIiIiInIYdjkREREREREREROQ07HAkIiIiIiIiIiIip2GHIxERERERERERETkNOxyJiIiIiIiIiIjIadjhSERERERERERERE7DDkciIiIiIiIiIiJyGnY4EhERERERERERdbKdO3di3LhxCAoKgkAgwMqVK9tc5q+//kL//v0hk8kQFRWF//73v83KrFixAomJiZBKpUhMTMQff/zRAbW3xw5HIiIiIiIiIiKiTlZdXY3evXvj008/bVf5zMxMjBkzBjfeeCMOHz6MF198EY8//jhWrFhhK7Nv3z7cfffdmD59Oo4ePYrp06dj8uTJ2L9/f0fFAAAILBaLpUPfgYiIiIiIiIiIiNpNIBDgjz/+wPjx41ss89xzz2HVqlVITU21vTZnzhwcPXoU+/btAwDcfffd0Gq1WL9+va3M6NGj4e3tjaVLl3ZY/TnCkYiIiIiIiIiIqAMYDAZotVq7h8FgcMq69+3bh1tuucXutVGjRuHQoUOora1ttczevXudUoeWiDt07URXOHnYPZ1dhQ6zet/0zq5Ch6k2CTq7Ch3ir0JpZ1ehw6xMEnV2FTpMbHTXzGa2dM39DAAULubOrkKHEQm75oUtGmPX/Q1d2HV3NbiKuub2CAA1dV2z4SRd9BjS1XXVTzWTuWvuZwCw9pYbOrsKl0VX/r7d2HP3d8Prr79u99prr72Gf//735e87sLCQiiVSrvXlEolTCYTSktLERgY2GKZwsLCS37/1rDDkYiIiIiIiIiIqAO88MILmDdvnt1rUqnzBpMIBPad7+dnTmz8uqMyTV9zNnY4EhERERERERERdQCpVOrUDsbGVCpVs5GKxcXFEIvF8PX1bbVM01GPztZ1rz8hIiIiIiIiIiLqogYPHozNmzfbvbZp0yYMGDAALi4urZa57rrrOrRuHOFIRERERERERESXlUDAMXBNVVVV4ezZs7bnmZmZOHLkCHx8fBAWFoYXXngBeXl5+OGHHwBY70j96aefYt68eZg1axb27duHxYsX2919+oknnsCQIUPwzjvv4I477sCff/6JLVu2YPfu3R2aha1LRERERERERETUyQ4dOoS+ffuib9++AIB58+ahb9++ePXVVwEABQUFyM7OtpWPjIzEunXrsGPHDvTp0wdvvPEGPv74Y0yaNMlW5rrrrsOyZcvw7bffolevXvjuu+/wyy+/YNCgQR2aRWA5P5skETXTle+axbtUX3l4l+orE+9SfeXhXaqvPLxL9ZWJd6m+8vAu1VemrvqpxrtUX/lcw6d1dhUuC925nzu7Cp2i656dERERERERERER0WXHDkciIiIiIiIiIiJyGt40hoiIiIiIiIiILisBx8B1aWxdIiIiIiIiIiIichp2OBIREREREREREZHTsMORiIiIiIiIiIiInIZzOBIRERERERER0WUlEHAMXFfG1iUiIiIiIiIiIiKnYYcjEREREREREREROQ07HImIiIiIiIiIiMhp2OFIRERERERERERETsObxhARERERERER0WXFm8Z0bWxdIiIiIiIiIiIichp2OBIREREREREREZHTsMORiIiIiIiIiIiInIZzOBIRERERERER0WUlEAg6uwrUgTjCkYiIiIiIiIiIiJyGHY5ERERERERERETkNOxwJCIiIiIiIiIiIqdhhyMRERERERERERE5DW8aQ0RERERERERElxnHwHVl7HAkAEBERASefPJJPPnkk51dlQu2Y8cODBs2DBUVFfDy8urs6lyw66+Jx1NzbkO/nlEIVHpj8oPvY/WmQ51drVZZLBas+34j9qzdB12lHhEJYZj8+CQERQa2uMyRncewcclmlOSVoq7ODP9gPwy/aygG3TLQVqZGV4M136zHkd0pqFJXISQmGHfNnYDw+LDLEQuANdvmHzdg/7p90FfpERYfhvFz74QqouVsKbuPYtvSLSjLL0GdyQy/YD8MuXMY+o9oyLbph/XY8tNGu+XcvT3w6i9vdFiWxiwWC9L+WIvsHbtRW62DV3QEesyYAo+QoBaXqczNx5nfV0OTlQ19aTkSp96JyNHDWyx/dvUGnP7tT0TcMgzd/zW5I2I49K/uQZjVNwQBrlKcKa/Gf/ak42CBxmHZUVF+mNY9CAl+bpCIhEgr1+Gjg1nYlVNhV85DIsIzgyIxKsoPnlIX5FTq8daeDOzILu+wHLeFqnBXRAh8pBKcq9Lhv6cycFytbbF8T28FHuoWhXB3V5QZjPgtMxdrcwttf781RIkRQQEId3cDAJzVVuHbtCyc1lTZrcdXKsEDcREY6OcNiUiIvGo9PjiRhrPaaqdlGxeqwl2RwfCVSpBVpcMXpzJxvKLlbL28FXgoPhIR9dl+zczDmpyGbDcofXBPVCiCXGUQCQTI1+mxPCsfW/JLbGV+vKk/VHJZs3WvOleAT1IznJatKYvFguK1q1CxZyfqdDrIIyIRdPc0yIKCW11OczgJxatXwlhaAomfP5S3T4CiTz/b30s2rIP2SDIMRQUQuEjgGhUN1YQ7IVWqOixH0ZrVKNttzeEaEYmQe6a2mUOdnITCVX/acgTeMR6efRtylP61A2U7d8BYVgYAkAUGQTn2Nih69LSVKVy9CupDB1FbUQ6BWAx5WDhUd4yHW2SUU7J11X1tbKgKd0aEwEciwblqHb48lYETbeSa1S0K4W7WXMuzcrGuUa7RwUoMb5Lru7QsnNE25BobosLY0EAo5VIAwLkqHZZk5OBQqf0x9VJ11H5VnXYGpZs3QJ9zDiaNBmGzH4WiT98W15e35AdU7N4J1Z13w+/mkU7JNjZUhYn17ZZdrcNXbbRbj/p2C3NzRXl9u61v1G5hbq74V0wYYhTuUMpl+OpUBv7Mzrdbx12RIbguwBchbnIYzWakqivx7Zks5On0F53DYrGgZN0qqBu1kWpy222kPZyE4jUrUVtaAhc/fwSMs28jACjfuR1lWzbCpFFDGhgE5Z1T4BYTZ/u7SatB0coVqD51AnU6PVxjYqGaPBXSAGVDGY0GRX/8hqpTJ2E21ECqVMHvljFQ9Bvwj85mrqlB0Z8rUHnsCOqqq+Di4wufocPhM2SYrUz+kh9QfToVJo0aQqkU8sgYKMdPglTV8rlrY4VLfoB6z04ETLobPq1s15Y6E8o2rodm/16Y1BWQKFXwv+NOuHfv0a73aYm5thaFS3+EIeccDIUFcO/RCyEPzbUrk//DN9Du39tsWYkqCGEvXdy5dGfse0RXG3Y4EgDg4MGDcHNz6+xqOEVNTQ3mzJmDpKQkpKam4rbbbsPKlSs7u1otcnOVIuVkNn789S8s+2peZ1enXTYv24Zty3dg+vypCAj1x4afNuPT+f/Fq9+/AJlr8y/4AOCqcMWoaSOhClNCJBbh+N8n8NO7y+Dh7YHEgfEAgJ/f+wX5mQW494Vp8PRT4ODmJHz87Bd45Zvn4OXvdVmy7fh1K3b9vgOTn5kK/+AAbF2yCV8//wWe/ebFlrN5uGL4PSPhHxYAsViM1P0n8Nt7S+Hu5Y5uAxJs5ZThKsx+5xHbc4Hw8v2il7F2EzI3bEWvWTPgHhiAtD/XY/+7H2PoO/+G2EGnDADUGY1w9fdD4DX9cPLn5a2uX52Rheztu+ER2vrJt7ONjfHHyzdE49WdaUgq1GJqYiC+ua0nRi09iPwqQ7Py1wR6YndOBd7bnwmtwYQ741X4ekwPTFxxGCdLrV+iXYQC/Hh7L5Tpa/HoxpMoqDIgyF2Kqtq6Dstxk8oPc+Kj8OnJdJxQazE2VIX/9O+OWXuSUVLTPIdSLsV/+nXH+rxCvJNyGt29FJibGA1NbS12F1k7cnp5e2J7QQlOqjNQazbjrogQvNW/B2bvSUaZwQgAcBeL8MGgXjhWrsHLySegNtQi0FWGaidmvUnlh4cTIvHJyQycqLBme6t/Ih7YnYySGmOz8iq5FP/pn4j1uUV459gZdPdW4LHEKKiNDdm0tSYsSc9BTrUetWYLrg3wxjM9YqE21uJQqRoAMHfvUQgFAtt6Izxc8e7AHvirqNRp2Rwp3bwBZds2I3j6TEiVKpSsX4OsTz5A7GtvQiRzvK/pMtKRs/hLKG8bD0WfvtAeOYzs/32JqKefg2t9J1v12dPwuWkY5OERsJjNKF71h3W9r7wBoVTq9BwlmzagZOtmhN47E9IAJYrXr0X6R4sQ//p/WsxRnZGOc//7Cqrb74Bnn77QHDmMrK+/Qsyz822dhS7e3ggcPwnSAH8AQPm+fcj64jPEvfSK7cu7VKlE8JR7IPHzh6XWiJKtW5Dx0YdIeONNiD08LilXV93Xhij98FC3KHyWmo6Tai3GhKjwRr/ueGhvy7kW9OuODbmF+L+U00j0UuDRhGhojLXYU1yfy8cTOwpLkKrOgLHOjLsiQ/Bm/x6Ys7chV6nBiG/TspBf31E1IkiJV/skYO6+I8iu1jklG9Bx+5XZaIAsJBReg69HztdftFoH7ZHD0GdlQuzp5bRcNyr9MKtbFD5PTUeqWovRISq83q87Hm6l3V6vb7f3Uk4jwUuBR+rbbW99u0lFQhTqa7C7qBSzujnupO/p7Ym1OQU4o6mCSCDAjNhw/Kd/d8zZmwxDnfmispRt3oDybZsRNH0mJAEqlG5Yg+xPP0D0q623Ue43XyLgtvHw6N0XlUcPI3fxl4iY19BGmqQDKFy+DIF3T4NrdAwqdu9E9mcfIeaVBXDx8YXFYkHOV59BIBQh9KG5EMrkKNu6Cdkfv4/oRsfHvB/+hzq9HmFz5kLk7gHNwf3I/eZLRPoHQB7a+g/bnZUNAApX/ILqM6cQfO8DcPH1Q3XqCRT88jNcPL3g0dvaOS4PC4fnwGvh4uODuupqlKxbhXOfLkLsgrfbPNesPNr+7bpk9UpoD/wN1dQZkKgCUX3yOPK+/gzhT78AWRv/h60ymyF0cYH30OGoPJzksIjyrikIuGOS7bnFXIfMha/DrW/bHcaOdNa+R3S14fhVAgD4+/vD1dW1s6vhFHV1dZDL5Xj88ccxYsSIzq5OmzbtOIrX3/sVf2442NlVaReLxYLtK/7CqGkj0WdILwRFBmL6c1NhrDHi4NbkFpeL6xODPjf2gipcCf9gPwybdBOCowKRnmIdaWQ0GHFk5zFMeGgcYntHIyDYH2PvGw1flQ92rWr+i2ZHZdv9x07cfM9I9LyhN1SRgbj72WmoNRhxZJvjEyAAiO4dix439IIyTAXfID/cMOEmqKKCkHU8066cUCSEh4/C9nD3cu/oSACsuTI3bkPM7aMROLAvPEKC0Xv2vagzGpG3r+XtzisqAgn3TELQtQMhdGn59ylTTQ2OfPEtet0/DS5ul/c48kDvEPyWWohfUwuRXqHDG3vSUVBVg2k9HI/cfGNPOr46koNjxZXI0ujx3v5MZGn0GB7haytzV4IKnlIXPLT+BJIKtcivMuBQoRanypw34q+pieHB2JhbhA15Rcip1uO/pzJRUmPAbaGOR6/dFhqI4hoD/nsqEznVemzIK8KmvCJMimjo8H0n5QzW5BQio7IaOdV6fHgiDQIB0NfXy1ZmcmQISmsMeP94Gk5rqlBUY8CRcg0K9DVOyzYpIggbcouwPrcI2dV6fFGfbVyY45EXt4WqUFJjwBenMpFdrcf63CJszC3GXZENbXqsXIs9xeXIrtajQF+DP84VIKOyGt29FLYymloTKoy1tse1/j7Iq9bjWHnLoxculcViQdm2LfAfPRaefftDFhSM4Bn3w2w0QnNwf4vLlW7bDPf4RPiPHgOpKhD+o8fAPT4eZdu32MpEzH0K3oOvhywoGPKQUARPn4na8nLos891SI6SrVuhvHUMvPr2gzw4GKH3zoTZaIT6QMs5SrZugUdCIpSjx0CmCoRy9Bh4xMejdGtDDs9evaHo2RNSpQpSpQqB4ydAKJWiOrNh1Kn3NYPgkZAIqb8/ZEHBCLpzMsw1eujzci85W1fd1yZEBGNTXhE21uf68rQ119gQx7nGhgSiWG/Al6etuTY6yPVuyhmsrc+Vq9PjoxNpEAqAPj4NufaXlONgaQXydDXI09Xg+7PnUFNXh3ivS+sYbqwj9yuP7j2hvH0CPPv2b7UOteoK5P+6BCH3PQiBSOS0bOfbbVN9u319OhOlNQaMaaHdxoQEokRvwNf17bYprwib84owsVG7pWmr8M2ZLOwsLEWt2XHn4avJJ7AlvxjZ1TpkVlVj0fEzCJDLEKO4uPMSi8WC8u1b4DdqLBR9rG0UNN3aRtpW2qh8+2a4xSfCb5S1jfxGjYFbt3iUN2qjsq2b4T34BnhfPwRSVRBUd06Bi7c3ynftAAAYi4ugz8yAasq/IA+PtB5XpvwLZqMBmkMN763LyIDPTcMhj4iCxM8f/rfeBpGrK2pyWj+GdmY2ANBnpsPr2uvgFhcPia8fvG+4CbLgELtjv/cNN8EtNg4SXz/Iw8IRMG48TBXlqC1r/Qe2WnUFin5dgqD7HgTasV1rD+yD76gxcO/RCxI/f3gPGQa3hO4o39pwBY/FYkHZ5vVIf/V5nH7yYWS+9W9ok1u/cksolUJ1z3R4XT8EIoWnwzIiuSvEnp62R032OZh1Oiiuvb7NejvSWfse0dWGHY5XiaFDh2Lu3LmYO3cuvLy84Ovri5dffhkWiwWA9ZLqDz/80FZeo9Fg9uzZCAgIgEKhwM0334yjR4/arXPVqlUYMGAAZDIZ/Pz8MHHiRNvfjEYj5s+fj+DgYLi5uWHQoEHYsWOH7e/nzp3DuHHj4O3tDTc3N3Tv3h3r1q1rV5Z169YhLi4Ocrkcw4YNQ1ZWlt3f3dzc8MUXX2DWrFlQqTrmUrOrWVlBGbTllUgY0M32motEjJjeMcg8kdnKkg0sFgtOJZ9BUW4JYnpFAwDMdWaYzWaIJS52ZSVSF6Qf77jLHxsrLyxDZbkWcf3jba+JJWJE9YrBuZNZ7VqHxWJB2uEzKMkpRmTPaLu/leaV4o0pr2Lh9AX4+c3vUVbQsSOtztOXlMKg0cKvR6LtNZGLC3y7xaIiLf2S13/8+2UI6NMDfj0S2i7sRC5CAXr4e2BXjv1lzrtyKtBPqWhhKXsCAO4uIqhram2vjYjwxeEiLV6/MQYH7huM9XcPwCP9wiAUtLyeSyEWCBCrcEdSmdru9aQyNRK9HOdI8PRoVv5QqRpxCneIBI4rKhWJIBYIUFnbkPXaAF+c0VThpd7x+GXoNfhscB/cGqJ0uPzFEAsEiFO4I6nUvq5JpWp0b6FDIsHLo1n5Q6UVrWbr6+OJEDc5UiocX0ovFggwPMgfG/OKLzjDhagtK4VJq4F7Qnfba0IXF7jFdoMu42yLy+kzM+CekGj3mntC91aXqdNbR4+JOuDqBGOp4xzusXGozmj5mKHLyIBHkxweid1bXMZiNqPi4AGYjUa4RUY7LGM2mVC2ayeEcjnkISEXkaZBV93XxAIBYj3ckdyknsmt5Ir38nBYPraNXKImuRoTwjqCVCYS4VQrlyVeqMu5XzliMZuR+91i+I0Y1eYltBdCLBAgxsMdhx20Q4IT26093MTWHxWrak0Xtfz5NnJr0kauMd2gy2z5/1vnqI0Su0Nf30YWkwk1Oefs1gtY21Fff1yxmEy29ztPIBRCIBJDl97w3q7RMdAmH0RddRUsZjM0hw7AXGuCW2w3tKYzs1nrHYvKY0dRq66AxWJB9ZlTMBYX2e0PjZkNBqj37YGLrx9cvH1arJ/FbEbB94vhM2IUpO3crs0mEwQu9ufpAheJ3f9z6eo/oNm3B8op/0LkywvgPWwkCr7/H3Rpp9v1Hu2l3rsLrt0S4OLjd8HL/pP2PQIEAuFV8bha8ZLqq8j333+PBx54APv378ehQ4cwe/ZshIeHY9asWXblLBYLxo4dCx8fH6xbtw6enp748ssvMXz4cJw5cwY+Pj5Yu3YtJk6ciJdeegk//vgjjEYj1q5da1vHzJkzkZWVhWXLliEoKAh//PEHRo8ejZSUFMTGxuLRRx+F0WjEzp074ebmhpMnT8Ldve1fVXNycjBx4kTMmTMHDz/8MA4dOoSnn37a6f9X1DJteSUAwMPbvrNA4e2O8qLW52zSV+nx4uR/w1RrglAoxN1P3mnruJS5yhCZGIENP26CKkwJhbcHDm1LRlZqNvyDL/xk4mJU1mdzb5LN3csD6uLW5+7TV+vx5j2v2bJNeOxOxPVvOIkNiw/HlPnT4Bfij6qKSmxdsgmfPfkRnv76ebgpOnY6gxqN9Yuf1NM+l8RTAX1p2SWtO//vg9Cey8H1/37+ktZzMbxlLhALBSjV23/5LdPVwj9U0q51PNgnBHIXEdalN8z9F6qQY7CHDH+mFeH+tSmI8JTj9SGxEAkF+OSQ80eTKSQuEAkFUBvtLy9WG4zw9vNyuIy3VAJ1kznS1EYjxEIhPF3EKDc27xC4Py4cZQaj3QlzoFyG20ID8fu5PCzLyEE3Tw88HB+FWrMFW/IvvXPOsz5bRZP6VBhr4S113EY+UgkOGdXNyouFQnhKxCg3WNflKhZh2dCBcBEKYLYAH59MR3KZ4w7H65Q+cBeLsamDOxxNGuv7iz3sv7CIPRSoLW95XzNpNRA3GdUhVnjCpHXcaWOxWFC44le4Rsc6tQOkcX0AwEXRJIdCAWObOZov0zSHPi8XZ999G+baWgilUkQ89AhkQfajkrXHjuLc4q9hNhohVngi+omnIHa/tFFzXXVfO5+rwtAkl9EIb2kLuSQSqI32uSoM1lwKF3GzfRYAZsZacx0uV9u9HuHuig+u6Q2JUAh9XR3eOJKK7OqLnwuwqcu1X7WkdNMGQCiE77CW5zC+GLbt8RLbTd1Gu7XHrG6ROF6hwbmqi7sM/vwxo1kbKdrRRh5N2sjDE6ZKaxuZqqoAs7nZcUXkobC9p1SlgouPL4r//B2BU6dDKJGibNsmmLQaWxkACHngIeQu/hKn5z8JCEUQSiQInf0IJP4B/9hsAKC66x7kL/keaS89CwhFEAgFCJx6L1xjYu2WK9+5HUV/LIfFaIBEqUL4Y/MgELf8Vb98s3W79h7a/u3aPaE7yrduhmtMHFz8/KE7nYqqY0cAi3U0n9lgQPm2zQh7/BnIo6w/Ikn8/KHPSIN6919wbaNzt71MGjWqTx5H0H2z2i7swD9p3yPq6tjheBUJDQ3FokWLIBAI0K1bN6SkpGDRokXNOhy3b9+OlJQUFBcXQ1o/78l7772HlStXYvny5Zg9ezbefPNNTJkyBa+//rptud69ewMA0tPTsXTpUuTm5iKo/gvEM888gw0bNuDbb7/FW2+9hezsbEyaNAk9e1oniY+Kat88F1988QWioqKa5XjnnXcu+f/HYDDAYLCfs8NiqYNA4LxLZ65EB7YkYekHv9qeP7LQur00/THPYnHwYhNSVyle+PoZGPRGnE4+g98/Xwm/QF/E9YkBANz7wjT89H/L8NLkf0MoFCI0NgQDhvdDTtqlX0bnSPLWQ/j9o4ZsM/8zG4B11Js9S9vZ5FI8+cWzMNYYkHY4Dau/XAmfQF9E97aeEMZf0+hX7kggPCECb9/3HyRtOoAhdw5rYa0XJ2/vAaR8u8T2fODT9fNGOmg0wSX8KqsvK8eJn37DoPmPQ9RkZOrlVD9Qu4EAaPqSI+Ni/PHEwAg8tP44yhp1WgoFQJneiBd3nIHZAhwvqYLSTYpZfUI6pMPxvKY5BAK0GqSlPzl6/a6IYAwL9MezB1JQa24oIRAAaZoqfJtmzZVeWY1wd1eMDVU5pcOxpToJANsIe8fl7f92fittvIjeVIc5e49ALhKhr68n5sRHokBf4/CS6VtDlDhQWmGbd85Z1Af+Rv7SH23Pwx9+3L7CNhZHB5bWtfL/U/DLEtTk5SLq6ecucKWOVez/G7lLfrI9j3z0Mes/mtbZAgjaCtJsmeY5pEoV4l56FXV6HTTJycj+/hvEzHvWrtPRrVs84l56FaaqSpTv3oVzX3+JmOdebNYJejG66r7mcD+7kPKtNO2dEcEYGuiP+QftcwFAbrUej+47DHcXMa4P8MXTPeIw/+Cxi+507Kz9yhF9dhbKdmxB9POvXtLnZatVavL8Qtvtgv8Pmng4PgoRHm549sCxdi+jadJGYY+00Ebt+f9u1zKODkbW1wQiMUJmPYz8n77H6WefAIRCuHVLgHui/Y1MilevRJ1Oh7DHnobY3b1+TsX/IuKp5yALbhg9/U/KBgBlO7ZCn5mB0Dlz4eLjC11aGgp/+QliT0+4xzecW3oOHAS3+ESYNBqUbd1ozfb0CxC6uDTLFPrI4yjfvgURF7hdB9x5DwqXfI+MBS8DAgEkfv7wHHw9NPv2AAAMhfmw1NYi+5MP7BPVmSALsc7xmPHGq7aOWteYWIQ++mS73/88zd97IZK7wqN3X1zKLLidve8RXQ3Y4XgVufbaa+0+VAYPHoz3338fdXX2h+qkpCRUVVXB19fX7nW9Xo/0dOsQ/yNHjjTrqDwvOTkZFosFcXFxdq8bDAbbOh9//HE8/PDD2LRpE0aMGIFJkyahV69ebWZITU11mMMZFi5caNeBCgAiRXe4ePZsYYmrQ6/ruiMi4Rnbc5PReumKtrwSnr4Nv9xWqqug8G59lKpQKERAsPVGAaExwSjKLsKmJVtsHY7+wX546sO5MOgNqNHVwNPXE4sXfA9fVcuXhFyKxME9EBYfbntuqr+UqLKiEopG2arUVfBoYz4qoVAIv/psQdEhKM4uwvZlW2wdjk1J5FIERgSitNFddZ1F2bcXvKIjbM/N9bkMai1kXg25jNpKSBQXP2JIk5UNo7YSu19daHvNYjaj/PRZnNvyF2795pMOvTFORU0tTGYL/F3tOzt95S4o1bXesTQ2xh9vD+uGuZtOYk+u2u5vxdVGmMwWNP5OfbZChwA3KVyEgmZfti+V1liLOrOl2Yg/T4mkxV/MKwzGZuW9JBKYzGZom1wSd2dEMKZEheL5Q8eR2WT0SrnBiHNNbuyQU63DDUr74//F0tRn82nSIe0lcYG6hWzlBiN8JE2zuTTLZgGQr7POf5deWY0wN1fcExWCY+Un7ZYNkEnR19cLrx8+5YRE9jx69UF0RGRDneov7TNptXBpNAG/qbKy2eiYxqyjruxHZ5oqtc1GvgBA/i9LoD12BFHz5rd6udyFUPTug7hGd4C2mKxtU6tpmsNxnc4TKzxh0th3+JoqK5stIxSLIQ2wjipyDY+A7lwWSrZvRei06bYyIqkUooAASAMC4BYVjdRXXkL53t1Qjh5z0Tm76r52PpePg1xqQwu5jEZ4N9vPHOeaFB6MuyND8WLScWQ5GAFnslisc1HqrXOYxXl64I6wIHySenFTdnTGftWS6rNpMFVW4vTL8xteNJtRuOJXlG3bgm7/ufgfvFvbHp3Rbu0xJz4KgwJ88dzBYxf0g4x7kzYyt9ZGbR0zmrZRldbWrmJ3d0AobFamrknby8MiEP3ia6jT62Ax1UHs4YGMd9+EPDwCAGAsKUbFX9sQ9dLrtlHhspBQ6NLTULFzOwLvaTj2/JOymY1GFK/6HaGzH4VHD+v3JFlwKGryslG2ZaNdh6NI7gqR3BXSACVcI6Nw6tnHUXk0GZ4DBsG9Vx9ENspUeTgJdVWVSH/Ffrsu/v1XlG/fgpg3HG/XYg8PhDw0F+baWtRVV0Hs6YWSP1fAxbf+SqT686PQRx5vdhOa85dihz7yBCx11v9TgaR9V6M0ZrFYoN63G4prrrWO4LyIqRL/Cfse0dWCHY7UjNlsRmBgoN2ci+d5eXkBAORyeavLi0QiJCUlQdRkAuLzl00/+OCDGDVqFNauXYtNmzZh4cKFeP/99/HYY4+1WrfWRsRcqhdeeAHz5tnfJTqg+4Md9n5XCpmrzO7uzBaLBQofD5xKOo3QWOsvwqZaE84ePYs7Zo+7oHVbLA2dfI1J5VJI5VLoKnVIPXgK4x+6sPW2l6NsHj4KpCWfRnBMQ7aMY2cx5oELrIPF4jDbeSajCcU5RYjo6fy72InlMrs7T1ssFkg9FSg9kQrPiFAA9fOinU5D/OQJF/0+fonxGPLWy3avHf36R7gHKhF92y0dfhfuWrMFx0sqcUOoNzZlNlzWdEOIN7ZktXyZ07gYf7xzczc8sTkV2881v1Q+qVCL22MD7H7pjvSSo6ja4PTORsD6ZT1NW4V+vl62Ox0CQD9fL+wrdpwjVVOJQf72nU39fb1wRluFukbHyTsjgjE1KhQvJp1Amraq2XpOqrUIdbM/nge7ylGsb36HxothslhwRluFfn5e2NNoWoJ+fl7Y28I0BanqSlwb0CSbX/NszQgAFwfb3KiQAKgNtdhf0vq0CBdDJJPZ3aHUYrFArPBEVeoJ211PzSYTqtNOQzX+zhbXI4+MQtWpk/AbfovttarUk3CNirFbd8GvS6A9chiRTz0LiZ//ZchxEq5hDTmq0s4gaMKkllYD16goVKaehP+IkbbXKlNPwi3K8fyMjd4QlhbmBWxUCJZL/FLXVfc1k8WCtMoq9L2AXKfUzXP18/VCWpNckyKCcU9kKF5OdpzLEQEc74vtdTn3q7Z4XTPYrlMHALI+WQSvQdfCe/AN7V6PIyaLBWfr261xO/X19cLfrbTbNU3ara+DdmuPOfFRGBzgixcOpaDoArfDltqo+lRDG1lMJujOnobyjpbbyDUyCtWpJ+F7s30byevbSCAWQxYajupTJ6Ho06+hzKmT8OjVp3m95NYb1xmKi1CTnYWAceMBWDvuAEDQdDJmobDZd4t/UjZLXR1QV9d8+LFA2PYISwtsx0yRTAZBo0xe1w+Be8/edsVzPl0ExTXXwrMd27XQxQVCL29Y6kyoPJwERb+BAABJYBAEYjFqy8tbvHzaxffSfmTRpZ1GbUkxvK678aLX0dn7HtHVhB2OV5G///672fPY2NhmnYL9+vVDYWEhxGIxIiIiHK6rV69e2Lp1K2bOnNnsb3379kVdXR2Ki4tx440tfxiEhoZizpw5mDNnDl544QV8/fXXbXY4JiYmYuXKla3mulhSqdR2Cfl5l+NyajdXKaIjGm5uExHqj16J4ahQVyEn/9Lm1+sIAoEAwybdhI0/b4F/sD8CQvyx8ectkMgkGDi84YTp+4U/w8vPE3fMug0AsHHJFoTFhcI/yBcmUx1O7E/F/k0HMeXJu2zLnDx4ChaLBcrQAJTkleKPL1chIDQAg0cPumzZbpgwBNuWboZfkD/8gv2xbdlmuEgl6HNzwx0sl737Ezx9PXFrfSfktqWbERIXBt8gX9TV1uHUgZNI2nIQEx5vyLbmqz+RcG13ePt7o0pdia1LNqNGV4MBI6+5LLkiR92Ms6s3wE0ZADeVP86u2gCRRILgwQNt5Y58+R1k3l6InzwegPULXWVeQf2/61BToYbmXA7EMinclAEQy2XwCLGfP04klcDF3a3Z6x1l8dFcvD88HinFVUgu0uKexEAEecjw8/F8AMCz10ZC6SbBM1utk5WPi/HHe8Pj8cbudBwu1MJPbv3F3VBnRqXROtr75xP5mNEzCK/eEIMfUvIQ4SXHI/3C8F1KXofl+P1cHp7tGYcz2iqkqrUYE6JCgEyKtTmFAKxzp/lJpfi/42cAAGtyCnB7aCBmd4vE+txCJHgpMCpEibePNUzKfldEMGbEhuOdY6dRpK+Bd/0oQ31dHWrqrEMCfs/Kx6JBvTAlMgQ7i0rRzdMDY0JU+PDkhd1UoTUrsvLxXK9YnNFUIVVdiTGh1mxrsq3Z7o8Lh59UgndT0uqzFeL2sEA8FB+B9TlFSPDywOgQJd46esa2zilRwTijqUK+rgYuQiGu8ffGyCB/fHzS/gZTAgCjggOwOb8YHdBX3IxAIIDvzSNQsnEdpAFKSAKUKNmwFkKJBJ4DG45jud8thtjLC6rx1s47v2EjkLHoXZRsWg9Frz7QHjuCqlOpdpdMFyz7GepD+xH+0FwIpTLU1s9rJ5LLIbyIUSJt5fAfPhxFG9ZBGhAASYASxRvWQSiRwOuahhzZ3y6Gi5c3AidYbxrnf/NwnH3//1C8cT0UvftAe/QIKlNTEfNswyiagpW/w6N7D0i8fVBnqIH64EFUnTmNqMeeBADUGQwoXr8Wil694eLpBVN1Fcr+2oHaigp49W/9TsLt0VX3tT+y8vBMzzikaaqQqtHi1hAV/GVSrMu15rovJhy+Miner8+1NrcA48ICMSsuEhvyCpHgqcAtwUq80yjXnRHBmBHTeq57Y8JxqLQCJTUGuIpFuEnlj54+nngl6YRTcgEdu1/V1dTAWNJwSbuxrAT6nGyI3Nwg8fGF2N3dOhKtcX1EIogVnpAqL/3GhH9k5eHp+nY7pdFidJN2u7e+3T6ob7d1uQW4LSwQD8ZFYmNeIeLr2+3dRu0mFggQ5u5q+7evTIIoDzfoTXW2u6I/khCNm1T+eOPISehNdba2rTbVwXgRd9cVCATwGTYCpRvXQeJvbaPSjdY2UjRqo7zvrW2kvMPaRj7DRiBr0bso3bQeHr36oPLYEVSfSkXEvIY28h0+EnnfL4YsLAKuUVGo2L0TteXl8L5hqK2MNvkQRO7ucPHxhSEvF4XLl8Gjd1/bjVWkKhUk/gEoWPIjlBPvgsjNekl19amTCJ3T+nePzswmksvhGhuH4j9+g9DFpf6S6jPQHNgH5cTJAABjaQm0SQfhlpAIsbsHatVqlG1eD6HEBe49HF+lJXJ3h6jp3PkOtuv8+kwB9Zn0mRkwaSogDQmDSV2B0rWrAIsFPiNHW1chk8FnxCgUr/gFsJghj46FuaYG+oyzEEql8GzljtKGgnxYTCaYddUw19SgJicbACCr7+Q9T7N3N2QRUe2+0U1LOmvfo+au5huqXA3Y4XgVycnJwbx58/DQQw8hOTkZn3zyCd5///1m5UaMGIHBgwdj/PjxeOedd9CtWzfk5+dj3bp1GD9+PAYMGIDXXnsNw4cPR3R0NKZMmQKTyYT169dj/vz5iIuLw7Rp0zBjxgy8//776Nu3L0pLS7Ft2zb07NkTY8aMwZNPPolbb70VcXFxqKiowLZt25CQ0PYdbufMmYP333/fliMpKQnfffdds3InT56E0WhEeXk5KisrceTIEQBAnz59LvF/0fn69YrCpl9ftT1/97UZAIAff/sLs5/+b2dVq1Ujp9yMWkMtfvloOXSVekQkhGPuu3PsRgtWFFfY/ZJs1Bvxy0fLoS7RwEXqAmVoAO578V/oP6yvrYy+Wo9VX6+FulQNVw9X9LmxN25/YAxE4ss3j+bQycNRa6jFH58uh75Sh9D4cMxa+LBdNnVxhd1l/cYaI/745DdoSq3ZAkIDMOW5f6HP0IYOWE2JGkve+gE6bTXcPN0RlhCOuR89BW9lx1wu3lTU2FtQZ6zF8e+Xolang1dUJAbNf8xuJKS+rNwuV02FBrtfecv2PGP9FmSs3wKf+FgMftF+NHBnWXu2BN5SFzw2IBz+bhKcKavG/WtSkF9lHa3h7ypBkHtDxnu6B8FFJMSCm2Kx4KaGy92XnyrE/G3Wk8aCKgPuXZ2Cl6+Pxrq7B6Cw2oDvjuXhv4ezOyzHX4Wl8HARY1p0KHykEpyr1OHl5BMorrHm8JFK4C9v+EGkSG/Ay8kn8FB8FMaFBaK8xogvUjOwu6jhR4rbwgIhEQrxSh/7Y+uPZ7PxU7o1yxltFRYcScXM2AhMiw5Dob4G/z2dge0FzrvU/6/CUihcxPhXjDVbVqUOLyWdtGXzlbogoFG2Qr0BLyedxJz4SNweFoiyGiM+T820yyYTifB4YjT8ZBIY6szIqdbj7WNp+KvQ/s7v/Xy9oJTLsCG3yGl52uI3cjTMRiPyl/2MOl015BFRiHhsnt2IGWNFGRrf9tw1Ogah989G0eqVKF69EhI/f4Q+MBuujS5zLt+1AwCQ+eH/2b1f8PSZ8B7c8pe4i+V/y2iYjbXIXboEdbpquEZGIerxp+xzlJfbjbxxi45B+AOzUbhqJQpX/QmJvz/CZ82GW6McJq0W2d9+A5NWA5FcDllwCKIeexIeidZRZAKhEIbCQmTt24e66iqI3NzgGh6BmGfmO+UGOV11X9tZVAoPiRhT63NlVenw6mH7XAEy+1yvJp/A7G7WXGUGI/57KgN7Go3uuS00EC5CIV5ukuun9Gz8XJ/LW+KCZ3vGwUcqQbXJhMxKHV5JOtHsxjKXqqP2K312FrI+fM/2vHCFdV5nr2uvQ8iM+52awZFdRaVQSMS45/z2WKXDa4dPoKTx9tik3V5LPoFZ3aJwW327fXkqw25kq49Ugk8GN5xbTYoIwaSIEBwr1+CFQykAgLGhgQCAdwbaT2e06PiZi55T1HfkaJhrjSj8paGNwubat1FtRZndMcM1KgYhM2ejeM1KFK+xtlFIkzby7H8N6qqrUbp+NUxaDaSBQQh75AlIGo2Uq9WoUbjiF5gqtXBReMJz0HXwv/U2298FIjFCH3kCxX+uQPZ/P4HZYIDEPwBB0++3Xar8T80WMvMhFK1agbzv/oc6XTVcfHwRMG4CvG8cas0mdoHu7BmUbd+MOp0OYg8FXGPiEPH0C61OOdAeTTNZTLUoWb0StaUlEEplcOveE4H3PgiRq6utjN9t4yFy90DZpvUwlv4AkdwVstAw+I4a2+p75Xz+EUyNbsKT9fYCAED8Z/+zvVan16HySDKUd025pFxA5+17RFcbgaUjr1Glf4yhQ4eie/fuMJvNWLJkCUQiER566CG89dZbEAgEiIiIwJNPPoknn3wSAFBZWYmXXnoJK1asQElJCVQqFYYMGYKFCxciNNR6Sebvv/+ON954AydPnoRCocCQIUOwYsUKAEBtbS3+85//4IcffkBeXh58fX0xePBgvP766+jZsycee+wxrF+/Hrm5uVAoFBg9ejQWLVrUbN5IR9asWYOnnnoKOTk5uOaaazBz5kzcf//9qKiosF3yHRERgXPnmt/c4UI3d3nYPRdU/kqyet/0tgtdoapNXXMW578KpW0XukKtTOq6N2eKje6a2cyWrrmfAYDC5SImhbpCiIRd87RPY+y6IySaXgXalbiKuub2CAA1dV2z4SRd9BjS1XXVTzWTuWvuZwCw9pZLm7bhSuEVM6ezq3BZqM/+MwcSdTR2OF4lhg4dij59+uDDDz/s7KpcUdjheGVih+OVhx2OVx52OF6Z2OF45WGH45WJHY70T9JVP9XY4XjlY4dj19Z1z86IiIiIiIiIiIjosmOHI/2jzJkzB+7u7g4fc+ZcHb9+EBEREREREXV1AgivisfVijeNuUrs2LGjs6vQLgsWLMAzzzzj8G8KxaVNfExERERERERERB2PHY70jxIQEICAgIDOrgYREREREREREV2kq3dsJxERERERERERETkdRzgSEREREREREdFlJRBwDFxXxtYlIiIiIiIiIiIip2GHIxERERERERERETkNOxyJiIiIiIiIiIjIadjhSERERERERERERE7Dm8YQEREREREREdFlxZvGdG1sXSIiIiIiIiIiInIadjgSERERERERERGR07DDkYiIiIiIiIiIiJyGczgSEREREREREdFlxTkcuza2LhERERERERERETkNOxyJiIiIiIiIiIjIadjhSERERERERERERE7DDkciIiIiIiIiIiJyGt40hoiIiIiIiIiILisBBJ1dBepAHOFIRERERERERERETsMORyIiIiIiIiIiInIadjgSERERERERERGR03AORyIiIiIiIiIiuqwEAo6B68rYukREREREREREROQ07HAkIiIiIiIiIiIip2GHIxERERERERERETkNOxyJiIiIiIiIiIjIaXjTGKJWrN43vbOr0GHGDf6xs6vQYX7dPaOzq9Ah5CJLZ1ehw3SLEXV2FTqMm9jc2VXoEKX6rttmpi58dmSqE3R2FTqEu7jrHh+7MnMXbjaJsGuG09Z23fEqwq55eAQAuHbRcxG68vGmMV0bW5eIiIiIiIiIiIichh2ORERERERERERE5DTscCQiIiIiIiIiIiKn6cKzFBERERERERER0T8R53Ds2ti6RERERERERERE5DTscCQiIiIiIiIiIiKnYYcjEREREREREREROQ07HImIiIiIiIiIiMhpeNMYIiIiIiIiIiK6zDgGritj6xIREREREREREZHTsMORiIiIiIiIiIiInIYdjkREREREREREROQ0nMORiIiIiIiIiIguK4GAY+C6MrYuEREREREREREROQ07HImIiIiIiIiIiMhp2OFIRERERERERERETsMORyIiIiIiIiIiInIa3jSGiIiIiIiIiIguK940pmtj6xIREREREREREZHTsMORiIiIiIiIiIiInIYdjkREREREREREROQ0nMORiIiIiIiIiIguKwHHwHVpbF0iIiIiIiIiIiJyGnY4EhERERERERERkdOww5GIiIiIiIiIiIichh2ORERERERERERE5DTscCQAQEREBD788MPOrsZF2bFjBwQCAdRqdWdXhYiIiIiIiIjaQSAQXhWPqxXvUk0AgIMHD8LNza2zq+EUO3bswKJFi3DgwAFotVrExsbi2WefxbRp0y5rPSwWC9Z9vxF71u6DrlKPiIQwTH58EoIiA1tc5sjOY9i4ZDNK8kpRV2eGf7Afht81FINuGWgrU6OrwZpv1uPI7hRUqasQEhOMu+ZOQHh82OWI1W7XXxOPp+bchn49oxCo9MbkB9/H6k2HOrtabbJYLNj04wbsX7sPuio9wuLDMPGxO6GKaLndUnYdxdalW1CaX2JttyA/3HTnMPQfOdCunKZUjbX/W41TB1JRa6yFf7A/Jj99D0LiQjs6FiwWC07+vhaZ2/bAWK2DT0wE+t53NzxDglpcRpObj5PL16AiMxu60nL0/tediL31Zrsy6554GbrS8mbLRo8Ygr4zpzg9x9hQFe6MCIGPRIJz1Tp8eSoDJ9TaFsv39FZgVrcohLu5osxgxPKsXKzLLbT9fXSwEsODAhDubj3+ndVW4bu0LJzRVtnK9PBW4M6IEMR4uMFXJsWCwyexr6R55ktlsVhQvHY1ynfvRJ1OB9eISARNmQpZUHCry2mSk1C0+k8YS0sg8fOH8o7x8OzTz/b34g3roD2SDENhIQQuErhFR0M1fhKkKpWtTMrDsxyuWzXhTvjfMuqSs90RrsKUqGD4SiXIrNLh0xOZSKloud16+yjwSGIkIt1dUWowYll6HlZlN2q3kAA83zu22XK3rN8Lo9kCALgvNhT3xdkfF8trjJi49eBF57BYLChdtwqaPdY2kkVEQjV5GqRttJH2cBJK16xEbWkJXPz84T9uAjwatREAVOzcjvItG2HSqCEJDILyzilwjYmz/b1k7Z+oTDqI2opyCERiyMLC4T9uAuSRUQAAY1kpMl593uH7Bz0wB4p+A67YbHXVVShZuwq61BOoraiAyN0dHr36wG/ceIjkrq3Wr6WsxWtXoaI+qzwiEkF3T2t7XzuchOLVKxv2tdsnQNEoa3XaGZRu3gB9zjmYNBqEzX4Uij59m62npiAfRStXoDrtDGAxQxoYjNAHH4LEx/eCs/yTspm0GhSuXIGq1BOo0+nhFhuLwMlTIQ1QOiVXybpVUDfKpZrcdi7t4SQUN9o+A8Y1z1W2ZQNq6nOFzH4Uit72ubRHklCxeydqss+hrroKUc+/Cllox55zdWZeZ7o9TIXJkdZjf1aVDp+ntn7s7+WjwMPxkYioP/b/kpGHNTkNx/4blD6YGh2KYFcZRAIB8nR6/JaZjy35JbYycpEIM+PCcIPSB14SF5zVVuOz1Eyc1lQ5esuLMi5Uhbsa5friVCaOt5bLW4GH6nOVGYz4NbN5rnuiQhFUnytfp8fyLPtct4WqMC5MBaVcCgA4V6XDT2dzcLBU3e56V+zcDvWuHagtLwMASAKD4HfrOLh379nmsrr0NGR/+H+QBgYj8sXX2v2eLSn6bSl06WkwFuRDogxsts6StX+ibN3qZssJJBJ0W/T5Rb3n2FAVJtafQ2ZX6/BVG+eQPerPIcPcXFFefw65vtE5ZJibK/4VE4YYhTuUchm+OpWBP7Pz7dYxNToM06LtjxcVBiP+9deBi8pAdKVhhyMBAPz9/Tu7Ck6zd+9e9OrVC8899xyUSiXWrl2LGTNmQKFQYNy4cZetHpuXbcO25Tswff5UBIT6Y8NPm/Hp/P/i1e9fgMxV5nAZV4UrRk0bCVWYEiKxCMf/PoGf3l0GD28PJA6MBwD8/N4vyM8swL0vTIOnnwIHNyfh42e/wCvfPAcvf6/Llq8tbq5SpJzMxo+//oVlX83r7Oq02/ZftmLnih2Y8sxU+IUEYOuSTfjquS8w/9sXW2w3ucIVw6eOREBoAEQuYqT+fQK/vLcU7l7u6DYwAQCgq9Th0yc/QnTvWDz41kNw93JHWX4ZZO7yy5Lr9JrNSFu3DQPnTIe7SonUleuxa+EnGPXea3CRO85VZzDCLcAPIYP64ehPyx2WGf7Gc7CYzbbnmtwC7Fr4MYIH9XNY/lIMUfrhoW5R+Cw1HSfVWowJUeGNft3x0N5klNQYmpVXyqVY0K87NuQW4v9STiPRS4FHE6KhMdZiT7H1ZLuXjyd2FJYgVZ0BY50Zd0WG4M3+PTBnbzLKDEYAgEwkQkZlFTblFeGVPglOz3Ve6aYNKN26GSEzZkIaoETx+rXI/HgR4v79H4hkjtuoOiMd2Yu/gnLcHVD06QvtkcPI/vorRD8zH671nTXVaWfge9MwyMMjYDGbUfTnH8j8ZBHiXl0AodT6xSX+7ffs1lt54jjyfvoenn0vvR2HBfphbmIkPjyegZQKLW4PU+HdaxJx71/JKK4xNiuvkkvx9sBErM0pwptHzqCntwJP9oiC2liLnYVltnJVtSbM+CvZbtnznY3nZVZW4+n9J2zP6yz2f79Q5Zs3oGLbZgROnwlJgAqlG9Yg59MPEPnqmy22kT4jHfnffAn/28bDvXdfVB09jLzFXyJ83nO2DjVt0gEULV8G1d3TII+OgXr3TuR89hGiXlkAl/pOKEmACsrJU+Hi5w+L0Yjy7ZuR8+kiRP37LYg9PODi7YOYt963e2/1np0o27wB7ok9ruhsJo0GJo0a/hPvglQVhNryMhQu+wkmjQbBsx5uX+M1Urp5A8q2bUbw9JmQKlUoWb8GWZ98gNjXWs6qy0hHzuIvobxtfMO+9r8vEfX0c7Z9zWw0QBYSCq/B1yPn6y8crsdQUozMD96B9+AbEHDbHRDJ5TAUFEDo4nLBOf5J2SwWC859+RkEIhHCHpoLkVyO0q2bkPXx+4h95Q3bseZilW3egPJtmxHUaPvM/vQDRLeyfeoy0pH7zZcIuG08PHr3ReXRw8hd/CUi5jnOldtCm5kNRrhGxUDRtz8KlvxwSTnaqzPzOstQlR8eSYjExycycLxCi9vCVFg4IBH372r52P9W/0Ssyy3CwqNn0MNbgce7R0FjrMWuIuuxv7LWhJ/Tc5BTpUetxYLB/t6Y3zMWamMtDtV3vD3dMwaR7q5YeDQNZQYjRgT5492B3fHArsMoNTR/3wt1k8oPDydE4pOTGThRocXYUBXe6p+IB3Yno6SFXP/pn4j1uUV459gZdPdW4LFE62fa7vpc2loTlqTnIKdaj1qzBdcGeOOZHva5SmsMWHz6HPJ0egDALcEBeL1fAh7eewTnqvTtqrvY2xv+d0yCxD8AAKDZvxe5X36KyOdfbfXHpTq9DgU/fAO3bgkwaVvuoLsgFgu8Bt8AfVYmDHm5zf7sO3wUvG8Yavda9sfvQxYecVFvd6PSD7O6ReHz1HSkqrUYHaLC6/264+FWziFfrz+HfC/lNBK8FHik/hxyb/05pFQkRKG+BruLSjGrW1SL751VVY2XDx23Pb/UcxGiK8nVO7bzKjN06FDMnTsXc+fOhZeXF3x9ffHyyy/DUn/Aa3pJtUajwezZsxEQEACFQoGbb74ZR48etVvnqlWrMGDAAMhkMvj5+WHixIm2vxmNRsyfPx/BwcFwc3PDoEGDsGPHDtvfz507h3HjxsHb2xtubm7o3r071q1b164s69atQ1xcHORyOYYNG4asrCy7v7/44ot44403cN111yE6OhqPP/44Ro8ejT/++OPC/tMugcViwfYVf2HUtJHoM6QXgiIDMf25qTDWGHFwa3KLy8X1iUGfG3tBFa6Ef7Afhk26CcFRgUhPyQAAGA1GHNl5DBMeGofY3tEICPbH2PtGw1flg12r9l6ueO2yacdRvP7er/hzw8WPJrrcLBYLdv2xE8PvGYmeN/ZGYGQgpjw7DUaDEYe3JbW4XEzvWPS8oReU4Sr4Bfnhxok3ITAqCJknMm1ltv+yFV7+3pjy7FSExYfDR+WL2H5x8Avyuyy5zm7YhvjxoxE8sC88Q4MwcM4M1BmNyNnbcvv4REeg19SJCB08AEKx49+npAoPyLw8bY+CwylwU/rDP6H56LNLNSEiGJvyirAxrwg51Xp8eToTJTUGjA1ROSw/NiQQxXoDvjydiZxqPTbmFWFTXhEmRTScVL+bcgZrcwqRUVmNXJ0eH51Ig1AA9PHxspU5VFqBH85m204wO4LFYkHptq0IGD0Gnn37QRYcjJB7Z8JsNEJ9cH+Ly5Vt2wL3+EQEjB4DmSoQAaPHwD0+HqXbttjKRD72JLwHXw9ZUDDkIaEImTETteXl0Gefs5Vx8fS0e1QeOwK3uG6QOOHHqLsig7Aupwhrc4qQXaXHpyczUVxjwB3hjkcN3x6uQnGNAZ+ezER2lR5rc4qwPqcYd0c1H41bbqi1ezRVZ7bY/V1jNF10DovFgvLtW+A7aiw8+vSHNCgYgdPvh9lohLaVNirfvhlu8YnwHTUGUlUgfEeNgVu3eJRvb2ij8q2b4TX4BnhdPwRSlXUEoIu3Nyp27bCV8Rw4CG7xiZD4+UMaFIyAiXfDXKO3fVETCIUQe3raPSqPJkPRfyCELXRQXCnZpEHBCJn1CDx69oHEPwBu3RLgP24Cqo4fhaWurtVsjrKWbdsC/9Fj4dm3P2RBwQieYc2qaSVr6bbNcI9PhP9oa1b/+n2trFFWj+49obx9Ajz79m9xPcWr/oB7955QTbwL8tAwSPz84dGzF8QeigvK8U/LZiwugj4zA0FT/gXXiEhIlSoETfkXzAYD1Idafu/25irfvgV+o8ZC0ceaK+gCtk+/+u3Tz8H26dG9Z/0owJbbzGvQYPiPGQe3+MRLytFenZ3XWe6MDML63CKsyy1CdrUen6daj/3jwhwf+8eFWY/9n6dmIrtaj3W5RdiQW4zJkQ3H/qPlWuwpKkd2tR4Fuhr8fq4AGZXV6OFt3X8kQiGGKH3x1ekspFRoka+rwQ9nc1Cor8G4MMfnChdqUkQQNuQWYX19ri9OWc9FWsp1W6gKJTUGfHHKmmt9bhE25hbjrka5jpVrsae4Ppe+Bn/U5+ru1XBc+LukAgdKK5Cnq0GergbfpmVDb6pDgqdHu+vu0bMP3Hv0gkSpgkSpgv/tEyGUSqHPymh1ucKlP0IxYBBkkY471dT7diNjwcs4/cQcZCx4GRU7t7dZF+XkqfC+6Wa4+Dk+DxbKZHafZ6ZKLYyF+fC67oa2gzpw/hxyU/055NenM1FaY8CYFs4hx4QEokRvwNf155Cb8oqwOa8IExudQ6Zpq/DNmSzsLCxFbaMf35symy2oMNbaHtraiz8XIbrSsMPxKvL9999DLBZj//79+Pjjj7Fo0SL873//a1bOYrFg7NixKCwsxLp165CUlIR+/fph+PDhKC+3Xka4du1aTJw4EWPHjsXhw4exdetWDBjQcLnWzJkzsWfPHixbtgzHjh3DXXfdhdGjRyMtLQ0A8Oijj8JgMGDnzp1ISUnBO++8A3d39zYz5OTkYOLEiRgzZgyOHDmCBx98EM8/7/gSssY0Gg18fHza+191ycoKyqAtr0TCgG6211wkYsT0jrHrhGqNxWLBqeQzKMotQUyvaACAuc4Ms9kMscR+JIRE6oL0462fLFDbygvLUFmuRbcB8bbXxBIxonvFIOtkVrvWYbFYkJZ8BsW5xYjqGW17/cS+4wiJC8UPC77Fa3e9jA/m/B/+XrfP2REcqi4pQ41aC2XPhtF5IhcX+MXHoizNeduN2WRC9u4DiLhpMAQCgdPWCwBigQCxHu5ILlPbvZ5cpkail+Mv6vFeHg7LxyrcIWqhflKRCCKBAJW1zTuvOlJtaSlMWg3cE7vbXhO6uMAtNg669PQWl9NlZMAj0f5LsEdid+gyWl6mTm8dCSFydTyNRq1WC21KCnwu8qS+MbFAgG6e7jhYorZ7/WCJGt29HX9J6u7l0az8gZIKdPO0bze5SIRlw/rjt5sHYOGABMQomucJdpNj+fCBWDqsP17tG4dA+cWPsqotK0WdVgO3BPs2co3pBn3m2RaX02dmwC3Bvo3cErtDn2FdxmIyoSbnnN16AcAtoTv0LbSjxWSCes9OCOVySENCHJapyc6CITcHnu1oxystGwCY9ToIZTIIRKI28zVWW1a/ryU03de6QZfRelb3JlndE7q3ukxTFrMZlcePQRqgRNYni5A6/ymkv/smtEcOX1CGlnRqNpP1C7Sg0UhNgVAIgUgMXXr71+PI+VyOtk9dK9unzlGuRtvnP1VXyCsWCBCncLeNzjsvqbTlY3+ilweSmpQ/WFqBOM+WP7P7+noixE2OlHINAEAkEEAkFMDYpPPHWGe2dUpeivO5mtYzqVSN7l6OcyU4yHWotAJxrZyL9PWpz1Whcfh3IawjSGViEU6qKy80BgDr8Uh76AAsRiPkkdEtllPv243akhL4jXF8lZh6z06Urv4D/rdPQOQrb8D/9gkoWbMSmr/3XFS9WqzH3l2QBCjtpuNoL7FAgBgPdxx2cE6Y4MRzyJYEucnxw5CBWHzjAMzv2Q2qSzgX6YoEAsFV8bha8ZLqq0hoaCgWLVoEgUCAbt26ISUlBYsWLcKsWfZzd23fvh0pKSkoLi6GtP4SmPfeew8rV67E8uXLMXv2bLz55puYMmUKXn/9ddtyvXv3BgCkp6dj6dKlyM3NRVCQ9de7Z555Bhs2bMC3336Lt956C9nZ2Zg0aRJ69rTOGRIV1fIw9Ma++OILREVFNcvxzjvvtLjM8uXLcfDgQXz55Zft/8+6RNpy64e/R5OTKoW3O8qLKlpdVl+lx4uT/w1TrQlCoRB3P3mnreNS5ipDZGIENvy4CaowJRTeHji0LRlZqdnwD+74kXJdXWV9u7k3OWl09/ZARVHrc/bpq/V4Y8prtnab+PidiOvf0OFcXlCGfav3YMikoRg+dSSyT53Dys9+h9hFhAEjr3F+mEZq1NYTVlmTX8Flnh4O51+8WHmHjqJWp0fEkGudts7zFBIXiIQCVDS5HEptNMJb6uVwGW+JBGqj/f5WYTBCLBRC4SJGhbF5p+LM2HCUGYw4XK52VtXbpVZrbaOmo5zECgVqy1oeWWnSapov46Fo8ZIni8WCguW/wjU6BrJgx5dPqf/eC5FMCoUTLqf2PN9uTf6vKwy18JFKHC7jI5WgwqC2L2+shVgohKdEjHJDLbKrdHj7WBoytNVwFYtxZ2QgPr2uJx7YeQR5uhoAwEl1JRYeTUNOtR4+EhdMjw3FZ9f1wn07D1/U6AJTfRuJmvx/ixQKmMpbbyORh6f9Mh6eqKu0tpGpqgowmyFSNFmvhwJ1Wvsvm1UpR5H3zVew1BohVngi9LF5ELs7/pKr3rsbElUgXKNiuly2uqoqlK5fA68bbmozW7M6a1rY1zwUtnnNHC6n1UCssM8qVnhe0OWFpspKmA0GlGxaD+W48VCOn4Sqk8eR/fXniHziGbjFdWt7Ja2tvxOzSVUquPj4oujP3xE8dToEEinKtm6CSaux1etimVo7PraVq8n2KfawjpT6J+sKeW3HfoODY7/kAo79BvtjPwC4iUX4ZdhAuAgFMFuAj06mI6nM+n+mr6vDiQot/hUdiuwqPSoMRtwc5I94Lw/kVdc4L1fTzzRjLbxb+Uw7ZFQ3K980l6tYhGVDG3J9fDIdyWX2+06Euys+vrYXJEIh9HV1eD35FLKr23c59Xk1ebk4995CWEy1EEqlCJ71CKSBjufzNhYXoeTPFQh/6rkWf9wpXb8GARMnw6N+1KzEzx+GggKod++E57XXX1DdWmKurYX24N/wveXWi1r+/Dmk+hLPIdVtnEM6clpTifdTziBPp4e3xAV3R4XhvWt64+G9yajkSEe6CrDD8Spy7bXX2vWuDx48GO+//z7qmlyOlJSUhKqqKvj62k9ertfrkV4/0ubIkSPNOirPS05OhsViQVyc/S9QBoPBts7HH38cDz/8MDZt2oQRI0Zg0qRJ6NWrV5sZUlNTHeZoyY4dO3Dffffh66+/Rvfu3Vssd75+BoP9HB5GQy0k0rbnVTqwJQlLP/jV9vyRhdb/m6Y/ZlgsDl5sQuoqxQtfPwOD3ojTyWfw++cr4Rfoi7g+1i+N974wDT/93zK8NPnfEAqFCI0NwYDh/ZCT1nz+E2pd8tZDWP5hQ7s98J/ZABw0kcXS5i9TUrkU8/77LAx6A9IOp2HVf1fCJ9AXMfU3trBYLAiJC8WYB24DAATHhKDoXCH2rd7j9A7H7D0HkLR4qe35Dc+en+Os6QaJNrfHC5G1Yy9UvRMh9/Zy2jqbajrrjcDBa62WbyXunRHBGBroj/kHU1Br7tj5dSoO/I38JT/Znoc/8lh9BZsUbE8bNWvWluuev2wJavJyEf3M/JbrtncPvK4Z5LQ55YD6Y18j1kgt17Nphqb/AyfVVTipbrgBwPEKLb6+oTcmRgTik5PWUeQHGo2SzARwQl2JJUP7Y1RIAH7LzEdbNAf+RuHSH23PQx95vFHdG1e27W2lPcsIHDV+kwVd4+IR+cKrqKuugnrPLuQv/hLhz77YrGPCbDRCe2g/fEff5rA+V3K2Or0eOV98DGlgUIsjbhpTH/gb+Y2yhj/8+PlKOahTm6trssgFHifqyyt69YHf8FsAAPLQMOgy0lG++68L7nD8J2UTiMQIm/0w8n76HqnPPAEIhXCPT4B797bnD21K0yRX2CMt5GpPHS9mmcvsqsoraP0zqqVjf+MYOlMdZu85ArlIhH6+nng4PhIFuhocLbd2rC48loZne8bg15sHos5sQZq2CtvySxDr2faVVO3l8Fyklf/r9uTSm+owZ681V19fT8yJj0SBvgbHyhs6jHOr9Ziz9wjcxWLcoPLFs71i8fT+lAvqdJQqVdZjrV6PyiNJKPjxG4Q9Ob9Zp6PFbEb+t1/Db+wdkCgdX3ZsqqyEqaIcBT99j4KfG81vaq6DUG6dozznsw+hO2u9ws3FxxdRryxod13PqzqaDHONAZ7XXHfByzZ2qeeQF3wcBZBU2tBpeQ5AquYEFt8wAMODArDyXNvnIkRXOnY4UjNmsxmBgYF2cy6e5+XlBQCQy1u+0YXZbIZIJEJSUhJETX4NO3/Z9IMPPohRo0Zh7dq12LRpExYuXIj3338fjz32WKt1a+3DvKm//voL48aNwwcffIAZM2a0WX7hwoV2IzYBYPpTUzHj6bbvbt3ruu6ISHjG9txUP0+YtrwSnr4NvzZXqqug8G79hEcoFCIg2DpvWmhMMIqyi7BpyRZbh6N/sB+e+nAuDHoDanQ18PT1xOIF38NXdfkuGe8qEgf3wLz4cNtzU/0vjZUVlVA0arcqdRXcW7gE6DyhUAi/+nYLjglBcXYRti3dYutw9PBRQNlk/qCAMCWO7TrmlCyNBfbrhZHREbbndfWXutVotJB7N+Sq0VY2G/V4sapLylB0/BSue3K2U9bXlNZYizqzpdmoOE+JBGoHc/cBQIXRCO8mIym8JBKYzOZmI9wmhQfj7shQvJh0HFlVOudW3gFFrz5wjWgY2W0xWTOYtFq4eHrZXjdValud283RKKS6ykqIFc2Xyf9lCSpTjiJq3rNw8XZ8vKhOOwNDUSFCH3ROO2ps7WbfeeklcXE45yIAlBuMzdrZS+ICk9nc4hyMFgCnNFUIcWv5s6mmzoyMSh1C3Fqfz/A89159EBkR2fAe9fuRSauFuFEb1VVWNhvB15i1jexHqdRVaW2jCcXu7oBQ2LxMZWWzEYdCqRSSACUAJeSR0Uj/94vQ7N0N31Fj7MpVHk6C2WiE5yDHX86u1Gx1NTXI/exD66ic2Y9CIGr7NNajVx9Et5DVfl+rbMe+Zp/DVKl1uK+1ROTuDghFzb7YS1WB0KWntXs95/2TsgGAPCwCMS++hjq9DhZTHcQeHkh/903IwyIuaD3uTXKZW8t1gdunqar1Y2pn6Ip5zx/7vZsc+70lLi2ODHN47Je6NPvMtgDIrx/Jnl5ZjTB3V9wTFYKj5ScBAAW6GszbfxwykRCuYhHKDbV4uU83FOgufYSj7TNN0vwzTd1armbnIu3I5WbNdaw+FwCYLBZbmTPaKnRTuGNCRBA+OtHyNCpNCcTi+mMtIA+PQM25LFRs3wLVVPvvSuaaGtRkZ6EmNxtFvy6pr6QFsFhw6rHZCJ37lO1Yppo6A/JG2zAAQGiduU017V5YjNaRhe05Zjui3rML7j17Qezp2XZhB7S27bFjziEvhKHOjKyqagS5Xp6bRhJ1Ns7heBX5+++/mz2PjY1t1inYr18/FBYWQiwWIyYmxu7hVz+xb69evbB161aH79O3b1/U1dWhuLi42fIqVUOHS2hoKObMmYPff/8dTz/9NL7++us2MyQmJjrM0dSOHTswduxYvP3225g9u31fnF944QVoNBq7x5S5k9u1rMxVhoBgf9sjMEIFhY8HTiWdtpUx1Zpw9uhZRHaPbGVNzVksDR1hjUnlUnj6ekJXqUPqwVPodf2FjyK42slcZfAL9rc9lOEqePgocKZJu6UfO4uIxIgLXLvFrt0iu0eiJLfYrkRJbgm8ld6XkMAxF7kM7qoA20MRHAiZlwLFKam2MmaTCaWn0uAb277pDNqStXMfZJ4eUPXtmO3QZLEgrbIKfX297F7v5+uFk2rHl4udUlein4PyadoquzsETooIxj1RoXgl+QTStFW4HEQyGaQBAQ2PwCCIFZ6oSm34YmE2mVCddgau0S3PreQaFYXKRssAQOXJk3CNaljGYrEgb9kSaA4fRuSTT0Pi1/KNYMr37oY8LBzykNBLSNfAZLHgtKYKA/y97F4f4OeFExWO5506oa7EAD/78gP9vXBaU9XqnR1jFG62O4s74iIUINxdjrKa9l0GJZLJIAlQNjwCgyBSeKL6VMNdry0mE3RnT0Me2fJly/LIKFQ3aaPq1JOQ11/qLBCLIQsNR/WpJmVOnYQ8quW2t1bAArOpeR71vl3w6NkHYg/HPyhcidnq9HrkfPoBIBYhZM7cdo/Ate5ryoaHbV9ryGrd1063evm5PDIKVU1yVKWebNcl6+cJxWLIwyNgKCq0e91QXGS7Y/eF+Cdls6uX3BViDw8YiougP5cFj159Lmz5Jtvn+VyOtk/XVrZPVwfbZ1Wj7fOfoivmNVksOKOtQv8mn8H9Wzn2n1RXon+TY/8APy+caePYLwDgImz+lbamzoxyQy3cxSIM9PPC3uJLn0LmfK5+TerZz88LJ1qYSzFVXdmsfH8/L5zRtp4LAse57IoIAInwEq9UsVhsndyNCWUyRL70OiJfeM328LrhJkiUKkS+8BrkEVEQKzwh9vJGbVmJ/WdKgNJ2ruHi5W17zcX3wo9zxtIS6NJOw2vwxc8rbbJYcNbBOWRfXy+ktnIO6ah803PICyUWCBDq5tpsiiCiroodjleRnJwczJs3D6dPn8bSpUvxySef4IknnmhWbsSIERg8eDDGjx+PjRs3IisrC3v37sXLL7+MQ4cOAQBee+01LF26FK+99hpSU1ORkpKCd999FwAQFxeHadOmYcaMGfj999+RmZmJgwcP4p133rHdifrJJ5/Exo0bkZmZieTkZGzbtg0JCQnN6tLUnDlzkJ6ebsuxZMkSfPfdd3Zlznc2Pv7445g0aRIKCwtRWFhou+FNS6RSKRQKhd2jPZdTOyIQCDBs0k3Y+PMWHNl1DPmZBfjxnaWQyCQYOLxhXrTvF/6MP79eY3u+cckWpB46jdL8UhRmF2Hrbzuwf9NBDBzRcEOekwdP4cSBVJQWlCH10Gl8OO8zBIQGYPDoQRdV147i5ipFr8Rw9Eq0jiCMCPVHr8RwhAZd+MnG5SIQCHDjhCHYunQzUnYfQ0FmAX75vyWQSCXoe3PDHR2XvvMT1i1ebXu+delmnEk6jbKCUhRnF+Gv5dtxaPNB9B/e0G43ThqKc6lZ2LpkM0rzSpC8LQl/r9uH62+/9BtztCdXzOibcWrVRuQdPAJNTj4O/vcHiCQShF430FbuwBffIWXZSttzs8kEdVYO1Fk5MJvqoK9QQ52Vg6pC+45Ti9mMc3/9jfAbr4XwAm/gcCH+yMrDqGAlbglSItRNjtndIuEvk2JdrvXL+30x4Xi6R8NUDmtzCxAgl2JWXCRC3eS4JUiJW4KVWJGVZytzZ0Qw7o0Jx6ITaSjS18Bb4gJviQtkooaPR5lIiCgPN0R5WG9KopTLEOXhBn+Z8yb9FggE8Lt5OIo3rIPmSDJq8vKQ+/23EEok8BrYsG/nfLcYhSt/tz33HTYcVaknUbJxPWoKC1CycT2qTqXC7+YRtjL5y5ZAfeBvhN7/IIRSGWo1GtRqNDAb7U926/R6aJKT4H29c7fJ3zLzMTZUiVtDAhDmLsejCZFQyqVYlW1tt1ndwvFC74a7mq86VwilXIpHEiIQ5i7HrSEBGBOqxC8ZDZce3RsbioF+XgiUSxGjcMP8XjGIUbhh1bmGjpyHEyLQ20cBlVyKBC93vN4vHq5iETbm2W+/7SUQCOAzbATKNq5D5ZFkGPLzUPDjNxBKJFA0aqP87xej+M8Vtufew0ag+tRJlG1aD0NhAco2rUf1qVT4DGtoI5/hI6HeuwvqvbthKMxH0fJlqC0vh/cNQwHAOu/fn79Dn5mO2rIy1GSfQ8HP38GkroCib8NxBqi/W/DZNHhed2OXyVZXU4OcTxfBYjAgcNp9MOtrYNJY5wa0tHJn0Jay+t48AiUb10F7JBk1+XnI+8Ga1bNR1tzvFqNwZUNWv2EjrPtafdaSTdZ9zbdR1rqaGuhzsqHPyQYAGMtKoM/JhrHRvHv+I0dBm3QQ5bt3wlBchLId21CZchQ+Q4ZdUI5/YjZN8iFUnTkFY2kJtEcPI+vjD6Do3Rceia1PadOeXD7DRqC0cS4H22fe94tR1Gj79Bk2AlWnTqK0Plepg+3TXFODmpxs1NTnqi0rQU1Ott1ciXXVVajJyYahwHoMMhQXoiYn+5Lnpvyn5nWW5Zn5GBOqxOiQAIS5yfFwfCQCZFKsrj/2PxAXjud6NRz7V2cXIkAmxcPxEQhzk2N0SABuDVHi10ZTYNwTFYz+vp4IlEsR6ibHnRFBGBnsj635JbYyA/y8MNDPCyq5FP19PfH+oB7IqdZjQ+7FHfubWpGVj1tDlBgVbM01pz7Xmvpc98eFY37Phlxrcqy5HqrPNSo4AKNDlHZTe0yJCkY/X0+o6nNNigjCyCD7XPfHhqGHtwJKuRQR7q6YGRuGXj6edmXaUvLn79CdPQNjWSlq8nJRsup36NJO244PxX+uQP73iwFYb/okDQq2e4g8PCAQu0AaFAxh/Tz/fmPGoWzjepRv3wJjUSFq8nKh3rcb5Vs3tVoXY3ERanKyUafVwlJrtG2Xliadn5p9eyBWeMKte89253Tkj6w83BKsxMj6c8hZTc4h740Jx7xG55Dr6s8hH6w/hxxZfw75e6NzSLFAYDs/FAsE8JVJEOXhhkB5w5UUD8RF2Nqtm6c7XuyTAFexCFvynbM9dgUCgfCqeFyteEn1VWTGjBnQ6/W45pprIBKJ8Nhjjzkc/ScQCLBu3Tq89NJLuP/++1FSUgKVSoUhQ4ZAqbQOwR86dCh+++03vPHGG3j77behUCgwZMgQ2zq+/fZb/Oc//8HTTz+NvLw8+Pr6YvDgwRgzxnppVF1dHR599FHk5uZCoVBg9OjRWLRoUZsZwsLCsGLFCjz11FP4/PPPcc011+Ctt97C/fffbyvz3XffQafTYeHChVi4cKHt9ZtuusnhZeIdZeSUm1FrqMUvHy2HrlKPiIRwzH13DmSuDR9CFcUVEDT6ZdKoN+KXj5ZDXaKBi9QFytAA3Pfiv9B/WF9bGX21Hqu+Xgt1qRquHq7oc2Nv3P7AGIjEHdfRczH69YrCpl9ftT1/9zXrpRo//vYXZj/9386qVpuG3T0ctcZa/P7JcugrdQiLD8estx9u3m6N5h8z1hjx+8e/QV1qbbeA0ABMff5f6DO0oXM5rFsY7vv3A1i3eA02/7QRPiof3PHwBPQbbt9Z0FG63TYSdUYjDn+3DMZqHXyiI3Dj84/BpdFJka6swu4DUV+hwZaXGvahM2u34MzaLfBLiMXQl5+yvV50/BR0ZeWIuKnl+VSdYWdRKTwkYkyNDoWPVIKsKh1ePXwCxTXWuVd9pBIENOoELNIb8GryCczuFoVxYYEoMxjx31MZ2FPc8MXqttBAuAiFeLmP/Q8eP6Vn4+d06xeyWIUH3h3YcKL7ULx1VOjmvCJ8cOLCL4Nsid8to2GurUX+0iWo01XDNTIKkY89BZGsoY1qy8vt5r5zi45B2AOzUbRqJYpW/wmJvz/CHpwN18iGkavlO3cAADIXvWf3fiEz7oP34IYJ3TWHDgIWwGugc+cU3V5QCoVEjHtjre2WWaXDcwdPokhvbTdfqQuUje7YWKg34PmDJ/FoYiTGh1vb7ZMTmdhZ2NBu7mIxnu4ZDR+pBNUmE9K01Xh833Gc0jSMUPWXSfBK327wlIihNtbiZEUlHtl7zPa+F8Nn5GiYa40o/OVnmHXVkEVEIXTuPPs2qiizayPXqBgEzZyN0jUrUbJmJSR+/gh+YDbkjdpI0f8a1FVXo3T9atRpNZAEBiH0kScaRoMIhTAUFUDz9V7UVVdB5OYGWVgkwuY9B2mQ/c1/NPv2QOzp1ezu0VdytprsLNRkZQAAMv79ol29oxa8DYnvhd00zW/kaJiNRuQv+xl1umrII6IQ8Zh9VmNFGdDo89k1Ogah989G0eqVKF5tzRr6gP2+ps/OQtaHDftZ4QrrHMFe116HkBnW8xRFn34Iumc6SjauQ8FvSyFVqhA262G4xTR0UFyKzsxm0qhRsPwX1FVqIfb0hNeg6+B/q+N5RC+Ub6Pt83yusHZsnyEzZ6N4zUoU12+fIQ5ynfuoIVdRfS7PQdchuD5X5bGjyP/pW1uZvG++AmDtaAkYe4dT8v2T8jrLjkLrsX96dCh8ZBJkVerwwqGTts9sX6mL3Wd2od6AF5NO4pH4SNweHoiyGiM+PZmJXUUNx36ZSITHu0fDXyaBoc6MnGo9Fh5Nw47CUlsZN7EID3YLh59MikqjCbuKyvDNmXOXNCqtsb8KS6FwEeNfMfXnIpU6vJTUJFeTz7SXk05iTnwkbg+z5vo8NRO7m+ZKjIZfo1xvH0vDX41yeUkleK5XrPVzr9aEzEodXjx0otmNZVpjqtQi//vFqNNqIJTJIQ0OQeijT9ruiG7SaKzb1QXwun4IBBIpyrdsQMnK5RBIJJAGhdh1dDtSsOR76NPO2J5nvW2d27HxMd1iNkPz9x54XnsdBG2M9mzLriLr9nhP/TnkuSodXjt8AiWNziH9m5xDvpZ8ArO6ReG2+nPIL09lYG+jc0gfqQSfDG74jjYpIgSTIkJwrFyDFw6lAAB8pVLM79kNCokLNMZanNZUYt7+o7b3JerqBJYLmRSPrlhDhw5Fnz598OGHH3Z2Va4oW/LWdXYVOsy4wT+2XegK9evutufsvBL9Xez4DohdQXK580YL/tO4iS9sBNaVolT/z/qRw5k8pV2zzboysfPuf0WXUQffn4s6gLa2647UudSrk//JXLvouYjJ3HUbbe0tHX8V1D9BWO//dHYVLovsoy93dhU6Rdf9xCAiIiIiIiIiIqLLjh2O9I8yZ84cuLu7O3zMmTOns6tHRERERERERE4ggPCqeFytOIfjVeJyzl14KRYsWIBnnnnG4d8UCsVlrg0REREREREREV0odjjSP0pAQAACAgI6uxpERERERERERHSRrt6xnUREREREREREROR07HAkIiIiIiIiIiIip+El1UREREREREREdFkJBBwD15WxdYmIiIiIiIiIiMhp2OFIRERERERERERETsMORyIiIiIiIiIiInIazuFIRERERERERESXFedw7NrYukREREREREREROQ07HAkIiIiIiIiIiIip2GHIxERERERERERETkNOxyJiIiIiIiIiIjIaXjTGCIiIiIiIiIiuqwEHAPXpbF1iYiIiIiIiIiIyGnY4UhEREREREREREROww5HIiIiIiIiIiIichrO4UhERERERERERJeXgGPgujK2LhERERERERERETkNOxyJiIiIiIiIiIjIadjhSERERERERERERE7DDkciIiIiIiIiIiJyGt40hoiIiIiIiIiILisBbxrTpbF1iYiIiIiIiIiIyGnY4UhEREREREREREROww5HIiIiIiIiIiIichrO4UhERERERERERJeVQCDo7CpQB2KHI1Erqk1d9wD46+4ZnV2FDjP5hh86uwod4q4f53R2FTrMiEB9Z1ehw6xIk3d2FTpEZZW5s6vQYSq68PUfEarOrkHHMFs6uwYdRyTsuuGE6LrnWV213QzVXTMXAHTlfg/XLvqtX9eFv6sRdQVd+JSaiIiIiIiIiIiILjd2OBIREREREREREZHTsMORiIiIiIiIiIiInKaLzuZARERERERERET/VAKOgevS2LpERERERERERETkNOxwJCIiIiIiIiIiIqdhhyMRERERERERERE5DedwJCIiIiIiIiKiy0og4Bi4roytS0RERERERERERE7DDkciIiIiIiIiIiJyGnY4EhERERERERER/UN8/vnniIyMhEwmQ//+/bFr164Wy953330QCATNHt27d7eV+e677xyWqamp6bAM7HAkIiIiIiIiIiL6B/jll1/w5JNP4qWXXsLhw4dx44034tZbb0V2drbD8h999BEKCgpsj5ycHPj4+OCuu+6yK6dQKOzKFRQUQCaTdVgO3jSGiIiIiIiIiIguL4Ggs2vwj/TBBx/ggQcewIMPPggA+PDDD7Fx40Z88cUXWLhwYbPynp6e8PT0tD1fuXIlKioqMHPmTLtyAoEAKpWqYyvfCEc4EhERERERERERdQCDwQCtVmv3MBgMDssajUYkJSXhlltusXv9lltuwd69e9v1fosXL8aIESMQHh5u93pVVRXCw8MREhKC2267DYcPH764QO3EDkciIiIiIiIiIqIOsHDhQtsoxPMPRyMVAaC0tBR1dXVQKpV2ryuVShQWFrb5XgUFBVi/fr1tdOR58fHx+O6777Bq1SosXboUMpkM119/PdLS0i4+WBt4STUREREREREREVEHeOGFFzBv3jy716RSaavLCJpcbm6xWJq95sh3330HLy8vjB8/3u71a6+9Ftdee63t+fXXX49+/frhk08+wccff9zmei8GOxyJiIiIiIiIiOjyukquuZVKpW12MJ7n5+cHkUjUbDRjcXFxs1GPTVksFnzzzTeYPn06JBJJq2WFQiEGDhzYoSMcr5LmJSIiIiIiIiIi+ueSSCTo378/Nm/ebPf65s2bcd1117W67F9//YWzZ8/igQceaPN9LBYLjhw5gsDAwEuqb2s4wpGIiIiIiIiIiOgfYN68eZg+fToGDBiAwYMH46uvvkJ2djbmzJkDwHqJdl5eHn744Qe75RYvXoxBgwahR48ezdb5+uuv49prr0VsbCy0Wi0+/vhjHDlyBJ999lmH5WCHIxERERERERER0T/A3XffjbKyMixYsAAFBQXo0aMH1q1bZ7vrdEFBAbKzs+2W0Wg0WLFiBT766COH61Sr1Zg9ezYKCwvh6emJvn37YufOnbjmmms6LAc7HImIiIiIiIiIiP4hHnnkETzyyCMO//bdd981e83T0xM6na7F9S1atAiLFi1yVvXahR2ORERERERERER0ebXjrst05eJNY4iIiIiIiIiIiMhp2OFIRERERERERERETsMORyIiIiIiIiIiInIazuFIRERERERERESXF+dw7NI4wpEAABEREfjwww87uxoXZceOHRAIBFCr1Z1dFSIiIiIiIiKiqx5HOBIA4ODBg3Bzc+vsajjF6dOnMWfOHJw8eRIajQZBQUGYOnUqXnvtNbi4uFy2elgsFmz+cQP2r9sHfZUeYfFhGD/3TqgiAltcJmX3UWxbugVl+SWoM5nhF+yHIXcOQ/8RA21lNv2wHlt+2mi3nLu3B1795Y0Oy9KUxWLBph83YP/afdDVZ5v4WBvZdh3F1qVbUJpfgro6M/yD/HDTncPQf+RAu3KaUjXW/m81Th1IRa2xFv7B/pj89D0IiQvt6Fjtdv018Xhqzm3o1zMKgUpvTH7wfazedKizq2XHYrEgb/VqFO/aBZNOB/fISERMnQrXoKBWlytPSkLOqlUwlJRA6u+P0PHj4dO3r10ZY0UFsn//HZrjx2E2GiFTKhF1771wCw9vtr7MH39E8a5dCJs8GYEjRjg143kWiwVJv67DqS17YKjWIyAmHNfPuhs+oS1vj6mb9yDtrwMoz8kHAPhHhWHg1HEIiI1wWP7w7xtxcMlq9Bg7FNfNvLMjYrTLxCgVpsaGwFcmQaZWh4+OZeBomdZhWV+ZCx7rGYluXu4IdZfjt/R8fHQs8zLX2LG7uwXivsQQ+LtKkK6uxjsHM5Bc7DiHn9wFzw6IQoKPO8IVcvycmo93D2XYlRELBHiwZyhujw5AgKsUWRodFiVnYU9+xeWIY2dynDWbn9ya7d1DGThc0nK2p/tFIdHXHWEeciw5lY//S7LP9r+RPTFQ6dVs2Z155Xhs+4mLqmPFzu0o37IRJo0aksAgKO+cAteYuBbL69JOo2jFLzAW5EPs6QWfkaPhfeNQuzLaw0koXbMStaUlcPHzh/+4CfDo0++C3jf/h2+g3b/XbhlZRBQinn3R9txYUoziP36DPj0NFpMJbgk9oJx8DyQKz3bnt1gsKFm3Cuo9O1Gn00EeEQnV5GmQBQW3upz2cBKKG2UMGDcBikYZq9POoGzLBtTknINJo0HI7Eeh6G1//NQeSULF7p2oyT6HuuoqRD3/KmShYe2ue3uyFa9djfLd1myuEZEImjK1zWya5CQUrf4TxtISSPz8obxjPDwbZSvesA7aI8kwFBZC4CKBW3Q0VOMnQapS2coUrVkFzaGDMFaUQyASQx4WDtUd4+EaGeWkXKtQ0ajNgu5uu800h5NQvHplQ67bm7dZ6eYN0Ne3WdjsR6Ho07fF9eUt+QEVu3dCdefd8Lt55CXnOp+taM1qlDVqs5B72m4zdXISClc1tFngHePh2bchW9GGddActraZUCKBa1Q0AidMgqxRm9VqtSj4fTkqU0+iTqeHe2wsgu++B1Kl0inZJkSocE+M9TMrq1KHj1IycKzc8fEQAPr4KvBYjyhEeLiirMaIn8/m4s+sQrsyd0UFYUKkCkq5FGqjCTvyS/HlySwYzRYAgFwswqz4MAwJ9IW31AVnNNX4KCUDp9RVTskEAOMjVLgnuiHXx8fbzjW3e0OuJWdz8ee5hlwfX9cTff2aH8P2FZVj/v6Ttud+MgkeTozAoABvSIVC5FTr8faRNJzRVLer3iVr/0TZutV2r4k8FIh9+wOH5avPnELOR+81ez3ylTcgVbV8jtUeRb8thS49DcaCfEiUgYh88bU26woAAokE3RZ9flHveUeYCndHBcNXKkFWlQ6fnsxESkXL7dbbR4FHEiIR4e6KUoMRyzLysDq7od1GBQfg+d6xzZa7ZcNe1NZvj1Ojg3Gj0hdh7q4w1NXhREUlvjp9DjnV+ovKQHSlYYcjAQD8/f07uwpO4+LighkzZqBfv37w8vLC0aNHMWvWLJjNZrz11luXrR47ft2KXb/vwORnpsI/OABbl2zC189/gWe/eREyV5nDZVw9XDH8npHwDwuAWCxG6v4T+O29pXD3cke3AQm2cspwFWa/84jtuUB4eQcrb/9lK3au2IEpz0yFX4g121fPfYH537acTa5wxfCpIxEQGgCRixipf5/AL+ezDbRm01Xq8OmTHyG6dywefOshuHu5oyy/DDJ3+eWM1yY3VylSTmbjx1//wrKv5nV2dRwq2LgRBVu2IPq++yBTKpG3di1OLVqE3m+8AZHMcRtVpqcj7euvEXLHHfDp0wflR47g7JdfInH+fLhHWb8wmqqrceLdd6Ho1g3dHn8cLh4eqCkpgUjevI3KDx9GVWYmXLy8OjIqjq7cgpQ12zH00X/BMygAycs3YN2CTzD541chkTvOWnAiDdE39Md13e6CWCLGkZVbsO6Nz3DXopfg5mtf3+Kz53Bqy174hLf+5a+jDQ/2wxO9ovDekXQcK9NifKQK71/fHdM2J6NIb2hW3kUohNpgwvenczElpvWO5stpVIQfnhsQhf/sP4vDJVrcFRuIL4b3wB2rklBY3TyHRChEeU0tvk7JwfREx23wWN9wjI0KwOv70pCp0eO6IG98ODQB0zccxany9n0Rc4ZR4X6Y3z8Kbx48iyPFWtwZG4jPb+6BCauTUKhznK3CUJ8twXG2eX+lwkXYcLmRl9QFv47th83nSi6qjtqkAyhavgyqu6dBHh0D9e6dyPnsI0S9sgAuPr7NyhtLS5Dz+Ufwun4Igu57EPr0syj85WeI3D2g6NsfAKDPSEf+N1/C/7bxcO/dF1VHDyNv8ZcIn/cc5PWdTe19X7fEHgj810zbc4FYZPu32WBAzqeLIA0OQejjzwAAStesRO5/P0HkMy+2+7OwbPMGlG/bjKDpMyEJUKF0wxpkf/oBol99s8Xjoy4jHbnffImA28bDo3dfVB49jNzFXyJi3nO2DjWz0QBZSCi8Bl+P3K+/cLges8EI16gYKPr2R8GSH9pV3wtRumkDSrduRsiMmZAGKFG8fi0yP16EuH//p8Vs1RnpyF78FZTj7oCiT19ojxxG9tdfIfqZ+bZs1Wln4HvTMMjDI2Axm1H05x/I/GQR4l5dAKFUCgCQBigRdPc9kPj5w1xrROnWLcj8+EN0W/AmxB4el5Zr8waUbduM4OkzIVWqULJ+DbI++QCxr7XeZjmLv4TytvENuf73JaKedtxmOS202XnaI4ehz8qE2NPrkrI0VbJpA0q2bkbovQ1tlv7RIsS/3nqbnfvfV1Ddfgc8+/SF5shhZH39FWKenQ+382125gz8bhoG1whrmxX8+QcyPl6Ebq8tgEgqhcViQdYXn0EgEiHy4UchlMlRsnUz0j/6wFbmUtwc5IfHe0bh/aPpSCnX4o4IFd4b3B3Ttzn+zAp0leL/ru2O1ecKsSDpNHr6KPB072ioDbX4q6AMADAyxB9zEiPw9uE0pJRrEeoux0v9rB0+nxy3/qD2fJ8YRHm44o3kMyitMWJUSAA+vK4H/rUtGaU1xkvKZMvVIwofHLPmuj1chf+7tjumb09GcQu53h1kzfVGsjXXvF7RUBsbcr100P44r5C44Nub+mJ7fqntNXcXET6/oRcOl2rw7N8nUGGoRbCbDFW1dRdUf0lgEMIee7rhhXYcN6Ne/Q+EsobzPNEl7s8AAIsFXoNvgD4rE4a83GZ/9h0+Ct43DLV7Lfvj9yELj7iotxsW6IdHEyPx4fEMHK/QYlyYCu8MTMR9O5NR7GC7UMmlWDggEWtzivDmkTPo4a3Akz2ioDHWYmdhma1cVa0JM/5Ktlv2fGcjAPT28cTKc4U4ramESCDAA93C8e41iZi58zBq6swXlYXoSsJLqq8SQ4cOxdy5czF37lx4eXnB19cXL7/8MiwW6wGx6SXVGo0Gs2fPRkBAABQKBW6++WYcPXrUbp2rVq3CgAEDIJPJ4Ofnh4kTJ9r+ZjQaMX/+fAQHB8PNzQ2DBg3Cjh07bH8/d+4cxo0bB29vb7i5uaF79+5Yt25du7KsW7cOcXFxkMvlGDZsGLKysuz+HhUVhZkzZ6J3794IDw/H7bffjmnTpmHXrl0X9p92CSwWC3b/sRM33zMSPW/oDVVkIO5+dhpqDUYc2ZbU4nLRvWPR44ZeUIap4Bvkhxsm3ARVVBCyjtuPShKKhPDwUdge7l7uHR3JxmKxYNcfOzH8npHoeWNvBEYGYsqz02A0GHG4lWwxvWPR84ZeUIar4Bfkhxsn3oTAqCBknmjItv2XrfDy98aUZ6ciLD4cPipfxPaLg1+Q3+WI1m6bdhzF6+/9ij83HOzsqjhksVhQuGULgseMgU+/fnANDkb0zJkwG40o3b+/xeUKt26FZ0ICgm+9FfLAQATfeisUCQko3LrVViZ/40ZIvb0Rfd99cI+MhNTPD54JCZAFBNity1hRgaylSxH94IMQiERN38qpWVPWbkffiaMQeW0f+IQFYdhj02Ey1OLsrpZHnd785H3oPnoI/CJD4BWswpA5U62jQlNO25Wr1Ruw/aPvcOOceyB169yO7ymxwVidVYTVWUU4V6nHR8cyUawzYEKUymH5Qp0BHx7LwIbs4gv+QtKRZiQE4/ezRfj9bBEyNXq8eygDhdUG3B3neLREfrUB7xzMwOqMYlQZTQ7L3BYVgP+l5GBXXgVyq2rw65kC7M2vwL2JIR0ZpZnpCcH4I70If5wtQqZWj/9LykChzoDJrWR791AG1mQWo7LWcTat0YSymlrb49pAL9SY6rD5XKnD8m0p37oZXoNvgNf1QyBVWUcZunh7o2LXDofl1bv/gou3D5R3ToFUFQSv64fAa/ANKN/aMNK+fPtmuMUnwnfUGEhVgfAdNQZu3eJRvn3LBb+vQCyG2NPT9hC5NXy+6TPOorasFIHT74csOASy4BAETp+JmnNZqD5zql35LRYLyrdvgd+osVD06Q9ZUDCCpt8Ps9EI7cGWj4/nM/rVZ/RzkNGje8/6UY/9W1yP16DB8B8zDm7xie2q74WwWCwo3bYVAaPHwLNvP8iCgxFyr/XYr24lW9m2LXCPT0TA6DGQqQIRMHoM3OPjUbqtIVvkY0/Ce/D1kAUFQx4SipAZM1FbXg599rmGbNcMgntCIiT+/pAFBSPwzskw1+hR46Az4UJzlW3bAv/RY+HZ19pmwTOsbaZpJVfpts1wj0+E/2hrm/nX5ypr0mbK2yfAs2/LbQYAteoK5P+6BCH3OfczzWKxoGTrVihvHQOvvv0gDw5G6Pk2O9BytpKtW+CRkAhlfZspR4+BR3w8Src2ZIt6/En4XNfQZmFN2sxYXARdZgZCpk6Da0QkZCoVQu6ZBrPBAPXBA5ecbUpMMNacK8Ka7CKcq9Lj4+OZKNYbMD7C8WfW+IhAFOkN+Ph4Js5V6bEmuwhrzxXhnpiGH2N6eHsgpVyLzXklKNQbcLBEjS25pYivPw+WCIW4KdAPn5/MwtEyLfKqa/DN6WwU6GowoYX3vVB3RwdjbXZDrk9OWHO1tP47wq25PjnRKFd2EaZEN+SqrDWh3FBrewz094Khrs6uw3FaTAiK9QYsPJKGVHUVCvUGJJVqkK+ruaD6C4Qiu2Nse34MEHko7JZp+uOOet9uZCx4GaefmIOMBS+jYuf2NtepnDwV3jfdDBc/x+f4QpnM7j1NlVoYC/Phdd0N7QvaxF2RQViXU4R1uUXIrtbjs9RMFNcYcHu448/n28NUKK4x4LPUTGRX67Eutwjrc4sxObL5D7gVxlq7R2PPHTyJjXnFyKrSI71Sh3eOpUEllyFOcfm+uxF1JnY4XkW+//57iMVi7N+/Hx9//DEWLVqE//3vf83KWSwWjB07FoWFhVi3bh2SkpLQr18/DB8+HOXl5QCAtWvXYuLEiRg7diwOHz6MrVu3YsCAAbZ1zJw5E3v27MGyZctw7Ngx3HXXXRg9ejTS0tIAAI8++igMBgN27tyJlJQUvPPOO3B3b/vAm5OTg4kTJ2LMmDE4cuQIHnzwQTz//POtLnP27Fls2LABN91004X8d12S8sIyVJZrEdc/3vaaWCJGVK8YnDuZ1a51WCwWpB0+g5KcYkT2jLb7W2leKd6Y8ioWTl+An9/8HmUFF/fF82Kcz9ZtgH226F4xyLqQbMlnUJxbjKhG2U7sO46QuFD8sOBbvHbXy/hgzv/h73X7nB2hyzOUlqJWq4VnYsMXWqGLCzzi4lCVkdHiclXp6XbLAIBnYiIq09NtzyuOHoVbeDjS/vtfJD39NFLeeAPFTTrzLWYz0r/5BkGjRrV5Cfelqiwug16tRUjvhu1R5OKCwMQYFJ1uOWtTJqMR5ro6SN1d7V7f/b9fENqvB0J6xbew5OUhFgjQzcsdB4rVdq8fKFajp4+icyp1EcRCARJ9PbC3yaXOewsq0Mf/4nNIREIYmowUqKkzo2/A5fu/EQsFSPDxwL4C+2z7CirQ+xKyNTUhWoUN50qgv4iREZY6E2pyzsEtobvd624J3aHPSHe4jD4j3WH5mnPnYKmzdpLqMzPglmB/7HBL7A59xlnr+5ra/766tNNIe+4ppL/+Egp+/h6myobL3cymWkAggEDccIGOQOwCCATQpae1578AtWWlMGk1dnURurjANaYbdJlnW1xOl5kB9yYZ3Rtl/CeoLbVmc0+0z+YWGwdduuP2BQBdRgY8mhz7PRK7Q9fCNgEAdXrr5YAiV8fT8ZhNJpTv3gmhXA5ZyKV1/J9vM/eEprm6QdfK/7/eUZsldG91GUcsZjNyv1sMvxGj2rzM+UIZSx1nc4+NQ3Ur//+6jAx4JDRvs9aWadpmZpN1/xU0mm5IIBRCIBKj+mz79qeWiAUCxHm642CJ2u71g8Vq9GjhM6u7twcONv2MK1Ej3ssdovqbShwr16KblzsS6jsYg1yluFbpjX1F1uOuSCiAWCiAscnx0VBnRi/f9k+70Faupp/FB0vU6OHdQi4fj2b/DweK7XM1NTZMia15pXYj4G5Q+eK0ugoLBsRj1ahrsPimPhgXduGXvhtLinD2xaeR/urzyPvmSxhL2x4tn/X2AqS98DSyP3qv2Y876j07Ubr6D/jfPgGRr7wB/9snoGTNSmj+3nPBdWuNeu8uSAKUrU7/0RKxQIA4hTsOlartXj9UokYPL8cdroneHjjUdPstqUA3T/t2k4tEWDqsP34dNgBvDUhAjKL1Kcrc6j+/tC38yHhVEl4lj6sUL6m+ioSGhmLRokUQCATo1q0bUlJSsGjRIsyaNcuu3Pbt25GSkoLi4mJI6y+neO+997By5UosX74cs2fPxptvvokpU6bg9ddfty3Xu3dvAEB6ejqWLl2K3NxcBNV3NjzzzDPYsGEDvv32W7z11lvIzs7GpEmT0LNnTwDWUYnt8cUXXyAqKqpZjnfeeadZ2euuuw7JyckwGAyYPXs2FixYcOH/aRepsrwSgHVuxcbcvTygLi5vdVl9tR5v3vMaTLUmCIVCTHjsTsT172b7e1h8OKbMnwa/EH9UVVRi65JN+OzJj/D018/DrY0POWewZWvyAe3u7YGKorazvTGlIdvEx+2zlReUYd/qPRgyaSiGTx2J7FPnsPKz3yF2EWHAyGucH6aLqtVav6C7KOxPfl0UChjLyhwtYlvO0TLn1wcAhpISFP31FwJHjkTQmDGoysxE1rJlEIjF8B88GIB1FCSEQihvvtlZkVqkq597R95ke5R7eaCqpPXtsbEDP/0JNx9PBDfqWDy7+xBKM3Mw4e35zqnsJfCSukAsFKC8yWU/5QYjfGRenVOpi+Bdn6OsSY4yfS18gy5+jt29+RWYkRiMpCINciprcG2gF4aF+rb4Za4j2LLpm2fzu4RsjfXwdUestxv+/feZi1uBrgowmyFqsp+LPBSo02ocLmKq1ELk0aS8QgGY61BXVQWxpxdMWg1EHvZf5kUenqir7yw0VbXvfd2794Ci3wC4+PjCWFaC0tV/Ivuj9xDx3CsQurhAHhENoUSKkj9XwP/2CYAFKF65HLBYYNI4rn+zPPXvJ26SSaxQoLa85eOjSauBuElGsYenXYdoZ6ttLVsrx35rtibLeChg0jrOZrFYULD8V7hGx0AWbN8Bp005ipzFX8NsNEKs8ETk409B7H5pl1+eb1tHdWyzzZrM7SlWeLaYqyWlmzYAQiF8hw2/oOXa4/z22PSzV6xQwNhmtubLtNZm+ct/hVtMDOT1bSZTqeDi44uCP35HyLTpEEqlKNmyGSatxrYtXSzPVj6zfFv4zPKVSbC/2P4Hm/IaI8RCIbwkYpQZarE1rxReEhd8fmMvCACIhUL8kVmAn9Kso2j1pjqklGtxX7cwZFWdRkWNESNC/JHo7YFcJ8yZ5ymx5qow2OeqaOWz2FcqwQFDRbPyjXM1luDljmiFG945Yt/pG+gqwx0Rgfg1PQ8/nslBgrcHnugZBaPZgo25xe2qvzwiCoEzHoAkQIm6Si1KN6zBufcWIurlBRA5GPgh9vSCauoMyELDYTGZoDmwDzkfv4+wJ56Fa6y14690/RoETJwMj/qR3RI/fxgKCqD+f/buO76pcv8D+Ce76Ui6926hLXvJcOAABUEEHLhxgghOVBTF7XX99MK9jit6VRxXUURB2VtkKXu1hdK9Z5omTZr9+yMhTdq0tJBSrJ/369XXiyTnnDxfnnOek/Oc73meHduhHHlJh8p1JlaTCQ179yDkmmvPan2lVAKRUABVi/9rldGEIJnU4zrBMilUxnr35Q0miIVCKKVi1BlMKGrU4a0jOcjXNMJXLMaNiVF4f1R/PPD7IZS2kXk6OyMJR+rUKNDqzioWor8adjj+jYwcORICl4uvUaNG4b333oPF4v6o3f79+6HVahES4j6Wk16vR67jDvmhQ4dadVSeduDAAdhsNvTu7X4HymAwOLf56KOP4qGHHsKGDRswduxY3HjjjRgwYMAZY8jKyvIYhyfff/89NBoNDh8+jKeffhrvvvsu5s1ru+PAYDDAYHAfe8VkMEEiO/OF4oHN+/DTv35wvr739ZkAgNaXujbgDBfAMrkMj//naRibDMg5mINfF69AcFQIUhyDEqcPd7mjnQQkZCTirXtex/4Nf2L0TVeesayddWDzPvy4qDm2+0/H1jIMm82tXjyRyWWY+/HTMOjtsf3ysT22VEdsNpsNsb3jMOH+6wAAMamxqCyswO5fd7LDsR01f/yB/G++cb5Oe/hhzwvazrz/nfFzmw1+CQmImzoVAOAXHw99eTmqfvsNYaNGobGwEJWbN6PfggVn3B/ORs72vfj9k++cr8fPf8hR7BbfZcOZY3E4tGIjcnfux3UvPwax1H68a2tU2P3Fckx4YY7zvQvR+etO8zKb+8tz3VXe+jMPL49KxS+Th8EGoFijx8pTlZic6p2JDzqjRWgQCOyHnjdMTY1EjqoRx2rPbfIDQas9p/22ofXxdToggcsyLTfZOugzfa9iaHM7L4uOgTw+EadeeAaNx48gYNBQiAMCEPPALFQs/QaqbZsBgQCKocMhi4tvc/xG9Z97UPbd187X8bMfbVn0NsvrIYDOr9OFVH/uQdm3zW1/wuxH7P/w8N985ra/5Sptx1a29Fs0lZYg5anWv6n8e6cj9bkXYdFqULfzdxT9dzFS5z3XqnOsPfUt6izhoTbqDLbON4KdrDN9UQFqt21CyrMveuWcpvpjD0pc6ixpTtt11vp4aaET+2Pp0m+hLylB6tPNdSYQiZH44EMo/noJjj/5OCAUIiA9AwF9+505kA7qbHvoaXnX9weHKDG9dxzeO5yLTJUGsf5yPNYvCTW94/DlyWIAwGv7T2L+4F5YOW44zFYbTqq12FhSjd5eHH7IUwjtxtXGOc/TKhPjI5Db0IisFpPcCAVAdr0Wn2TbH4nPaWhEUoAvpiRGdrjD0b9vf7fX8qQU5L40H+o/diF4zDWtlpdFREIW0fyouDw5BSZVHeo2r4dvr94wazQwq+pQ/s2XKP+fy5i0VguEjrG9iz9cBJ0jY1YSHILkFzqfAKI9fADWJgOUwy/u9LquPFdR2xXXsh101pvj7ax6rVs9HVM14JNLB+KGxCi8n9l6kr7H+iYjJcAXj+w52smSE/11scORWrFarYiKinIbc/G0QMfkD3IPE0S4ri8SibB//36IWoxzc/qx6QceeADjxo3D6tWrsWHDBrz55pt477338Mgjj7RbNlsnfijGxdlnNe7Tpw8sFgtmzpyJJ598slWZTnvzzTfdMjYB4JbHbsdtT9x5xu/qM6of4tObZ+g1O9LkNSoNFC6PcGjrtQhoI3X/NKFQiNAY+yQ+0SmxqCqqxNalm5wdji1J5TJEJUahpuzsJhA4kz6j+mFuB2NrmdHZkmtsMan22LZ8t8nZ4RgQrEBEvPsYOOHxETjy+xGvxNJTBQ0cCP+kJOfr049JmRoaIHWZsMWk0bTKonAlUShgapEl1DLrUaJUQt7iMWl5ZCTqDtgHzG7IyYFJo8FB16EOrFYULVuGis2bMfjNNzsdn6uEi/q7zSRtccSqUzXAN6h5f9SrNZArz5xVc3jlJhz6aQMmvvgwQhKbM3Vq8oqgV2vw07x3nO/ZrFaUZ+Xi+NrtuP+7RRCKzt/zEfUGE8xWG4J93O/EB8mkqGsytbHWhUfliCNE7h5HsI8Etfqzj0NlMOGxbVmQCgUIlElQpTfiiSGJKNV2bmyrc3E6tlBPsXmhjnxEQoxLCMNHhwvPvHBbfP0BodCZVXWaRaNplcV4mj3TrfXyEIog8rdn1duzxloso23OjBT7d/57AXt2jSQ4BMaq5otpv4y+SHnlTZi1GgiEIoh8fZHz7FxIQjyPA+Y/YBBSElu3j+aGBkhcJv8wazTtdop5itGsbWiVdXc+KQYMgm9i8xMiNrN9P2sdW/vl9JT1Z2nj/6Ps+2+hOXoYyXOfhiQouNXnQpkMsvBwIDwcvskpOPHi86jbtQPh4yd0OK6AFnVma6/OzhhXizrTNHSq87PxVA7MGg1OLHDpXLVaUbH8B9Ru2YS011s/YdMexcBB6J3Uus5Mag91dqb9Ue1eZ23twyVLv0XDkcNIefJpSFvUmW9CAtIWvASLXgeb2QJxQABy3noD8oSEVtvpDPXptr7lOUsqRZ3Bc3tY22REiKz1Oc5stULtGL/3gYx4rC+uwqqiSgBAnkYHH5EQ8wam4quTxbABKNM14ZGdR+EjEsJPLEKtwYRXhqWhvPHczwdqo+Nc7KGcLbPnnHEZjK3O3YFS97hOk4mEGBMThs+yi1pvp8mIQo17VlyhVofLo1pP9tVRQpkMspgYGKsqO7yOPCkZDX/usb+w2R/5jrx9OuQux6x94/bfSJF33A2b0Z4RKhCdXddD/c7f4d9/AMTKs3ssXm00wWK1IbhFEkmQVNJmvdUZjAiWtqw3CcxWa5uPQ9tg7xSO8W19nfxInyRcHB6Mx/Yc9crkRUR/Fexw/BvZs2dPq9e9evVq1QE3ZMgQVFRUQCwWIzEx0eO2BgwYgM2bN+Pee+9t9dngwYNhsVhQVVWFyy67rM3yxMXFYdasWZg1axbmz5+PTz/99Iwdjn369MGKFSvajcsTm80Gk8nUbofl/PnzMXeu+4zDGyq2nXHbAODj6+M2O7PNZkNAsAI5B04gJtU+dpHZZEbekVOYcP+kDm3TZWPOTj5PzEYzqoorkdi/Y4+ld1ZbsZ3c7x5b7pFTmPhAJ2ODe2xJfZNQ3eIubXVJNYIigs66/H8HIh8ft5ksbTYbJAoF1JmZ8IuPB2C/yNacPIk4l8mdWvJPSYE6KwtRV1/tfE+dmYmAlOZxNgNSU9FUUeG2XlNlJWTB9ouY0JEjoczIcPs8+1//QujIkQi7+NzuTAOAVO7jNvO0zWaDPFCBkiPZCE2232SwmMwozzyF4XdObndbh1duwoHl6zBhwRyEpbpfXEX3T8NN/3zO7b3fPvwGypgIDJpy9XntbAQAs82GE/VaDA8PxPay5sfsLgoPxO/lbT92d6ExW23IrNVgVHQgthQ3l3tUVBC2Fp97HEarDVV6I8QCAcbGh2L9Wc7kfDbMVhuy6jQYGeke28jIIGwrOffYrkkIhVQkxOr8jmWyeCIQieETl4DG7EwEDBrifL8xOxP+AwZ5XEeenALtUfdJ4xqzjsMnIcF58ShPSkZjViaCr7rGZZlMyJNT7d8r7vz3AoBFq4VZVefxIvP0Y7qNJ7Jg0WoQ0MZ2PLWPYoUSjdnHIY+zt482sxm6UycQMfmmNsvi64gxxCVGrUuM3aGt2LRZmc7YrGYzGnNOInLqjW1uxzc5GZqsTISOaW77NZmZ8E1ubvttNhvKvv8ODYcOInnuU5CGhnWwlDZnh+G5x3W8RVwnEDml7TqTJyVDm52J0DHudebbiToLHD4K/i0m+Cl4fyECR4xE0KjOT17RXp35upyvtTknEd2BOgsb61JnWZnwa1FnpUu/g/rQQaTOfQqydupMJLePX2yorISusACR17d//jwTs82eWXhRWCC2u5yjhoUHYkcb56zjKg0ujnTvEL0oLBDZ9VpYHL/ffUSiVvloVpsNAoE94dP1syaLFU0WKwIkIgwPD8J/jrfOODuXuH53man4orBA7KhoI646DS5pEdfwcPe4TrsqOhQSoRAbPGQsnp6V21WcnxwVHmbG7iiryQRjRQV8Uzo+LqKhuNg5U7tYoYQ4MAim2mooh4/0uLwk8Nx+wxtrqqHLOYHYB9t4eqcDzDYbTjZoMSw0EDtchn8aGhqInW0MdZWp0mBUuHu9DQsNxAl163pzlarwQ36LjuFH+yTj0shgPLHn2DnVV09lO4/D39D5xw7Hv5Hi4mLMnTsXDz74IA4cOID3338f7733Xqvlxo4di1GjRmHKlCl4++23kZaWhrKyMqxZswZTpkzBsGHD8NJLL2HMmDFISUnBrbfeCrPZjLVr12LevHno3bs37rjjDkyfPh3vvfceBg8ejJqaGmzZsgX9+/fHhAkT8Pjjj+Paa69F7969oVKpsGXLFmS06KTwZNasWXjvvfeccezfvx9LlixxW+Z///sfJBIJ+vfvD5lMhv3792P+/Pm45ZZbIBa3vcvLZDLnmJWnSVRn9yilQCDApVNHY8t3GxEaHYbQmDBsWboREpkUg65qnglx6TvfQBmixLWOTsgt321EbO94hESHwGKyIPvPTOzftBdTH73Zuc6qT1YiY2RfBIUFQVuvweZvN6JJ13TeHjkWCAS4bOpobP5uI0JjHLF9txFSmRSDXWL77u1voAxVOjtYN3+3EXEusWX9mYl9G/fiRpfYLrvxCnzw2CJs/nYjBl4+CEUnirBnzW7c/Pi08xJbR/n5ypDiMhthYlwYBvRJgKpei+Ky7u/8EQgEiBw7FmVr18InIgI+4eEoW7sWQqkUoSNGOJfL/fxzSAIDEe/ohIwcMwaZ//d/KFu3DkEDB0J1+DAasrLQx2UogsixY5H51lsoXbMGIcOGQZufj6rff0fSXXcBACT+/pC0GAdIIBJBolBAHumdGSJbxtp/4pU49NMGKKPCoYwKw8Gf1kMskyD1suaJrLb++yv4hSgx/A77RdShFRuxb+lqXPX43QgIC3GOBSnxkUEil0Eq90FwvHsmp1gmhU+AX6v3z5elOaV48aLeyFJpcayuAZMTIxHhK8OKPHsH8Ky+CQjzkeG1/c3j+/VS2jPQ5GIhAqUS9FL6wWS1okBz7mNZna2vskrx5iVpOF6rxeHqBtzcKwpRfjL8cLIcAPDY4ESE+0rx/M7mONKC7HH4ikUI9pEgLcgPJqsNeWr7j/r+oQEI95XiRF0jwn2leGhgAoQC4Itj5zY7bmd9nVWKf1ychsw6e2w3OmJblmOP7dFB9tgW7PIcW5CH2E6bmhqJrcW1rTJiOit4zNUo+/Iz+MQnQp6cjPod22Gqq0PQpVcAAKpWLoe5vh7Rd98PAAi89HKoftuCyuXfI/CSy6DPy0P97h2Ivnemc5tBV45F0cJ3ULthLfwHDIL2yCE0ZmchYe4zHf5ea1MTatb8goBBQyFSKmGqrUHNLz9D5B8A/4HNnZT1u3dAFhkFkX8A9Pm5qPxxKYKuHOv22F97BAIBgq8ci5r1ayANi4A0PAI161dDKJVCcVFz+1j65WcQBwYiYrK90yf4yrEoWPgOajasRcCAQdA4Ykx0idHa1ARjdXNHgam2Gk3FRRD5+UESbM9CsjRqYaqrg0ldDwAwVNmPX7FCedbZO66xhV41BlXr1kAaHg5ZWASq1q2BUCpFoEtsxUs+gyQwCJFT7G1/yJVjkPfP/0P1+rUIGDgImsOHoM3Ocntkumzpt6jf+wcSZs2BUObjzIYXyeUQSqWwGgyoWrsaigEDIVYGwtKoRe1v22BSqaAc0v4M0B2JK+SqsahevwaycHudVa+z15nSJa6SJfY6i5xir7PQK8cib+E7qN6wFooBg9BwxB5X8pPNdWZpUWfG2mroHXUmDQ6B2N/fnqHrWh6RCGKFssP73JliCxszBpXr1kAWHg5puEudDW+OregLe51FTbXXWdhVY3Dqvf9D1fq1UAwchIbDh6DJynJ7ZLr0u2+h2vsHkh6aA6FP6zoDgPr9+yD2D4AkOBhNpaUo/WEplIMGI8Bl4qGztfRUKV4Y2hvZ9fZz1vWJkYiQy7CiwL7PP5iRgDC5DK8fsLeHKwrKcUNSFB7um4RfCyvQL1iB6xIi8PK+E85t7qyowy0p0Tip1iJTpUGMnxwPpCdgR0UdTk+vMjwsEAIBUKTVI8ZPjjl9E1Gs1WN10dnfrHH1fW4pFgyxx3Vc1YDrEyIR3iKuUB8Z/nHQHtfKQve4+gYpMDE+Aq/sP9Fq2xPjI7CjotZjBt0PeWX4z6UDcFevWGwpq0FGYAAmJUTi/w53fBKkqp9+gH//gRAHBcOi0aBm3SpYm/RQjrDfEG7Z/tdt2QhJSChkUdH2MRz37oHm0H7EzHjIuc3QCZNQuWwphD5y+PfpB6vZjKaiAlh1Oo+PaZ9mrKqE1WCApaEBNpMRTcX2rE5ZVLTbxGDq3TshVijh1+Jx8M5all+G+QN74YRai+MqDa6Lt++Pvxba6+2BtASEyaR484j98e9fiiowJSEKszMSsaqoEn2DAjAhLgKvH2o+f09PjUNWvQYljXrnGI6pCj/863jzpIWP903GmOgwLNifBZ3ZgiDHMD2NZguM1s5P/kb0V8MOx7+R6dOnQ6/XY/jw4RCJRHjkkUcwc+bMVssJBAKsWbMGzz//PO677z5UV1cjMjISo0ePRkSEfTysK664AsuWLcNrr72Gt956CwqFAqNHj3Zu44svvsDrr7+OJ598EqWlpQgJCcGoUaMwYYL9kRqLxYI5c+agpKQECoUC48ePx8KFC88YQ3x8PJYvX44nnngCH330EYYPH4433ngD9913n3MZsViMt99+GydPnoTNZkNCQgLmzJmDJ5544lz/CzvlimljYDKY8PMHP0Kv0SEuPQEz3nzILVuwvkrlNiaQscmIn99fBnWNGhKZBOFx4bj1mTsx6Irmiy11dT2+feMr6Boa4af0R3xGAh7+1xMIimj9aFNXufKWMTAZTfjpfXts8ekJmPGWe2wqD7H99O9lqHeJ7fZn3WOLT4vHPS/fjzWfrcLGb9YjODIYkx+aiiFjhuFCMmRAMjb88KLz9TsvTQcAfL3sN8x88uPuKpabqHHjYDUaUfC//8Gs08E/KQnpjz/ulllhqKtzG9crICUFqTNmoGTFCpSsXAlZWBhSZ86Ev8ukTv6Jieg1ezaKf/oJpatWQRYaioRbbnHryDzfBk4ZC7PRiB2ffg9jow7hvRIx4YWH3TIhtTV1EAibY81c/zusZjM2vfuZ27aG3Hwtht0y8byVvTM2l9ZAKRPjvvQ4hPhIkdegw1M7jzvvlof4SBHh637T5Msxg53/zggKwLj4cJQ3NuHG9fvOa9ldrS+oQaBMglkD4hEml+JUfSNmbz6G8kZ7HGFyKaL83OP4cVJzO9E3NAATk8NRqm3C+J/2ArA/hvbIoETEBvhAZ7Lg99I6PLfjBDQm9zGKu9r6whooZRLM7N8c25ytzbGFyqWIbBHbDxNdYgsJwMQke2wTVux1vp8QIMeQcCUe3HTu4z4phg6HpbERNWt/haVBDWlUNOJmPwaJY4xls1oNk6r5xok0NAxxsx9D5fLvUb99K8TKQETcfBsUg5s7kXyTUxF970zUrFqB6lUrIA0NQ8z9MyF3eXT0TN8LoRCGslKo/9gNi14HsUIJ397piL7/Qbd2y1hZgeqVP8Gia4QkJBSh4yYi6KrmLK+OCLl6PKwmIyq+/x8sukbIE5MR//Bct+8xqWrd2kff5FTE3jsTVatWoMoRY+z9M+HrEqO+qACF/3rX+bpyuX38Y+WIixEz3f47RXPkMMq++cK5TOnnnwCwX7SHTzy3rDIACL1mPKwmE8q++xYWXSN8k5KR9MgT7rG1aPv9UlIRf/9MVP6yApW/roQ0LAzxD7jHVrd9GwAgf2FzfAAQO/0eBI26xF5/lRUo/GQ3LI1aiPz8IE9IRPKT87wys3Po1eNhNRpRtrS5zhIfca8zo6rWPtCdg29KKuLum4nKX1eg6ld7ncV5qLOCRc0xVTjqLHDkxYid3vzbsiuFXTMeVqMJJS51lvyoe50ZPdRZwv0zUfHLClT8Yq+zhBkz4ecSW62jznL/6V5ncdPvQfDF9sk8TGo1yn78AeaGBoiVSgSNHIWICdd5Ja4tZTVQSsW4Jy0OITIp8jU6PL3nOCpdz1ny5vawXGfA03uO45F+ybghKQo1TUYsOpqH31wyIr88WQQbbJiRnoAwuRT1BhN2Vtbhk8zmoSb8JWI82Md+A67BZMZvZTX4JKuw3ay0zsalaBHXPNe4ZK3jmvfHcTzSNxlTE+1x/atFXAAQ5+eDgSFKPLH7mMfvza7X4vm9WZiZkYi7e8ejXNeE94/lYWNpxzP5TfUqlH3xCcxaLcT+AfBJSkbCU8+12f7bLGZU/fQDzOp6CCQSyKJiEPvQo/Dv1zzufuAloyGQylC3aR2qV/wIgVQKWXQsgq8c225Zyr/9Evqc5s67grfsYzsmv/oWpI4hMmxWK9R7dkI58uI2x+ntqK3lNVBIxJieGodgmRQFWh2e3ZuJyqbT9SZBuEu9VegNmL8vE7MzkjA5Pgq1BiPez8zHdpdMVn+JGHP7pyBYKkWj2YxTDY14bM8xZKubx3WcnBAFAFg00r3D9K3DOVhf6p1OcKILmcDWmUHx6C/riiuuwKBBg7Bo0aLuLspfysrCtd1dhC4j7MHZ69Mu/erMC/0F3fz1rO4uQpcZGNxzx7NZntP2mLd/ZRptz/35cI7XNRe0RO8nGl8QenCVQSTsuceazdZzf4z01Hora+i5R1tPfrIz2Ldn7o8Nxp67P26d4J1Zvi90vS5b3N1FOC9yfn+wu4vQLXruEUpERERERERERETnHTsc6YIya9Ys+Pv7e/ybNavnZncRERERERER/a0I/iZ/f1Mcw/FvYtu2bd1dhA559dVX8dRTT3n8TKFQnOfSEBERERERERFRZ7HDkS4o4eHhCA8P7+5iEBERERERERHRWeIj1UREREREREREROQ1zHAkIiIiIiIiIqLzS/g3HuDwb4AZjkREREREREREROQ17HAkIiIiIiIiIiIir2GHIxEREREREREREXkNOxyJiIiIiIiIiIjIazhpDBERERERERERnV8CThrTkzHDkYiIiIiIiIiIiLyGHY5ERERERERERETkNexwJCIiIiIiIiIiIq/hGI5ERERERERERHR+cQjHHo0ZjkREREREREREROQ17HAkIiIiIiIiIiIir2GHIxEREREREREREXkNOxyJiIiIiIiIiIjIazhpDBERERERERERnV9CzhrTkzHDkYiIiIiIiIiIiLyGHY5ERERERERERETkNexwJCIiIiIiIiIiIq/hGI5ERERERERERHR+CTiGY0/GDEciIiIiIiIiIiLyGnY4EhERERERERERkdeww5GIiIiIiIiIiIi8hh2ORERERERERERE5DWcNIaIiIiIiIiIiM4vzhnTo7HDkagdv1XIursIXUYusnV3EbrMzV/P6u4idIlld33c3UXoMurPZ3d3EbqMVNYzf0kJdT23DekfZ+3uInQZjalnPtxitPbM4wwAhD33UIOw51YbrJaeGZxI1DPjAnr6ZLk9uCEhogtWz/zVSURERERERERERN2CHY5ERERERERERETkNXykmoiIiIiIiIiIzq+ePLYGMcORiIiIiIiIiIiIvIcdjkREREREREREROQ17HAkIiIiIiIiIiIir2GHIxEREREREREREXkNJ40hIiIiIiIiIqLzi3PG9GjMcCQiIiIiIiIiIiKvYYcjEREREREREREReQ07HImIiIiIiIiIiMhrOIYjERERERERERGdVzYBB3HsyZjhSERERERERERERF7DDkciIiIiIiIiIiLyGnY4EhERERERERERkdeww5GIiIiIiIiIiIi8hpPGEBERERERERHR+SXkpDE9GTMciYiIiIiIiIiIyGvY4UhEREREREREREReww5HIiIiIiIiIiIi8hqO4UhEREREREREROcXh3Ds0ZjhSERERERERERERF7DDkciIiIiIiIiIiLyGnY4EhERERERERERkdeww5GIiIiIiIiIiIi8hpPGEBERERERERHR+SXgrDE9GTMcCQCQmJiIRYsWdXcxzsq2bdsgEAhQX1/f3UUhIiIiIiIiIvrbY4YjAQD27t0LPz+/7i6G1506dQqDBw+GSCQ67x2SNpsNOT+vRtG2HTA16hCYkoh+029FQGx0m+toSspw8qdfoS4ogr6mDn1uvwlJ48e0ufypX9fhxLKVSLzmSvS9c1pXhOGRzWZD5k+rkb9lJ4yNOgSnJmLwPbdA2U5s6pIyZP64Cqr8Iuhq6jDwzpvQ69qr3JZZ89gC6GrqWq2bMnY0Bt97a5fEUfrrr6j6/XeYdTr4JyUh8fbb4RvddhwAULd/P4p/+QWG6mrIwsIQN2UKggcPdlvGqFKh6KefoD52DFajET4REUi++274JSS02l7+11+j6vffET9tGqLGjvVqjJ11yfB0PDHrOgzpn4yoiCBMe+A9/LphX7eVx2azoWbNL1Dv3A6LTgefxCRETrsDsuiYdtdrOLgfNatWwFRTDUloGMImTUXAoCFuy6i2b0XdpvUwq+shjYpGxE23wje1t/NzzaH9qN+xHU1FhbA0apH47IvwiYt3fm5p1KJ69S/QZR2HSaWCyN8fAQMGIXTSFIjkvp2OdXJCJG5NjkGITIp8rQ4fHM/HUVVDm8sPDFZgdp8kJPn7osZgxNLcUvxSVOH8fHxsOJ4d2KvVetes3QWj1eZ8HSqT4sGMBAwPC4JMJESJVo93jpzCyYbGTsfQUdN6R+GePrEIlUuRW9+Id/bl4WC151hD5RI8OSQZfUL8ER8gx7fZZfi//Xluy/z36v64KCKw1brbS+vwyNbjXRGCk81mQ9mvv6LapR1JuP12yDvQjpS6tCOxU6YgyKUdKf3lF5StWuW2jlihwOB33wUAWM1mlK5cCfXRozDU1EAkl0ORkYHYG26ANDDwrOLormOtevVKaPbvhUlVB4FIDJ/4BIRNmgp5UrJzGbNajaqfl6ExOxNWQxOkEZEIuWYCFEOGtVu+iXGRuCExFsFSKYoadfgkOw/H69s+rvoFKTAjLRnxfr6oMxjxY0EJ1pZUuC1zcXgI7kpNQJSvD8p1TfjqVCF2V9U6PxcKgDtS4nFFVDiCpBKoDCZsKqvE0rxinD7yAqUS3NsrEYNDAuEnEeO4qgEfZ+eiTNfUbjyuJsRG4YbEWARJpShqbMSnJ/KQ2W5sStzfOwnxfn6oMxiwvLAE6zzEdkdKojO2r08VYE91c2w3Jcbi4vBQxPjJYbRakV3fgCU5BSjV6Z3L/Hr1ZR6///OTefi5sLRDsXXX/mizmFH96wo0Hj8KY001RHI5fNP6IGzyjZC4HFfG6ipU/bwM+twc2Mxm+GX0Q8S02yBWKDsUW/WaX1DviE3uiM2nA7FVucQWPmkqFC1iq9u+FbWO2GSO2PxcjjUAMFSUoXLFcuhyTgI2K2RRMYi9/0FIgkMAAGXffoXGE1kwq+shlMkgT0pFxJQbIYuMOmNsLU1JiMStKTEIlklRoNHhg8x8HKlr/7w2p08SEgN8UdtkxHctzmsA4C8W4YH0BIyODIG/RIwKXRM+zCrAH1WqVtu7IyUGMzMSsSyvDB9k5ne6/G3pjvP1Pb3icE/veLfP65qMuGHz3g6Xu3r1StSu+dXtPVGAAr3e+ucZ19Xl5qBo0f9BFhWDpOde6vB3tqVy2XfQ5ebAWF4GaUSUx21qM4+hZvUvMJaXQiCRQJ7aG+FTb4Y0NOysvnNyfCRucdRbgda+P56x3jKSkHi63vJK8WuL/fG0K6NC8eLgNOyoqMULB7Kd7wsFwD294jE2OgzBMglqDSasL6nC16eazwdEPRk7HAkAEBZ2dg33hcxkMuG2227DZZddhl27dp33789bvQH56zZjwIzp8I8KR87KtfjjnX/jirdfhlju43Edi9EI37BQRA0fgsz//dju9uvzClC0dQcC4tr/gdoVTqzaiJw1W3DRrLvgHxmBrBVr8fub72Pcuy9B0lZsBiP8wkMRO2IIDn/jObYxrz0Dm9XqfK0uKcfvb/4bMSOGeFz+XJWvX4/yTZuQcs898ImIQOnq1cheuBADX3sNIh/PcWhyc5Hz6aeInTwZwYMGoe7QIZxavBh95s2Df7L94tjc2Ijj77wDRVoa0h59FJKAADRV2y9cWqo7eBDa/Hy3C5nu5Ocrw9HMInz9w29Y+snc7i4O6jaug2rLRkTddS+k4ZGoWbcKxR/8E0kv/qPNOtLn5aLs88UIu24K/AcOhvbwQZR+thgJc59xdmA07P8TlT8uReQtd0Cekor6HdtR/OG/kPzCq86LLqvBCHlyKgIGD0XFt1+1+h6zWg2zuh5hN9wMWWQ0THW1qFj6DcxqNWJmPNSpOK+MCsXDfZKw6FgejqoacH18JN4Z3gd3/3YAVU3GVstHymV466I+WF1ciX8cOon+QQo83i8Z9UYTtlc0dw5oTWZM/+2A27qunY3+YhE+uLg/Dtaq8cyfmag3mhDt6wOt2dKp8nfGuIRQzBuajH/sPYVDVQ24qVcUPrqqH6b+uh8VOkOr5aVCIVQGEz49Woy7Mjy3d3N/y4JE2PxITqBMgh8mDsHGwuoui+O0ivXrUbFpE5Ic7Uj56tU4sXAh+rfTjmhzc5H76aeImTwZQYMGQXXoEHIXL0a6SzsCAPLoaKQ98UTzisLmB1OsRiN0RUWIvu46yGNjYdHpUPT998j58EP0ff75TsfRnceaNDwSEdNuhyQ0DDajEXVbN6L4g4VIfvkNiAMCAABlX/0XVr0esbMehsg/AA17/0DZ54shDQt3uxHg6rKIUMxIS8ZHWbnIqm/A+NhIvDKkLx7adQDVTa33tQi5DK8M6Yt1JRV49+gJZAQqMDsjBWqjCbscHYrpygA8OyAdX+cWYndlLUZFhODZAWmYt/cITqi1AICbE2NxbWwUFh47iUKtDr2U/ni8by80mi34pagMALBgUAYsNhteO5QFndmCqQnR+MfQfpi16wAMFmursrV0aUQoHkhLxsfZp5BZ34DxMVF4eXA/zNm933NsPjK8NLgv1pdU4L1jJ9AnUIFZ6alocIktTRmAef0z8E1uAfZU1WJkeAieGZCOZ/YewckGDQB7p+Xq4jLkNGghFAgwPTUBrw7ph9m79sPgOH/f9dset+8eGhqMR/v0cn5PR3TX/mg1GtFUXIiQ8ddBFhsHq64RlT9+j9LF7yPxmRcAAFaDAcUfLIQsJhZxjz4FAKhZtQIlH7+PhKeeg0DY/gNktRvXoW7LRkS7xFb0wT+R0k5surxclHy+GOHXTUHAwMHQHD6Iks8WI3HuM/B1xKbe/ycqflyKqFvugG9KKlQ7tqPow38h1eVYM1ZXoeCfbyNw1KUImzgZIrkchopyCCQS53fJ4xOgvGgkJMHBsDQ2onrNLyj8YCF6vfrWGWNzdWVUKB7um4SFR/NwTNWASfGReHt4H9y9re3z2tvD+2BVkf281i9IgSf6u5/XxAIB3hvZFyqDCS/uz0Z1kxHhPlLoPJyz0pX+mJQQiVNevnnWXedrAMjXNOLJP5pvollsne+ykkZFI/6RJ5vf6ECdWvQ6lH/1OfzSMmBuaLuDrlNsNgSOuhT6gnwYSktafWysqUbp4g8QfNU1iL7nAVj1elQu/x6ln36EpPmd7/C8MioUcxz15twfL+qDe7a3XW9vDmuut36OelO3qDfA3r4+lJ6Iw3XqVtu5LTkW18dH4q3DOcjX6pCm9MczA3qh0WzG8oLyTsdB9FfDR6r/Jq644go8/PDDePjhhxEYGIiQkBAsWLAANseJquUj1Wq1GjNnzkR4eDgUCgWuuuoqHD582G2bv/zyC4YNGwYfHx+EhobihhtucH5mNBoxb948xMTEwM/PDyNGjMC2bducnxcWFmLSpEkICgqCn58f+vbtizVr1nQoljVr1qB3796Qy+W48sorUVBQ4HG5BQsWID09HdOmnb/Mv9NsNhvy129B6vXjEXXRYATExmDgzLthMRpRurvtO5GByYnIuO1GRI+8CEJJ2/cDzE1NOPSfLzDgvjsg8et8JtW5sNlsOLVuC9KnjEfMRYOhjIvGRbOmw2I0onhX27EFpyRiwO03IG7UMAjFnmOTKQLgE6h0/pUfPAq/iDCEZbS+6+uNOCo2bULMhAkIHjIEvjExSLn3XliNRtT88Ueb61Vs3gxlRgZirr0W8qgoxFx7LRQZGajYvNm5TNn69ZAFBSHlnnvgn5QEWWgolBkZ8AkPd9uWUaVCwXffIeWBByAQibwe49nYsO0wXnn3B6xc1/E75l3FZrOhbusmhIybiIBBQyGLjkHUXffBajSiYW/bdVS3dSP80vsgZNwEyCKjEDJuAvzS0lG3dVPzMps3InDUpQi8ZDRkkfYsEElQEFS/b3MuoxwxCqETJsE3vY/H75FFxyB2xmwE9B8EaVg4/NIyEDZpKrTHDsNm6VyH3c1J0VhTXInVxZUo0urxQWY+qpoMmJzgOaPk+oRIVDUZ8EFmPoq0eqwursTa4ircktw6q67OYHL7c3V7Siyqmgx4+8gpZKu1qNAbcKBW3aksq866KyMGP+dW4udTlchv0OP/9uehQmfAtN6eYy1rNOCdfXlYlV8FjcnscZkGoxm1TSbn38ioQDSZLdhYWNNlcQD2fbRy0yZEu7QjSY52pLYD7Ui0ox2JvvZaBGRkoNKlHQEACIWQKJXNf47ONwAQ+/oi7YknEDxsGOSRkfBPTkb8bbdBV1gIQ23HO3ZOx9Gtx9pFI+CX3gfS0DDIomMQfsMtsDbp3S5C9Xl5CLp8DOSJyZCGhiH02usg9PVFU3Fhm+WbmhiDDaWV2FBaieJGPT49kY+aJgMmxEZ6XH5CbBSq9QZ8eiIfxY16bCitxMbSStyQ2NzRPTkhGgfrVFiWX4ISnR7L8ktwuE6NyfHNy6QHKvBHVS321qhQ1WTAzspaHKytRy+FPwAg2tcHGYEKfJiZi5wGLUp1enyUlQsfkQiXR3bsBvCUhBhsdMRW0qjHf0/moabJgGtjPR9H4x2x/fdkHkocsW0qq8TUhNjm2OJjcKhOhR8L7LH9WFCCw3X1uD6huV15+eBxbC6vQlGjDgXaRiw6noNwuQ9SHbEBQL3R5PY3MiwYR+vUqNR3rF3pzv1RJPdF/CNPQjH0IsgiIiFPSkHEtNvQVFQIU539uNLnnYKptgZRd90Hn5hY+MTEIuque9FUWADdyWwPJWsdW+i4iVAMGgqf6BhEdyK2UEdsoR5iq928EUGjLkWQI7ZIR2x1jtgAoOrXn+Hfpz8ipt4MeVw8pKFhCOg3AOIAhXOZoEsvh1+v3pCGhEIen4DwSVNgVtXBVNu59nRacjTWFNnPa4WO81q13oDJiZ730ckJkajS289rhY7z2priKtya0rz/TYiLQIBEjOf3ZeOYSoNKvQFHVRrkanRu25KLhFgwuDf+78ipNs8bZ6u7ztcAYLHa3D5XGzsfm0AoglipbP5zOa+0peK7r6EYNgI+Llnnrup370Deqwtw4rFZyHt1AVTbt55xmxHTbkfQ5VdBEhrq8fOmokLYrDaETppiv7EUn4DgsdfAUFoCm6XzcZ+utzUllShq1OPDLHu9Xd9WvcXb6+3DrHwUNeqxpqQSa0uqMC3Jvd6EAJ4f1BtLcopQ7uG3U9+gAOysrMOeahUq9QZsr6jFvhoVeiv9Wy1L1BOxw/Fv5Msvv4RYLMYff/yBf//731i4cCH++9//tlrOZrNh4sSJqKiowJo1a7B//34MGTIEY8aMQV2d/XHX1atX44YbbsDEiRNx8OBBbN68GcOGNT/WdO+992Lnzp1YunQpjhw5gptvvhnjx49HTk4OAGDOnDkwGAzYvn07jh49irfffhv+/mdueIuLi3HDDTdgwoQJOHToEB544AE8++yzrZbbsmULli1bhg8//PBs/7vOib66BgZ1A0L7NXdUiCQShKT1gion95y3f+zLpQgf1A+h/TLOeVud1Vhdi6b6BkT0b/5ukUSC0PReqM3Ja2fNzrGazSja8ScSLx8FQRcMJmyoqYGpoQHKPs11JJRIENC7N7R5bcehzc11WwcAlH36QJPbXK+qw4fhl5CAnI8/xv4nn8TR115D1e+/u61js1qR+/nniB437oyPcP9dmWprYGlQwy+jr/M9oUQC39Q06PNPtbmePj8PfhnudeTXpy/0efZ1bGYzmooL3bYLAH4ZfaHPO7fj06rXQejj06kOZLFAgDSlP/ZW17u9v7e6Hn2DPF8I9A0MaLX8n9UqpCn9IXI5XuQiEZZeORTLrhqGN4dlIFXhPnTGxRHBOFHfiJeHpOHnsRfh00sHYmJcRIfL3llioQAZwQHYXe7+6NvuchUGhinaWKvzpqZEYl1hNfQdyBQ7F6fbEUUn25HG3Fy3dQB7O6LNdd//DFVVOPT00zg8fz5yP/kETdXtZ2xadDpAIIDYt3M3oi6kY81mNqN+53YI5XLIYps7w3xTUtFwYC8sjVrYrFY07PsTNpMZvr3SPG5HLBAgNcAfB2vr3d4/UFuPjEDP+1p6YAAOeFi+l6L5uEpXBuBgTYtlalTICGw+VjNVDRgYEohoX3u2WpK/H/oEKrDPMWSIxJFRZHTJ6LcCMNts6NtG2VrHFoCDte7H0cE6VTuxKXCwzn35AzUqpLaMreU2a1XIULZdJj+xva1rq1MnUCrBsNBgbCzz/BiiJxfS/ggAVr0eEAggdAyVYTWbAIEAApebpwKxBBAIoMvNOWNs5jZi07UTmy4/D/4tYvPvQGz+LrHZrFZojx2BNCIChR8sxIlnnkDeO/9Aw+GDbcduMKB+905IQkIhCQpuNzZXYoEAvZX+2NviWNlbU49+bZ3XggJaL9/ivHZJZBCOqzR4ol8yfr76InwxehDuTI1tdUH7eL8U7K5SYX9N64yzc9Gd52sAiPGT48cxF+G7K4fixcG9ESWXdToGY3UlTj33JHJffBalny+Gsab980r97h0wVVcjdMIkz5/v3I6aX39G2PVTkfTCawi7fiqqV62Aes/OTpfNlU9CIgRCAdR7dsJmtcKi16Hhjz3wS+8DgahzD2mKBQL0VvhjX4v9a191PfoFeq63PkEB2NeqnlvX2/Recag3mrCmpMrjdo7WNWBIiBKxfvbzQUqAL/oFKTwOAfC3JRT8Pf7+pvhI9d9IXFwcFi5cCIFAgLS0NBw9ehQLFy7EjBkz3JbbunUrjh49iqqqKshk9hPZu+++ixUrVuDHH3/EzJkz8Y9//AO33norXnnlFed6AwcOBADk5ubiu+++Q0lJCaIdHSlPPfUU1q1bhy+++AJvvPEGioqKcOONN6J///4AgORkz3fMWvrPf/6D5OTkVnG8/fbbzmVqa2txzz334JtvvoFC4b0L2M5oUtsfN5Ap3U9iUqUC+prOZZ60VLZnLxoKi3HJy607Ws+Hpnr7jzefFrH5KAM8jr94tkr3HYZJp0fi6JFe26Yrk+OREEmLfUSiUMDYTnaQqaHB4zoml0dMDNXVqPztN0RdfTWiJ0yANj8fBUuXQiAWI2zUKAD2LEgIhYi4yn0cS2pmbrDva6IA9/9vkUIBc13bdWRuUEMU4D6OlihACYvGXkdmrRawWiFqUY+iAAUsDWd/cWLRalGzdhUCL728U+sppRKIhAKojO7ZDCqDCcEyqcd1gmVSqAz17ssbTRALhVBKxagzmFCk1eGtIznIa2iEr1iMm5Ki8MHF/XH/9kModdyFj/b1weSESPyQX4pvTpUgI9Afj/ZNgslqxYZS7z+OHCSTQCwUoFbv/vhSrd6E0GhJG2t1Tr8Qf/QK8sPLe056ZXvtaa8daS/LsCPtiF9SEpLuvRc+EREwNTSgfM0aZL39Nvq//DLEHm7QWU0mlPz8M4KHD/c4fEN7LoRjTXv0MEo//wQ2kxFihRJxj8yF2L/5PBN9/4Mo+2wxcuY9DghFEEqliJ05G9Iw98zx0xSO46re4L6v1RuNCJIFelwnSCpFvdH9IrDeYIRYKIRCIobKaEKQTNr6WHW8f9qyghL4ikVYfMlQWG02CAUCfHWqEL9V2DPEShr1qNQ34Z5eCfgg8xSaLFZMTbCPcxfUxjHvMTZji9gMJgSGeD6OgqQS1LfImKo3uscWKJOi3thyGVO7Zbo/LRnHVWoUNeo8fn5VVAT0Fgt2VXU8O+5C2B9Ps5pMqF65HIphzceVPDEFQqkM1SuXI+z6qYANqFrxI2CzwaJu/xxyOjZxi9jECoUzg7Kt9cQtYhMHKGFuEZvYQ2ynv9Oi0cBqMKBmw1qET5qCiMk3Qpt1DCWffoSEx56Cn0vnfd32raj8+UfYjAZIIyKR8Mhctw7WM1FK7W19yyy9zp7X6gzu57UoXx8MDvHBptJqPPNnJmL95Hi8XzJEAgG+zCkGAFwVHYreSj88uOOwh285N915vs6s1+DNwzkobtQjWCrBXb3i8OHFA3DP9oNo6GAWpzwxGVHT74c0PAIWTQNq1q1C4btvInnBqxB5OK8YqypRvXI5Ep54ps0bqTVrVyH8hmkIGDQUACANDYOhvBz1O7ZDOfKSDpXLE2lIKOIenovSz/6Diu++BqxWyJNSEDv7sU5vy1lvLffHdtq3YJkUKmO9+/It9sd+QQGYEBuBB3YcavO7v8srhZ9EjC9HD3GeDz47WYgt5V37BAbRhYIdjn8jI0eOdMsUGzVqFN577z1YWjz6t3//fmi1WoSEhLi9r9frkevIvjh06FCrjsrTDhw4AJvNht69WwxSbTA4t/noo4/ioYcewoYNGzB27FjceOONGDBgwBljyMrK8hiHqxkzZuD222/H6NGjz7i9luUzGNzHPTIbjRBLz/zjv3TXnzj6xbfO1xc9Odv+j5aZeTbbOWXr6WvrcPybZRgx71GIpN65OD+Top1/Yv9n3zlfX/r06bHpWsaG1vGeg4JtuxA5sA/kQYFe2V7NH38g/5tvnK/THn7Y84I225njONPnNhv8EhIQN3UqAMAvPh768nJU/fYbwkaNQmNhISo3b0a/BQu6JHvzr0r95x77j0qHuNmPAvDw392BMYs6so6g5T6MDtR9Gyx6PYr/82/IoqLbzAI4k5ZFtBel7VhtLT5rWfLMei0y67XO18dUDfj00oG4ITEK7zsGzxcIgBNqLf57oggAcKqhEYn+vpicENklHY7NZXcnEHSoWjtkamokclSNOFarPfPCnVT7xx8ocGlHerXRjti80I4EOm7IneafkoIjzz+Pmt27EXn11W6fWc1m5H7yCWC1IvH229v/XlyYx5pv73QkzX8RlkYt6nf+jrLPFiPh6eecHTPVv66ARadD3CNPQuTv7xif72PEP/EMfGJi0ZZW+5qH99pbvlXRPSwlgHvYoyNDcWV0OP7v6AkUanVIDvDDzLRk1BmM2FxWBYvNhjcOZeGxvr3w/VWjYLHacKiuHnurO3fTztNx1P7yLcstaLUdT/83be0Gs9JTkOjvh2f2tt2xc3VMBLaVV8Nkbft//ULcHwH7BDJlny+GzWZDxC13Ot8XBwQg5oFZqFj6DVTbNgMCARRDh0MWF99qPDz1n3tQ5hJbvCO21kXoQAPYoXXaju30MEoBAwYh5KprAAA+cfHQ5eVC9ftvbh2Op4c5MKvVqN28HiWffYzEJ+dDKOnkb08PRWy5H7p9Zmv/vCaEAPVGE949cgpWACfVjQiVSXFrSgy+zClGmI8Uj/RNwlN7jrca/9CbuuN8/adLtl0+gOP1Gnx7xVCMiw3HsvyyDpXbv6/7eUWelILcl+ZD/ccuBI+5xr3MVivKvvgUoRMnQxrheRgKs0YDs6oO5d98ifL/uYx1bbVA6OigL/5wEXSn7Jm/kuAQJL/waofKalarUf7tl1COuBiKYSNgbWpC9eoVKP3vfxD3yNyz+v3suYY6UW+Or7TZ7Bmpzw3sjXePnWq3w/fKqFBcHR2G1w+dRIFWh9QAP8zpk4TaJiPWd+HvLKILBTscqRWr1YqoqCi3MRdPC3RMbCFvJ3vCarVCJBJh//79ELW4G3b6sekHHngA48aNw+rVq7Fhwwa8+eabeO+99/DII4+0W7aWP0Q82bJlC3755Re865jJ02azwWq1QiwW45NPPsF9993ncb0333zTLWMTAEbePx2jZtx9xu+MGDwAgSmJztdWx4nHUN8An8DmO9LGBg2kijOPldIWdUERjA0a7HjxTed7NqsVdSdOoXDTb7j28/c7NaB3R0QNGYCrXWKzmO2xNakbIA9qjq2pQdMq6/FsNVbXovJYNi5+fKZXtgcAQQMHwj8pyfna6ojD1NDgNqOrSaNplXnkSqJQwNQig6FltpJEqWw1Q608MhJ1B+yDgTfk5MCk0eCg63AAViuKli1DxebNGPzmm/g78h8wCEmJzXVkc9SRuaEBYmWg832LRtMqQ8WVWKF0ZnQ419E2OLNlxP7+gFDYehmNplVGTUdYmppQ8uEiCGUyxMyc0+lHfdRGEyxWG4Jl7hdygVKJxzGcAKDOYGyVTREolcBstbY5ppMNQLZai1i/5va7tsmIQo3ebblCrR6jo0LQFVQGE8xWG0Ll7mUP9pGgtslzrJ3hIxJiXEIYPjpceM7b8iRw4ED0TWq9j7ZsR8xeaEdaEslk8I2JQVOV+2NbpzsbDbW1SJ87t0PZjRfisSaUySANjwAQYb8Ifvk5qHftQMi4CTBWV6H+ty1Iev4V5yzFPrFx0OXmoH77VkTedlersjU4jquW2StKqbRVpt9pKqMRQdKWx5UUZqvVeUGpMnhaRuKWbXhf7yQsyy/BdkdGY6FWh3AfH9ycFIvNZfb6O6VpxCN7DsFXLIJYIECDyYx/jhiIHLXGY9k8xiZtGZukVYZic2ytM3mUjjbj9OPQ9QYjgqSt26GWmZQAMDMtBcPDQjB/72HUGlp/DgB9AhWI9fPF20faH9fwQtwfbRYzSj9bDFNtDeIffarVceWX0Rcpr7wJs1YDgVAEka8vcp6dC0mI+3h0/gMGISWx9W8Pc0MDJC6xmTWaVtmJZ4rNrG1wdsi3F5v7MiLIIt1/n8gio1o9Ci6S+0Ik94UsPAK+ScnIfvpRaA4fgHLYiDbL6EpttLf1wT7u+1OQTNIqy+y0OoMRwT7SVsu7ntdqDUaYrTa4DpZRqNUhxEfqfNw5WCbFJ5cNcn4uFgowMFiBqYlRuHrNLrd1O6s7z9ctNVmsyNPonI/qng2hTAZZTAyMVZWtPrM2NaGpqABNJUWo/MGRVGGzATYbsh+ZibiHn4Asyr4vRd4+HXKX/dy+cfv1SOQdd8PmaEM68/tItX0rRD4+CJ96s/O96LsfQO6CeWgqyIM8KaXD22qr3oKkZ9gfPbT1p88Hif6+iPL1wRtDm4c6ON0huWn8xZi+/QDKdE2YlZ6I7/JKsNWR0Ziv0SFCLsPtKbHscKS/BXY4/o3s2bOn1etevXq16hQcMmQIKioqIBaLkZiY6HFbAwYMwObNm3Hvvfe2+mzw4MGwWCyoqqrCZZdd1mZ54uLiMGvWLMyaNQvz58/Hp59+esYOxz59+mDFihXtxrV79263rM2VK1fi7bffxq5duxAT0/aMzvPnz8fcue6z8i443LHZrcVyH7eZp202G2RKBWqOZ0GZGAfA/iOz9kQO0qdN7dA2PQntk47Rbyxwe+/wp1/DPyoCKddd4/XORgCQyH3cZp622WzwCVSg6mgWglxiq8nOQf9bp3jlOwu274aPMgCRg/t5ZXsAIPLxcZv90WazQaJQQJ2ZCb94+wynVrMZmpMnEecyAVJL/ikpUGdlIcolw0idmYmAlOYfPgGpqWiqcB+vqqmyErJg+/hHoSNHQpnhPv5m9r/+hdCRIxF28cVnH+RfnKc6EimUaMw+7pyF1mY2Q3fqBMIm39TmduRJyWjMykTwVc136xuzMiFPTgUACMRi+MQloDE7EwGDmmdAb8zOhP+AQZ0qs0WvR/GHCyEQixE76+HOZ3/APm7bCbUWw8ICsaOyOcNpWGggdlZ6zng6Xq/BxeHu42ldFBaIE2ptu7NWpir8kOcyuP4xlQZx/u4XK3F+clTqW89y6w1mqw1ZdRqMjAzEluLmxwdHRgZhW8m5DTcBANckhEIqEmJ1vuexlM5VW+1Ig4d2JLaddsQvJQUNWVlumYoNmZnwT2n7AspqMkFfXg7/Xs2TaDk7G6uqkPbkkx4fte5oHBfcsWaz2cfKg31GbgCtxkASCIVt3og022w4pdFicEggdrvMjjw4JBB72pgtObteg+Fh7sfV4JBA5DQ0H1fZag0GhQRiRVFzRtHg0EBk1Td3FMo8lMsKG4Qe0iVPz64b7WufeOXrU2fuLLfHprHHUt0cy6DgIPxR3VZsDRge5n4jYXBIEE61ii0IK11jCwlCltp9VtoH01IwKjwE8/cfQaWHGbFPuyYmEjkNGhRo258l+ELbH093NhqrKhH/2NMeHzU97fRj/40nsmDRalrt155iEztik7eILaKd2HwdsYW4xKZtIzaFS2za7EwEOMokEIshT0iEsdL994mxqtI5i3WbbICtE5OvmG02nFRrMSw0EL9XuJ/XdrR1XlNpcHFEi/NaqPt57VhdA8bEhLllKsf6y1HTZITZZsP+GjXu+c19TMpnB6aiSKvHt7ml59TZeDqu7jpftyQRCpDgL8eRurOfNdpqMsFYUQHflN6tPhP6+CDpefdEDNX2rdCdzEbMAw9BEhIKoUwGcWAQTLXVUA73PASSJDDo7MpmNAAC9+ua09c5HUlAcWW22XCyQdtq/xsaGoidVZ7rLVOlwagW9TbMZX8satTh3u3u+9r9vePhKxbh/cx8VDl+R8lEQrRMtrXi3J5463H4X9GjcdKYv5Hi4mLMnTsXJ06cwHfffYf3338fjz3WehyMsWPHYtSoUZgyZQrWr1+PgoIC7Nq1CwsWLMC+ffsAAC+99BK+++47vPTSS8jKysLRo0fxzjvvAAB69+6NO+64A9OnT8dPP/2E/Px87N27F2+//bZzJurHH38c69evR35+Pg4cOIAtW7YgI+PME6DMmjULubm5zji+/fZbLFmyxG2ZjIwM9OvXz/kXExMDoVCIfv36ISio7ZOeTCaDQqFw++vI49SeCAQCJI27Cqd+XYeKfYegKSnF4U++hEgqRcyoi5zLHVq8BNk/rHC+tprNUBcWQ11YDKvZgiZVPdSFxWistF88i+U+CIiNcfsTyaSQ+PshILbtzlRvEggESB1/FbJ/WY/SvYegLi7D3o+/gkgqRdzFzbH9+Z8lOLrUPbb6gmLUF9hj06vqUV9QDG2Fe8eAzWpF4W97kHDZSAi7cOZmgUCAyLFjUbZ2LeoOHoSutBR5S5ZAKJUidETzHfzczz9H0U8/OV9HjhkDdWYmytatg768HGXr1tk7DsaMaV5m7Fho8/JQumYNmqqqUPPHH6j6/XdEXHklAEDi7w/fmBi3P4FIBIlCAXmk58dWzhc/XxkG9EnAgD4JAIDEuDAM6JOAuOiuyXhrj0AgQPCVY1G7fg00hw7AUFaK8q8/h1AqheKi5joq+/IzVK1c7nwddOVYNGZnonbDWhgqylG7YS0as7MQfOVY5zLBY65G/a7fUb9rBwwVZaj8cSlMdXUIuvQK5zKWRi2aiotgLLdffBurKtBUXASzIzPN0tSE4g8WwmYwIOqOe2DVN8GsVsOsVsNm7dxlzbL8MkyMi8C1seGI95djTkYSIuQy/FJkvzCckZaA+QObO5p+KaxAhFyG2RmJiPeX49rYcEyIi8D3ec0dBXf3isNFoYGIksuQqvDDvAGpSFX44ZfCCrfv7RMYgDtSYhHj64Mx0aG4Lj4CKwo6PsFDZ32dVYobUiMxJSUCSQo5nhqajCg/GZbllAMAHh2UiNcvdr/4SQvyQ1qQH3zFIgT5SJAW5IdkZeuJUaamRmJrce1Zzdx5NgQCASLGjkX52rVQOdqRfEc7EuLSjuR9/jmKXdqRCEc7Uu5oR8od7UiESztStGwZGk6cgKGmBtq8PJxavBiWpiaEOoYRsVksyF28GI2FhUi+/37AaoVJrYZJrXZmUXUmju461qwGA6pX/gR9fi5MtbVoKipE+f+WwFyvgmKwfTI6WWQkJGHhqPj2a+gL8mCsrkLtpvX2jqN2Oi5/LijFNTERuDo6AnF+csxIS0KYjwxrSuz7992pCZjbr3lfW1NSjnC5DA/0TkKcnxxXR0fgmpgI/FRQ6lzml8IyDAkJwk2JMYj1leOmxBgMCg7EyqLmZf6srsMtyXG4KDQI4T4yjAoPwdSEGLeOz0sjQtA/SIlIuQwjw4Lx+tB+2FNV22qSm7asKCzF1TGRGBsdgVg/OR7onYwwHxnWltiPo+mpiXiib3Ns6xyx3d87CbF+coyNjsDVMRH4ubB5JvBfikoxODgINybGItZXjhsTYzEwOBC/FDa3Kw+lp+CKqHC8e+wE9GYLAqUSBEolkLa44SkXiXBJRCg2lHa+LenO/dFmsaD004/RVFiA6HtmAFZrc7vuclzV794BfX4ujNVVUP+5G6WffYygK8dC1sajpy1jq1m/Bg2HDqCprBSlHmIr/fIzVLrEFnzlWGizM1HjiK3GQ2whY66GatfvUDliq/BwXgsZOw7qA3uh2rkdxqpK1G3bAs3Rwwi+zP77xFhTjZr1a6AvKoCprha6vFyUfPYxhFIJ/Pu5P457Jj/klWFifAQmxIUjwV+OOX2SEC6XOc9BM9IT8Nyg5vPaSsd5bU6fRCT4yzEhLhwT4iOwNLd5/1tRWAGlVIJH+yYh1s8HI8ODcGdqLH4usO/3eosF+Rqd25/eYs8kzG+n864zuut8/VBGIgYGKxAplyEj0B+vDEmHr1iE9aUdv8FW9dMP0OWcgLGmGvr8PJT+9z+wNumhHGG/2V21cjnKvvwMgL1zTxYd4/YnCgiAQCyBLDoGQsc4/6ETJqF2/VrUbd0EY2UFmkpLUL97B+o2b2i3LMaqSjQVF8HS0ACbyYim4iI0FRc5jzP/fgPQVFSAmjW/2pctKkT5119AHBwCn9j4Dsd82rL8Mkw4XW9+csx21Nuvjv/jB9ISMH+AS70VudSbX3O9/eB4fN1ktaFAq3P705rN0JktKNDqYHZ0iu6uqsOdKbEYGRaECLkMl0YE4+bEGOyoOPebrER/Bcxw/BuZPn069Ho9hg8fDpFIhEceeQQzZ7Z+ZFUgEGDNmjV4/vnncd9996G6uhqRkZEYPXo0IiLss5deccUVWLZsGV577TW89dZbUCgUbmMmfvHFF3j99dfx5JNPorS0FCEhIRg1ahQmTJgAALBYLJgzZw5KSkqgUCgwfvx4LFy48IwxxMfHY/ny5XjiiSfw0UcfYfjw4XjjjTfafEy6OyVPvAYWownHvvwOJp0OgclJGDHvEbdMSH1tndsdriaVGjteeMP5Om/tJuSt3YTg9F4Y9Zx79mV3SrvualiMRhxcshTGRh2CUxJx2bOPuGVC6mpVELjcmdSr1Nj0fPOjwidXb8LJ1ZsQmtELVyx4wvl+5bFs6GrrkHi5+9icXSFq3DhYjUYU/O9/MOt08E9KQvrjj7tlIxjq6tzGdgpISUHqjBkoWbECJStXQhYWhtSZM+HvMvGRf2Iies2ejeKffkLpqlWQhYYi4ZZb3DoyL1RDBiRjww8vOl+/89J0AMDXy37DzCc/Pu/lCb56PKwmIyq+/x+sukb4JCYj7uG5bnVkUtW61ZFvciqi752JmlUrUL1qBaShYYi5fybkSc11pBg6HJbGRtSs/RWWBjWkUdGIm/0YJC5j12qOHEbFN184X5d9/gkAIGTCJIRNnGx/1KjAPhNx3svPuZU7+dW3IG3xaF17tpbXQCEV4+5ecQiWSZGv1eGZvZnOTMMQmQQRLrNRVugNeHZvJub0ScKUhCjUGox4/3g+trv8gPUXi/Fk/xQEy6RoNJuR09CIR3cfQ7a6eZyoE2otXtifjRlpCbi7VxzK9U34IDMfm8q67jGf9YU1UMokmNk/HmFyKU7VN2LO1mMob7THGiqXItLPfebNHyY2Z+z0DQnAxKRwlGqbMGHFXuf7CQFyDAlX4sFNR7us7J5EOtqRQpd2pHeLdsTooR1JmTEDpStWoNTRjiS3aEdMKhXy/vtfmLVaiAMC4J+UhD7PPguZYx81qlSoP2wfO+/4a6+5lSntySehSPM8e3Nbuu1YEwphqCyH+tNdsDRqIfLzg098EuLnPuN8fFogEiNu9mOoWrkcJR+/D6vBAGlYOKLuug/+/doe//n3SvtxdVuK/bgq1Orw0sHjqHZk5QXLpAjzad7XKvUGvHTgOGakJeO6ePtxtTg7D7tcOgqz1Bq8fTQbd6Um4M7UBFTomvD2kRM44XJcfZydhztT4zE7IwVKqQR1BiPWlpTju9xi5zJBMikeSEtGoFQClWNsx6V5zZ+fyY7KGigkEtyaHO+IrRGvHDzWdmxNBrxy8Dge6J2MiXHRqDMY8cmJXLfYstUavOOI7Y4Ue2zvHM3GyYbm7M0JcfZHKN8c5v7/vujYCWwub+74GB1pz0LbXnF2bUl37Y+mehW0Rw8BAAredM/uinvsKfj1TgcAGCsrUL3yJ1h0jZCEhCJ03EQEXeU+tmpbQlxis+gaIU9MRnwHYou9dyaqVq1AlSO22PtnwtclNqVLbOYGNWRR0Yif/RikLuc1xaAhiLr1LtRuWIOKZd9BGh6JuAcegm+qvaNFIJZAd+okarduhEWngzhAAd/U3kh8cn6riW7OZGt5DZRSMab3ikOITIp8jQ7P/Ol+XgtvcV575s9MPNy3+bz272Pu57XqJiOe2nMcc/om4fPRkahpMmB5fjm+PVXS6vu7Snedr8N8pHhhcBqUUjHqjSZkqjSYvetIp55IMNWrUPbFJ/bzin8AfJKSkfDUc87936xW2/e9Tgi8ZDQEUhnqNq1D9YofIZBKIYuOdesM96T82y+hz2me3K3gLfvYjqd/P/mlZSD6nhmo3bQOtRvXQSiVQp6Ugrg5j0N4FgkhW8troJCIMT3VXm8FWh2e3ZvpzNL2tD/O35eJ2RlJmOw4H7yf6V5vHfHv4/m4r3c8HuuXjCCpBDVNRvxaXIGvcjre3hP9lQlsnc1Jpr+kK664AoMGDcKiRYu6uyh/KXP/2NLdRegyclHPPfSLG3vmvZRld53/Dr/z5ZrPZ3d3EbqM2tAzHyZQqc714bQLV/+4nhubxtQz90eztec+kyUU9NzztbDnVluPfYysrqmnRubVuQ8vOEpZzzyvNRh77v64dcLZz/L9V5I69aszL9QDnPp5encXoVv03COUiIiIiIiIiIiIzjt2ONIFZdasWfD39/f4N2vWrO4uHhERERERERF5g0Dw9/j7m+qZzx1SK9u2bevuInTIq6++iqeeesrjZwpF58aOISIiIiIiIiKi848djnRBCQ8PR3h4eHcXg4iIiIiIiIiIzhIfqSYiIiIiIiIiIiKvYYYjERERERERERGdX3/j8Q3/DpjhSERERERERERERF7DDkciIiIiIiIiIiLyGnY4EhERERERERERkdeww5GIiIiIiIiIiIi8hpPGEBERERERERHR+cUUuB6N1UtEREREREREREReww5HIiIiIiIiIiIi8hp2OBIREREREREREZHXcAxHIiIiIiIiIiI6vwSC7i4BdSFmOBIREREREREREZHXsMORiIiIiIiIiIiIvIYdjkREREREREREROQ17HAkIiIiIiIiIiIir+GkMUREREREREREdH5xzpgejRmORERERERERERE5DXscCQiIiIiIiIiIiKvYYcjEREREREREREReQ3HcCQiIiIiIiIiovPKJuQgjj0ZMxyJiIiIiIiIiIjIa9jhSERERERERERERF7DDkciIiIiIiIiIiLyGnY4EhERERERERERkddw0hgiIiIiIiIiIjq/BJw0pidjhyNRO1bsF3V3EbpMWmrPjW1slL67i9Al1J/P7u4idJkN933U3UXoMqM/ndPdRegS4aE99yGJJH9DdxehyxxTybq7CF3CaO25FyzinnuoQSqwdXcRukxP3SdD5dbuLgKdBXMPPdR8xT00MKIeogf/hCEiIiIiIiIiIqLzjR2ORERERERERERE5DV8pJqIiIiIiIiIiM6vnjn6BDkww5GIiIiIiIiIiIi8hh2ORERERERERERE5DXscCQiIiIiIiIiIiKvYYcjEREREREREREReQ0njSEiIiIiIiIiovNLyFljejJmOBIREREREREREZHXsMORiIiIiIiIiIiIvIYdjkREREREREREROQ1HMORiIiIiIiIiIjOLwHHcOzJmOFIREREREREREREXsMORyIiIiIiIiIiIvIadjgSERERERERERGR17DDkYiIiIiIiIiIiLyGk8YQEREREREREdH5xTljejRmOBIREREREREREZHXsMORiIiIiIiIiIiIvIYdjkREREREREREROQ1HMORiIiIiIiIiIjOLyEHcezJmOFIREREREREREREXsMORyIiIiIiIiIiIvIadjgSERERERERERGR17DDkYiIiIiIiIiIiLyGk8YQEREREREREdH5xUljejRmONJfxpIlSxAYGNjdxSAiIiIiIiIi6jIfffQRkpKS4OPjg6FDh+L3339vc9lt27ZBIBC0+svOznZbbvny5ejTpw9kMhn69OmDn3/+uUtjYIYjURe5s280ZgyORbivDCfrGvH6zlzsLVd7XHZcciju6BuNjFA/SEVC5NTp8K+9Bfi9WOW2XIBUhKdGJGFcciiUMgmKNXq8sTMP24rquiyOiXGRuCkxFsFSKQobdVicnYfj9Q1tLt8/SIEZaclI8PNFrcGIHwtKsKakwvn5+JgIjIkOR4K/HwDgVIMWS3IKcLJB61ymX5ACNyXGIjXADyE+Mrx6MBO7q7suRlc2mw37f1iD7E07YWjUIzw1AZfMuAXBcVFtrpO1cSdyfvsTdcVlAICw5HhcdPskhPdK9Lj8wZ/WY++3v6LfxCtw8b03eaXMNWt+gXrndlh0OvgkJiFy2h2QRce0u17Dwf2oWbUCpppqSELDEDZpKgIGDXFbRrV9K+o2rYdZXQ9pVDQibroVvqm9nZ9rDu1H/Y7taCoqhKVRi8RnX4RPXLzzc0ujFtWrf4Eu6zhMKhVE/v4IGDAIoZOmQCT3PefYO+qS4el4YtZ1GNI/GVERQZj2wHv4dcO+8/b9HXFdXCRuToxFsEyKQq0OH2fn4dgZjrUH05KR4G8/1pbll2C1y7F2bWwExrY41r7IKcAJdfOxdmdKPO5KjXfbbp3BiNu2/enV2CbFReLmpBiEyKQo0Orwn+x8HFO1HduAIAUeTE9CoiO2H/JLsaq4ObZLI4JxW3Icon19IBIIUKbT48eCMmwqq/a4vVuTY3B/70T8VFCG/2TnezW2lmw2G44vX4O8LTthatQhODURQ+6dBmVsdJvrqEvKcGzZaqjyi6CrqcOgu25E72uvclvGarHg+PI1KNq5F031DfAJVCDx8pHoM2U8BELv3z+22WyoXvML6h3titzRrvh0oF2pcmlXwidNhcKlXWnMOYnaTevQVFwIs1qN2JlzoBg42G0bVatXomH/XphUdRCIxJDHJyBs0lT4JiV7Jbaeuj92x/l6YmwkJsZFIUIuAwAUanX4Nq8Y+2rcf790Vnee11xVfPsV6nduR/iNtyD4qqsBeP+8NjEuEjc46q2oUYdPzlBv/Rz1Fu/nizpHva11qbd4P1/cmRqPVIU/IuQ++CQ7DyuLyty2cXNSLC4OD0GsnxxGqxVZ9Rp8cbIApTp9p8vfHpvNhqrVv0Dl0o5E33LmdkR9cD+qfl0BY001pKFhiLi+dTtSs3Ed9I52JH7mHCgGubcj5gY1KlYshzbrOCw6Pfx69ULUtNshC4/4y8cGAE3lZahcsRyNOScBmxWyqBjEPfAgpMEh5xRX9eqV0Li0vz6O9ld+ju2voawU1atXoqmoEOa6Wrdj6rRTLzwDc11tq3UDR1+JyFvu6NT3efu4AoCLw0NwV2oConx9UK5rwlenCrG7qrm8cpEId6bG4+LwECilEuRpGrE4Ow85Lm0mAMT5yXFvr0T0C1JCIACKtDq8deQEqpsMnYqRerbvv/8ejz/+OD766CNccsklWLx4Ma699lpkZmYiPj6+zfVOnDgBhULhfB0WFub89+7du3HLLbfgtddew9SpU/Hzzz9j2rRp2LFjB0aMGNElcTDDkagLTEwNw4JLU/Dh/iJct2w/9pWr8fl1/RHtL/O4/PAoJXYUq3D/6mOYvOwA9pTW49MJ/dAn1N+5jEQowNfXD0Cswgdz1mdizLd/4rmtJ1HR2HUnp9ERoXgwLRlL84rx8J6DOK5S47UhfRHm4zmOCLkMrw7pi+MqNR7ecxDf5xdjVnoyLglv/vEzIFiJbRXVeHbfUcz94zCqmwz4x9B+CJFJncv4iETI02jxUXZel8XWlsMrNuHoqq245P5pmPrW05AHKrDm1fdh1De1uU758RykXDoU1738GKa88ST8QoOw5rUP0Vhb32rZqlOFyN60C8EJ7f8g7Yy6jeug2rIREdNuR+K8BRArlCj+4J+wNLVdZn1eLso+Xwzl8FFInP8SlMNHofSzxdDnN/+fN+z/E5U/LkXIuAlInP8ifFN7o/jDf8Hk8mPQajBCnpyKsMk3ePwes1oNs7oeYTfcjKTnX0bUXfdCm3UcFd986bX4O8LPV4ajmUV44oUvzuv3dtTlkaGYlZ6M7/KKMXv3QRyrV+P1oe0fa68P6Ytj9WrM3n0QS/OK8VBGMi6NcDnWgpTYWl6NeXuP4ok/DqNKb8AbLY41ACjQNOLWrX84/2btPOD12B7KSMJ3eSV4aNchHFM14I2hfRDmI/W4fKRchteH9sExVQMe2nUI3+WVYHZGkltsDSYzvs0txmN7juDBnYewvrQKT/XrhWGhga2211vhjwmxkchtaPRqXG3J/nUjTq7dgiH3TMPY1+fBR6nAb298AFM7bYjFYIJ/eAgG3DoZPoEKj8tk/7oRuZt+x+B7pmH8uy9gwO1TcGLVJuSs/61L4qjduA51WzYictrtSHK0K0VnaFd0ebko+XwxAoePQvL8lxA4fBRKPlsMnUu7YjUa4BMbh8hpt7e5HVl4JCKn3Y6U519B4txnIAkJQdEHC2HWaM45rp66P3bX+brGYMQXOQV4dM8hPLrnEA7XqfHioAzE+53bDaXuPK+dpjl8EPqCfIiVgW7ve/O8dllEKGakJeP7vGI8uucgjqnUeOUM9fbKkL44plLjUUe9PZiejItd6k0mEqJC34QlOQWoMxg9bqd/kBKri8vx5B9HsGDfcYgEArw+tC9kIu9eGtZsXIfaLRsRNe12pDyzABKFEgXvn7kdKf7M3o6kPmdvR4r+67kdiWqjHbHZbChc/CGMNdWIf/BhpD73IiTBISj493uwGrzzu7m7YgMAQ3UV8v/5NmQRkUh64mmkPv8ywq+9DkKJ5JzjkoZHImLa7Uh6/hUkONrfYi+0v1aTEdKQMIRPvhEihdLjMonzFiD1jfecf3GPzAUABAwe2qnv6orjKl0ZgGcHpGNLeRUe3nUQW8qr8OyANKQpm6/VHu2bisEhgXj32EnM2XUQB2rrW7WZkXIfvHPRABQ36vHsvqN4xPEbzmi1dipG6vn++c9/4v7778cDDzyAjIwMLFq0CHFxcfjPf/7T7nrh4eGIjIx0/olEIudnixYtwtVXX4358+cjPT0d8+fPx5gxY7Bo0aIui4MdjheoK664Ao8++ijmzZuH4OBgREZG4uWXXwYAFBQUQCAQ4NChQ87l6+vrIRAIsG3bNgDNKbXr16/H4MGDIZfLcdVVV6Gqqgpr165FRkYGFAoFbrvtNuh0ug6X6eGHH8bDDz+MwMBAhISEYMGCBbDZbM5lBAIBVqxY4bZeYGAglixZAgB4+eWXPab6LlmyxBlXy78rrriizTL9+uuvGDp0KHx8fJCcnIxXXnkFZrPZ+fnLL7+M+Ph4yGQyREdH49FHH+1QrOfq/oGxWJZVgR+yKpCr0uG1nbko1zbhjn6eM1xe25mLTw4V40iVBgVqPd79Ix8Faj3GJDaf6G7OiIRSJsGDa49jf0UDyrQG7KtoQHZt111ET02MwYbSSqwvrURxox6LT+SjusmAibGRHpefGBuFKr0Bi0/ko7hRj/WlldhQWokbE5s71945ehKriyuQp2lEiU6Pfx3PgVAADAoOdC6zr0aFr04VYVdV6wuArmSz2XB09VYMvmEckkYOQnB8NK585C6YDSac+r3tbLirHr8HfcePRmhSLAJjIjF61u2w2WwoPXrCbTmT3oCt/1qCy2bdBpmf3Gtlrtu6CSHjJiJg0FDIomMQddd9sBqNaNj7R5vr1W3dCL/0PggZNwGyyCiEjJsAv7R01G3d1LzM5o0IHHUpAi8ZDVmkPQtEEhQE1e/bnMsoR4xC6IRJ8E3v4/F7ZNExiJ0xGwH9B0EaFg6/tAyETZoK7bHDsFksXvk/6IgN2w7jlXd/wMp1e8/bd3bGDQkxWF9SiXWOY+3jbPuxdl2c52PturgoVDUZ8HG2/Vhb5+FYe/voSaxyHGvFjXosOp4DgQAYHBLoti2LzQaV0eT8U5vM8KYbE6OxrqQSa0sqUdSox38csU2K95w1fF1cJKqbDPhPdj6KGvVYW1KJ9SVVuDmpuf08UteAnVV1KGrUo1zfhJ8Ly5GnaUTfFp11PiIh5g/sjYXHT0Fr9m5cnthsNuSs24qMyeMQO3wQlHHRGP7QXbAYjSja1fa+F5ySgIF33ID4i4dBKPb88EltTj5ihg1A9OB+8AsLQdyIIYjonwFVfmGXxFG3dRNCx02EYtBQ+ETHILoT7Uqoo10J9dCuBPTt78h6bPsCUnnRCPin94E0NAw+0TGIuOEWWJv0aCotOefYeur+2F3n6z+q67C3RoVSXRNKdU348lQhmiwWpAcGnHUs3X1eAwBTvQqVP3yL6HseAFwu1gDvntdO19sGR719eiIfNU0GTGij3ibERqFab8CnjnrbUFqJjaWVuMGl3nIatPj8ZAG2V9TA1EYnxosHjmNTWRWKGnXI1zZi4bGTCJf7IFXh73H5s2Gz2VC7ZRPCxk+EcrC9HYmZbq9HdTv1WLNlI/zT+yBsvL0ew8ZPgH96OmpbtCMR10+Fso2OKGNVJfT5eYi+9U74JiZBFhGJ6FvvhNVgQP2+tr/7rxAbAFT98jP8+/ZH5A03Qx4XD2loGAL6D4A4wPMNq85QXjQCfo72VxYdg3BH+2twaX8teh3Kv/0KOc88gZNPPoyif72LppLidrcrT0hC+A03QzFsOARtnOfEAQEQK5XOP+2xI5CEhsG3V1qnYuiK42pyQjQO1qmwLL8EJTo9luWX4HCdGpPj7ctIhUJcEh6KL04W4LiqAeX6JnybW4RKfRMmuPyWm56agH01KnyRU4A8TSMq9AbsrVFBbTR1KsaexCb4e/wZDAY0NDS4/RnauAFiNBqxf/9+XHPNNW7vX3PNNdi1a1e7/5+DBw9GVFQUxowZg61bt7p9tnv37lbbHDdu3Bm3eS7Y4XgB+/LLL+Hn54c//vgD77zzDl599VVs3LixU9t4+eWX8cEHH2DXrl0oLi7GtGnTsGjRInz77bdYvXo1Nm7ciPfff79TZRKLxfjjjz/w73//GwsXLsR///vfDq//1FNPoby83Pn37rvvwtfXF8OGDUNcXJzbZwcPHkRISAhGjx7tcVvr16/HnXfeiUcffRSZmZlYvHgxlixZgn/84x8AgB9//BELFy7E4sWLkZOTgxUrVqB///4dLuvZkggF6BcWgN+L3R8B/r1YhSERHfshIADgLxGhvqn55DM2MQQHKxvwymWp+POeUVh7yzDMHhLfZePsigUC9Arwx4EWWXoHauvRp40MnPTAAI/L91L4QyTwXFCZSASRQACNqftPtJqqWujrGxA7MN35nkgiQVSfVFSe6Hi2pdlohNVigczfPcNjx3+/R9yQfogdkN7Gmp1nqq2BpUENv4y+zveEEgl8U9Ogzz/V5nr6/Dz4Zbh3Evr16Qt9nn0dm9mMpuJCt+0CgF9GX+jzcs+pzFa9DkIfHwhaXMT9XYkFAvRS+GN/i2NnfzvHWoYyoNXy+2rq0fsMx5rYw7EW4yvHt5dfhC8vG4b5A9IQKfecAXA2xAIBeiv8sb/Gvaz7a+rRt40OiYzAgFbL76tRtRvb4GAlYv3kOKpyH7bikT4p+KNahYO1noez8LbGqlo01TcgckCG8z2RRIKwjFTUnDy3R2dD01JQeewENOWVAID6whLUnMhF1KB+57RdT0y1NTC30a7o2mlXdPl58G/Rrvi7tCtnw2Y2Q7VzO4RyOXxiY896O0DP3R8vlPO1EPYMUh+RCNntPLp4Jt19XrNZrSj/8jMEjx13xke4Tzub85pYIEBqgD8OeqiHDC/WW0f4OTqAtF684XS6HfFvUY9+vdKga6dN0HtqRzL6trtOSzZHh77AJeNPIBRCIBJDl3v27dFp3Rqb1QrNsSOQhUeg4P2FyJr3BHLf+QcaDh3sfCBn+i6zGfWO9lfmaH9tNhtKPvo3LA1qxM5+DInPvACfuHgU//s9WBq1Z9hi57674c89UI66FIJO7NtddVylKwNwsMW54ECNChmOc4dIIIBIKGiVqWiwWtEn0J7RKQBwUVgQSnV6vDqkL/53xXD8c8RAjAwL7nB89Nf15ptvQqlUuv29+eabHpetqamBxWJBRIT7EBARERGoqKjwuE5UVBQ++eQTLF++HD/99BPS0tIwZswYbN++3blMRUVFp7bpDRzD8QI2YMAAvPTSSwCAXr164YMPPsDmzZvRq1evDm/j9ddfxyWXXAIAuP/++zF//nzk5uYiOdk+DsdNN92ErVu34plnnunQ9uLi4rBw4UIIBAKkpaXh6NGjWLhwIWbMmNGh9f39/eHvb797umfPHixYsABffvkl+vWzXzBFRtrvADU1NWHKlCkYNWqUM7OzpX/84x949tlncffddwMAkpOT8dprr2HevHl46aWXUFRUhMjISIwdOxYSiQTx8fEYPnx4h8p5LoJ8JBALBajRu/8gr9WZEBbn+ZGtlh4YFAu5RIQ1uc3jP8Up5BgV4IOVOZW4b/VRJCrleGV0L4iEAry/z/sZLgqpBCKhAKoWj+PUG40IkgV6XCdIKkW90X3cJpXBCLFQCIVEDJWHu3f39kpArcGIg3X13ir6WdM5xvCSt7jwlAcGQNuJMST//GYl/IKViHHpWDy1Yx9q8osx9a153imsg7nBfuEqanFXW6RQeBwHx3U9UYD7Iy2iACUsGvv/gVmrBaxWiBQtthuggKXh7C+WLVotatauQuCll5/1Nnqa08davbHFsWYwIsjDI5kAECSTor7FGGn1RvuxppSIUefhWLuvt/1Yc/1Rna3W4P+OnURJox5BUgluS4nHwhEDMXPnAWi8cOGpPN2OtCiPymhCkMxzexgsk2Kfsb7V8mKhEEqpGHUG+7Z8xSIsveIiSIQCWG3AvzNzccClI+eKyFD0Uvhhzu7D5xxHRzWp7cePj9K9DfFRKNBYc27j0KZPuhomnR5rn3oNAqEANqsN/adNQvzFw85pu56cbldaZsuIFQqPj566ridu0a6IA5Qwazrf+aQ5ehgln38Cm8kIsUKJhEfmQux/9llzQM/dH7v7fJ3o74t/Dh8IqVAIvcWC1w5loajx7McC7O7zWt3GdYBQiKArxnSovGd7XnO2/edYb/VnqLeOmJGWhGMqNQq1HXvqqSPM6jbakYAOtCMtHrkVK5QwN3S8HZFFRkISHILKlT8h5va7IJDKULt5A8wName5zkV3xmbWaGA1GFC9YS0iJk1BxJQboc08hqJPP0LSY0/Br3fnsgE90R49jFKX9jfOpf3VncyGoawUqW/90/kId/gN06A5fBCag/u99vtOc/ggLHodlCMv6dR6XXVcBcmk7Z479BYLsuobcGtyPIobT6DeYMTlUWFIUwagzDE2aqBUAl+xGDcnxeLrnEIsySnA0JAgPD8oA/P3HW13LGH665s/fz7mzp3r9p5M1v5N/pad7Tabrc0O+LS0NKSlNR//o0aNQnFxMd599123BK7ObNMb2OF4ARswYIDb66ioKFRVVZ31NiIiIuDr6+vsbDz93p9/dnxygJEjR7rtkKNGjcJ7770Hi8XiNj7AmRQVFWHKlCl46qmnMG3atFaf33///dBoNNi4cSOEbQyGv3//fuzdu9eZ0QgAFosFTU1N0Ol0uPnmm7Fo0SIkJydj/PjxmDBhAiZNmgRxG2n8BoOhVVqzzWSEQNKxTsKWXJ40txMALd/yZFJqGB67KBEPrj2GWpdOS6EAqNUb8dy2k7DagGPVWkT4yTBjUGyXdDie5iGMduNotXw77ddNiTG4IioM8/Yehcnakf8d78rZvhe/f/Kd8/X4+Q8BaN0Qw4b2A3FxaMVG5O7cj+tefgxiqf2HmLZGhd1fLMeEF+Y43ztb6j/3oOK7r52v42Y/6ihziwVb7YCtdWQdAVot1OH/i5Ysej2K//NvyKKiETph0lltoydr+d8vOMPB1tZHnt6/OTEGV0aF4ek/3Y8114kdCgBkqo9jyWXDcHV0OH4qLGu9obPksR1pZx+1tVjj9B7nuorebMGsXYcgF4kwOESJWelJKNc34UhdA8J8pJidkYRn9x3v0ralcMef2P9Zcxty6bzZLUrsKDdsZ3vYOBXv3o/CHX9i5Jx7oIiNQn1hCQ59vRzyICUSR488p22r/9yDMpd2Jd7RrrQ+/Dvwf3k263jg1zsdKfNfhLlRi/qdv6Pks8VIevo5rzwy2FP3x+46X5c06jFn90H4S8S4JDwET/brjXl7j3S40/FCOq81FRWgbusmJD77YocuwLxxXjvXemsVTic9lJ6MxAA/PP3nkXPaTn2LdiThoTbaEdg6X+ZOtiMCkRjxMx9C6TdfIuupxwChEP7pGfDve3YZ4RdSbKeXVwwYhNAx9kcj5XHx0OXlom7Hb53qcGx17M15DL6pveHbOx1J81+ExdH+ln22GAmO9repqBBWQxNy5j3uXiyTEcaaapjqapH32ovO90PGTUDo+ImdixGAevcO+PXpB0lgYKfXBbrquGp9LnCtvnePnsTjfXvh68uHw2K14ZRGi9/Kq5HiGKrgdJuyp6oWKxwTOeVpGpERGIAJsVHscOzhZDLZGTsYTwsNDYVIJGqVeVhVVdUqQ7E9I0eOxDfffON8HRkZec7b7Cx2OF7AJC0G/hUIBLBarc4OONcfx6Y2Hm9x3YZAIGhzm94iEAha/WhvWbbGxkZcf/31GDVqFF599dVW23j99dexbt06/PnnnwgIaDubwWq14pVXXsENN7SerMLHxwdxcXE4ceIENm7ciE2bNmH27Nn4v//7P/z222+t/h8Ae5rzK6+84vZe4IS7ETTx3nZjbknVZILZakOYr/t3hMglqNF5Hrz7tImpYXjryjQ8vCETO0vq3T6rajTCbLXB9Xf+KZUO4X4ySIQCr1/ENBhNsFhtCG6R9aGUSlFv8Ly/qYxGBEndlw+USmG2WtHQIlvqxoQY3JIUh+f2H0OBF++od0bCRf3dZpK2OB7B0aka4BvUfAdar9ZArjxzZs3hlZtw6KcNmPjiwwhxGfelJq8IerUGP817x/mezWpFeVYujq/djvu/WwRhBwdq9x8wCEmJSc3bcZTZ3NDgNrC9RaNplcXhyn5H3f0uv0Xb4MwoEfv7A0Jh62U0mlZZJx1haWpCyYeLIJTJEDNzDgQinn5OO32stcywUkpb300/TWUwtlq+rWPtpsQY3Joch2f3HUP+GY41g8WKAk0jYny9M8ao+nQ70qKjPVAqQX0bsdUZjAhu1Y5IWsVmA1Cmsw/On6tpRLyfL25LjsWRukz0UvgjSCbFR6MGOZcXCQXoH6TA5PgoTNiwC94480UPHYDg1ETna6vjeGxSN0Du0oYYGjSQKc+to+zwtz8j/fprnBmNgfEx0NXUIWvlhnPucPQfMAgpLu2K1aVdkbi0K2aNBuJOtitmbcNZdRIKZTJIwyMgRQR8k1Jw6uXnUL9rB0LHTej0tk7rqftjd5+vzTYbyvVNgN4+fmBvZQAmx0fj/ayODb9xIZ3XdKdyYNFqkPuCy9MIViuqfvoBdVs3IfW1t5vXO8fzWnttvzfqrSNmpSdjRHgIntl7BLVtTDDTUQEt2hFbe+1IO22Cx3ZE09Bu2+OJPD4Rqc+9BIteB5vZAnFAAHLf+Qfk8Ymd2g5wYcUm8vcHhCLIotzHhZdFRkGXm9Ph7QCtjz1xYBCA5vYXiIA8KQW5Lz8H9a4dCBk3AbDZIFYGIv6xp1ptT+jrC5HcF0nzmzscRX5+nSoTAJhqa9GYnYmYGbPPvHALXXVcqQyelpG4PZ1SoW/Cs/uOQiYSwlckgspowjMD0lDpmDSuwWiC2WpFkdb9Zkxxo77N4S/o70kqlWLo0KHYuHEjpk6d6nx/48aNmDx5coe3c/DgQURFNY9RPWrUKGzcuBFPPPGE870NGzbg4osv9k7BPeAV31/Q6anNy8vLMXjwYABwm0CmK+3Zs6fV6169ejmzG8PCwlBeXu78PCcnx21SGpvNhjvvvBNWqxVff/11q7vHy5cvx6uvvoq1a9ciJSWl3bIMGTIEJ06cQGpqapvLyOVyXH/99bj++usxZ84cpKen4+jRoxgyZEirZT2lOQ/8ovMDS5usNhyr1uDSuCBsyG9+rOLS2CBsKmj7MYtJqWF4+6o0PLYxC1sLWz96t7+iAdf3Cne7Q5cUKEdlo6FLMibMNhtyNFoMDgl0m7xlSEggdrcxmUt2vQYjWoxDMiQkEDkNWlhcOqJvTIzBbUlxWHDgOHIavDfeS2dJ5T6Qyn2cr202G+SBCpQcyUZochwAwGIyozzzFIbf2X7jfnjlJhxYvg4TFsxBWGqC22fR/dNw0z+fc3vvtw+/gTImAoOmXN3hzkYAEPn4QOTjXmaRQonG7OPwiYu3v2c2Q3fqBMIm39TmduRJyWjMykTwVc0DBzdmZUKebD+eBGIxfOIS0JidiYBBzcdLY3Ym/AcM6nB5AUcGyIcLIRCLETvrYa/MotiTmG025DRoMaQTx1qWuvWxNjQkECdbHGs3Jcbg9uQ4PLe/Y8eaRCBAnL8vjp3D+GuuzDYbTjZoMSQ0EDurmtu1IaGB2FXVup0DgKx6DUaGt4gttHVsrQgAieOG3MFaNWbscB/P6qn+qSjW6vF9fqlXOhsBQCL3gaRFG+ITqEDl0WwEJTraELMZ1VmnMOC2jv9A9MRiNLU6ZwqEwnYz8zrKU7sidrQr8hbtSkQ77Yqvo10JcWlXtC7tyrmw2Wywms9trN+euj9eaOdrAZpj74gL6bymHD4Kfi0mQSv+YCEUw0dCOepS53veOK+ZbfYMqMEt6mlwSCD2tFNvw1vU22AP9dYRs9KTMSo8BPP3HUWl/txnbm6rHdFmNbcjVrMZjTknEDml/XrUZmc6s/cAezvie5btiEhuH0/bUFUJfWEBwq+b0vltXECxCcViyBMSYah0z1IyVFVCEhzSxlqetYyrTS7tr09cvL3TVCSCNCTU4+L2zsqzV79nB0QBCvj3G3DmhVvoquMqW63BoJBAZ2YiAAwODURWfevZuw0WKwwWK/zFIgwJCcIXjjGcT//ei20xcWS0rxxV7cxu3uN11YQEf3Fz587FXXfdhWHDhmHUqFH45JNPUFRUhFmzZgGw912Ulpbiq6++AmCfgToxMRF9+/aF0WjEN998g+XLl2P58uXObT722GMYPXo03n77bUyePBkrV67Epk2bsGPHji6Lgx2Of0FyuRwjR47EW2+9hcTERNTU1GDBggXn5buLi4sxd+5cPPjggzhw4ADef/99vPfee87Pr7rqKnzwwQcYOXIkrFYrnnnmGbdswpdffhmbNm3Chg0boNVqodXaf7wqlUrk5uZi+vTpeOaZZ9C3b19nuq9UKkVwcOvBdF988UVcd911iIuLw8033wyhUIgjR47g6NGjeP3117FkyRJYLBaMGDECvr6++PrrryGXy5GQkNBqW4DnNOezfZz6s8MleG9MOo5WaXGgsgG39YlCdIAP/nfMfpJ6emQSIvykeGqzfRbjSalheHdMOl7bkYuDFQ0Ildv/zwwWKzRG+4yH/ztehun9o/Hipan46mgpEgPlmD0kHkuOlp5VGTvi54JSPNW/N3LUWmSpG3BtbCTCfGRYU2Kvm3tSExDiI8N7x04CAFaXlGNSfBRm9E7CutIKZCgVuCYmAm8faZ6t+abEGExPTcDbR06gUt+EIEemid5iQZPFftnlIxIi2iXDKkLug+QAP2hMZlQ3nfuP4rYIBAL0n3glDv20AcqocCijwnDwp/UQyyRIvax5nLSt//4KfiFKDL/D3oFwaMVG7Fu6Glc9fjcCwkKcY0FKfGSQyGWQyn0QHO9+J1osk8InwK/V+2dT5uArx6J2/RpIwyIgDY9A7frVEEqlUFw0wrlc2ZefQRwYiPDJNwIAgq4ci6KF76B2w1r4DxgE7ZFDaMzOQsLc5vFcg8dcjbIvP4NPfCLkycmo37Edpro6BF16hXMZS6MWpro6mNX1AABjlX3fECvsMwxamppQ/MFC2IwGRN/9AKz6Jlgdd3pFAQEQdOKi9Fz4+cqQktg8S2BiXBgG9EmAql6L4rLzOxu6Jz8VluLp/r1xskGLrPoGTIiNRLiPDKuL7f+f9/ZKQKhMhv9zHGuristxfVwUZqYlYW1JBTICFRgXG4G3XI61mxNjML1X+8fajN6J2FNdh6omAwKlEtyeHA9fsQgbSzs3fEd7lheU4ZkBvXBSrUVWvQYT4uyxrSqyx3Zf7wSEyqR452iOI7YKXB8fhQfTE7G2uBIZgQEYHxuBNw6fdG7z1uQYnFRrUaZrgkQoxPCwIFwdHYZ/Z+Y5Y2yZidVksWcqdGVGtUAgQK/xVyJr5Xr4R4YhIDIcWSvXQySVIv7ii5zL/fHRl5AHB2LArfY2xGI2o6HEfrPOarZAX1cPVUExxD4yBESGAwCih/RD1sr18A0NhjI2CqqCYpxcswWJV4zqkjiCrxyLGpd2pcZDu1LqaFciHO1K8JVjUbDwHdRsWIuAAYOgcbQriS7tirWpCcbq5v3LVFuNpuIiiPz8IAkOsY9Ntm41AgYMhFgRCEujFqrft8Jcr4Ji8LmPV9lT98fuOl/f7ZhxtbrJAF+xCJdHhqF/sBIv7D9+1rF053lN5O9vzyBzJRJBrFBCFmE/h3jzvPZzQSmedNRbtroB41vU292Oevuno97WlJTjuvgoPNA7CetLK5DuqLd3XOpNLBAg3jFpnVggQIiPFMkBftCbLfZMVACzM1JweWQYXjuUCb3Z4qzbRrOl1aQXZ0sgECDkqrGoXr8GsnB7PVavs9ej0qUeS5bY6zFyir0eQ68ci7yF76B6w1ooBgxCw5FD0GZnIfnJ5nq0tGhHjLXV0DvaEamj0019YB9E/v6QBoegqbQE5cuWQjFwMAL6uE8a9FeMLezqcSj+bDHqUnvDr3catJnHoTl6GEmPP31OcVkNBtSuWw3/dtpf3/Q+kCeloHTxhwibciOkEZEwq+vRePwo/AcMhjwh0eO2bWYzDOWOzjqLGeb6ejQVF7lkUzqWs1qh3r0TyhGjznpywa44rn4pLMPbFw3ATYkx2FNVh5HhwRgUHIh5e5uHIhgSEggBgBKdHlFyOe7vnYhSnR4by5rrc3lBKZ4ZkIZjKjWO1KkxNDQII8KC8ey+o2cVK/Vct9xyC2pra/Hqq6+ivLwc/fr1w5o1a5x9GeXl5SgqKnIubzQa8dRTT6G0tBRyuRx9+/bF6tWrMWFC85MhF198MZYuXYoFCxbghRdeQEpKCr7//nuMGDGi1fd7Czsc/6I+//xz3HfffRg2bBjS0tLwzjvvtJrivCtMnz4der0ew4cPh0gkwiOPPIKZM2c6P3/vvfdw7733YvTo0YiOjsa//vUv7N+/3/n5b7/9Bq1W2ypt94svvgAA6HQ6vP7663j99dedn11++eXYtm1bq7KMGzcOq1atwquvvop33nkHEokE6enpeOCBBwAAgYGBeOuttzB37lxYLBb0798fv/76K0JCOnf372ysPlWNIJkEjwxLQJifFCdrG3HfqqMo09o7y8J8pYj2b76jeFvfaEhEQrx6eS+8ennzpEA/Zldg3hb7ya5ca8Ddvx7FgktSsOaWYahoNGDJkVJ8fLAIXWV7ZQ0CpGLcnhKHYJkUBVodXjx4HFWOTr9gmRThPs2dtJV6A148cBwz05IxKT4KtQYjPs7Ow06XO4rXxUVBIhRiwaAMt+/6JrcI/8u1x9JLEYB3LmqeUfzBdPu4oxtLK/HP4517XKSzBk4ZC7PRiB2ffg9jow7hvRIx4YWH3TIhtTV1ELjcjctc/zusZjM2vfuZ27aG3Hwtht3S+XFrOiv46vGwmoyo+P5/sOoa4ZOYjLiH57rdtTapat0Gt/JNTkX0vTNRs2oFqletgDQ0DDH3z4Q8qXmMV8XQ4bA0NqJm7a+wNKghjYpG3OzHIHE5hjRHDqPimy+cr8s+/wQAEDJhEsImTkZTUQGaCuwX3Xkvu2d5Jr/6Vpt3x71tyIBkbPih+RGfd16aDgD4etlvmPnkx+el4fTEegABAABJREFUDO35raIGARIx7nAca4UaHRYccD/WwuTux9qCA8fxYLr9WKtrMuI/WXnYUelyrMVHQSoU4oUWx9rXp4rwjeNYC/WRYf6ANCikEqiNJmSrNXh8z2Hn93orNoVEjDtTHe2IRofn92c6vyNEJkG4S2wVegMW7M/ErPQkXB8fhdomIz7KyneLzUckwqN9UhDqI4XBYkVxox5vHcnBbxU1Xiv32UqfdDUsRhMOfGFvQ0JSEnH5/IfdMiF1tSq3NqRJpcbG595yvj6xejNOrN6MsIxeuPKFxwEAg++ehmPLVuHAF0thUGvhE6RE8phL0eeGa7skjhCXdsWia4Q8MRnxHWhXYu+diapVK1DlaFdi758JX5d2RV9UgMJ/vet8Xbn8BwCAcsTFiJl+HyAUwlhZjpJPd8HSqIXIzw8+8UlInPsMfDo4Y3B7eur+2F3n6yCpBE/3741gmRSNZjPyNTq8sP/4OU8E153ntTPx5nnt98oaKKRi3Ha67dfq8NLB486bq8EyKcJa1NtLB45jRloyrnPU2+LsPLfM1mCZFO+PGux8fWNiLG5MjMWROjXmOzo1JsbZH7F7+yL3DLKFx05iU5n3bjiFXj0eVqMRZUub25HER9zr0aiqdctw8k1JRdx9M1H56wpU/WqvxzgP7UjBouZ2pMLRjgSOvBix0+8DAJjV9Sj/8XtYNA0QK5UIHHExwq69rkfEphg0BNG33YXq9WtQvuw7yCIiET/jIfildnxiUY+EQhgqy6Fu0f7Gz33GOWO7QCBA7OzHUPPLT6j4ZgnMWg3ECiV8U3u1+2i4SV2Pgreah9Kq27wedZvXQ96rNxIebx7CQHciC2ZVHQJdMoo7qyuOqyy1Bm8fzcZdqQm4MzUBFbomvH3kBE6omzO/fcVi3NMrAaE+MmhMZuysrMFXpwrdso93V9Xiw8xc3JwUiwfTk1HaqMcbh7OQ6aUnS6hnmT17NmbP9jy0wJIlS9xez5s3D/PmnXly0ptuugk33dR2Jra3CWzeeBaH/hauuOIKDBo0CIsWLeruopw3yR/91t1F6DJpqWd31/CvYGzU2c+OeSHbXtmBx17+ojbc91F3F6HLjP50TncXoUtYbT33EZiRYT2zDQGAY6qODVj+V6M1n59s6e4gFvbcn+rSHhyb2doz20gfUc+ts57M3EOrraceZwCw+pqz73T9K0me+WN3F+G8yPvk/HXyXUiY4UhEREREREREROeXoOd2GhM7HMmhqKgIffr0afPzzMzM81gaIiIiIiIiIiL6q2KHIwEAoqOj253pOjo62uM4ikRERERERERERK7Y4UgAALFYjNTU1O4uBhERERERERER/cX13BG2iYiIiIiIiIiI6LxjhiMREREREREREZ1fQk4a05Mxw5GIiIiIiIiIiIi8hh2ORERERERERERE5DXscCQiIiIiIiIiIiKv4RiORERERERERER0fjEFrkdj9RIREREREREREZHXsMORiIiIiIiIiIiIvIYdjkREREREREREROQ17HAkIiIiIiIiIiIir+GkMUREREREREREdH4JBN1dAupCzHAkIiIiIiIiIiIir2GHIxEREREREREREXkNOxyJiIiIiIiIiIjIaziGIxERERERERERnV9CjuHYkzHDkYiIiIiIiIiIiLyGHY5ERERERERERETkNexwJCIiIiIiIiIiIq9hhyMRERERERERERF5DSeNISIiIiIiIiKi88om4KQxPRkzHImIiIiIiIiIiMhr2OFIREREREREREREXsMORyIiIiIiIiIiIvIajuFIRERERERERETnF1PgejRWLxEREREREREREXkNMxyJ2tErRdTdRegyfmJrdxehyyzPkXd3EbqEVNZzZ3Eb/emc7i5Cl9k+48PuLkKXiAoZ2t1F6DKVc0d0dxG6TEpUd5ega6jqe+45TSzpuW1/mKK7S9B1dOaeWW/5JTzW/oqSemjbf6qo5+6PRD0BMxyJiIiIiIiIiIjIa9jhSERERERERERERF7DR6qJiIiIiIiIiOj8EvbcoQyIGY5ERERERERERETkRexwJCIiIiIiIiIiIq9hhyMRERERERERERF5DcdwJCIiIiIiIiKi80vAMRx7MmY4EhERERERERERkdeww5GIiIiIiIiIiIi8hh2ORERERERERERE5DXscCQiIiIiIiIiIiKv4aQxRERERERERER0fgk5aUxPxgxHIiIiIiIiIiIi8hp2OBIREREREREREZHXsMORiIiIiIiIiIiIvIZjOBIRERERERER0fnFIRx7NGY4EhERERERERERkdeww5GIiIiIiIiIiIi8hh2ORERERERERERE5DXscCQiIiIiIiIiIiKv4aQxRERERERERER0XtmEnDWmJ2OGIxEREREREREREXkNOxyJiIiIiIiIiIjIa9jhSERERERERERERF7DMRyJiIiIiIiIiOj84hiOPRozHImIiIiIiIiIiMhr2OF4lu655x5MmTLlrNZ9+eWXMWjQoHP6/m3btkEgEKC+vr7NZZYsWYLAwMBz+h6BQIAVK1ac0zYuBN74PyciIiIiIiIiojPjI9UEwN4ht2LFChw6dMjt/fLycgQFBXVPoTpAIBDg559/PuvOX2+5Li4SNyfGIvj/2bvv8Ciq9YHj3022ZNN776TTq6CiclWK2LABKhawIjZUbKigYkcU2/VigZ9eCzZEBJQi0gRpoSUQSCG9l03d3ST7+2MhySabEMgGMPf9PM8+mtkzM+dlzpwze+bMGY2aY1U1/PtQGgfKde2m7+vhyr2xkYQ5O1KiN/Bdeja/Zuc3fT8u2I/LAn0Jc3YC4Kiuis+PZHC4ospiO14aNdNiwhnq7YHa3o6c6lrePniEo7pqm8VmMpko/PUXSjdvpKGmBsfwCAIn3YxDYFCH61Xs3kXBLz9jKC5C7e2D3zXX4jZgUNP3hatXokvcjT4/H4VKjVOvXvhfez0af/+mNPvvv9vqtv0n3IDP6DG2CfAkrov05+boYLwc1KTranh3Xxp7S6wfWy8HFQ/2jSDW3ZkQZy3fpeby7r70M5LP1q4J82dSZBBeGjXpVTW8fzCd/WXtl8n+nq5MT4ggwtmRYr2Bb1JzWJ7ZXCbHBvvyVP/oNuuNXrUVQ6Op6W9vjZp748MY5uOBxt6O7Kpa3th3lBQblcmzca7d2iuUKVGhFtst1RuYvOFvm8TUVRcMi+PR+65kUN9IAvw8uOmu+fzy+86zna0O3XrjAO6+fSi+3k6kpBbz8lt/sGNPjtW0b8wdyw1X92mzPCW1mLE3LAZAqbTj/qnncd2VvfH3dSbtWCmvv7uRjVszujEK6ybGBHBH72C8tWpSy6t5Y2cauwutl1FvrYrHB0eS4OlMqKuWrw7l8sbOtDbpbo0L5KaYAPydNJTr61mTWcy7u9Mtzj1bM5lMFK1cTvkWc92vDY/A/6ZbTlr36/bsonDFMozFRai8ffC9agKuLer+6iMplKxdTV3WMeorKgi+5wFc+w9s3m9DPYW/LKPq4H4MxUXYa7U4xSbge831qLp4E7U9N0QFMCXOfMzSKqqZvyeNxKL26/lHB0YS7+FMiIuWb1JyeXtP22N2wuhQH145P44N2cU8vjm5W/Lfkesj/bklprkNW7C34zbsob4RxHmY27ClR3N5p1UbFuHiyD29Q4lzdybAyYEFe9P49mhut8dxRXAA14UH46FWk1ldzaLDaSR1UPf38XBjWkwEoU5OlOr1/HAsm9Ut6n6A8329uKVXOAGODuTV1PHF0Qy2FZVYpPHUqLkjOoLBXuY2LaemloUHj5BaaXk91hXXhPoz8Xh7nVFVw/tJnWiv4yMIP9Fep+XwS4v2ekxQO+316q0Yj9cZV4f6c3WoP/5aDQAZVTX839Es/i4qt1lcnTEpLoCpfUPw0ao5Wl7Na9tT2VVgPfbLwryYFBdInKcTans7jpbX8MGeY2zJKTujeW6Prev+Ty/vy1B/9zbrbswuZcYfB087nw11dRSvWEZl4m4aqipxCA7F98ZJaMMiTrpuTeoRMt95E01AEBHPvHDaeTih4LuvqUk9giEvF7VfQJttFv36MyUrf2mznkKtJnbBh13e/83xAUzrZy5/R8qreeWv9svf5eFeTI4PJP54+TtSVsP7u4+xuUX5uzHWn2uj/Yj2cATgYHEVb+/MYH9RZZfzKsQ/lXQ4ig75t+j8EdZd7O/NfXGRvJ+UysFyHeND/Hl5cG/u3rKbojp9m/R+Wg0vD+rNqpx8Xt9/mN7ursxI6EWF0cjmAvOFbj8PN/7IKyKpPA1jYyM3hgfzyuA+3LNlNyV6AwDOSnvePq8f+0ormL37IOV6IwGODlQbG2waX/Hvqylet4bg2+5E4+tH4apfSV+4gJg5L2Pv4GB1neq0VDI//Q9+V12D64CB6BL3kLnoP/R6fBaOEZHmNEdS8Lp4FNqwcEyNjRT8/BPp7y0g5vkXsdOYL4DjXnvLYruVBw+Q8+US3AYOarPP7nBpkDcP94vkrcRU9pXouDbCn/kX9OaWNbspqG17bFV2dpTr61lyOJtJUYFnJI/WjArwZkZCBO8cSGN/mY6rQ/15Y1gCt/+5m8I6Q5v0/loNrw1N4NesAuYlptDXw5VH+kRSbjCyMb/5x1eVsZ7b/txtsW7LDg9npT3vn9+XPSUVPPl3EuUGI4GODlTV26ZMnq1zDSCjspqndh5o+rvR1H0dPafKyVHD/qRMvlj6J9/8Z+bZzs5JjR8dy+wnRvH8q2vZlZjDzdf357P3r2fM9Z+Tm9/2ovylN9fzxsKNTX8r7e349dvbWbUmpWnZY9Mv5Jrx8Tzz0u+kppdy0fnh/Hv+Ndxwx9ckHS48I3EBjAnzZtaQSOb9fZQ9hTpujAngw3/14drlu8ivaVtG1XZ2lNUZWXQgi1vjrXfkXRHhw8ODInhhawqJRTrCXLW8dH4MAG9a6Zy0lZI1qyldv4bAKXei9vWnePUKMt9/m17Pz2u37q9JSyX7s4/xvfJaXPoPpHLvHrI//ZjwmU821f2NBj0OwSG4j7iA7EUftdlGo8FAXdYxvMdeiUNwCA011RR8/y1ZH79H5JPP2TzOy0O8eWxgJK/tOsreYh3X9Qpg4UV9uHHVLgqsHTN78zH7LCmLm2M77nz1d9Tw8IAIdhdW2DzfnXFZsDeP9I/kzT3NbdiCC3sz+XfrbZjazo5yQz2LD2UzKdp6G+agtCOnuo512cU80i+yu0MA4EI/b+6KjeTfh46SVK5jbFAAcwb24YG/dlmv+x00vDCwN79l5zP/wGES3F25Ly4KncHI1kJz3R/r5sKsvvF8mZrBtsIShvt68WS/OJ7csY8UnbkeclIqeWNof/aXljNnzwEqDEb8HbVU19fbLLZRAd48cLy9PlCm46pQf14fmsAdG9tvr18d0txe9zneXld0or02tmivi+r0LDp8jJyaWsDcSfny4Hju2ZxIRlWtzeLryNgIH54+rxcv/nWUPQUV3BQXwMej+3LVjzvJq257XIf4u7E1t4x3dqVTaahnQrQ/H17Wm0m/7CG51HY32k9Hd9T9j/6ZjKrF3HbuGhXfXTmI348VdSmv+f9djD43l8Db70Lp5kbFjm1kLXybiOdeROXe/iCThtoa8v7vM5xi46nXtd8hfkpMJtxHXEhtRjr6nOw2X3tdOgaPCy+xWJa5cD4OYeFd3vW4SB+eHt6LuVuPsruggklxASwa25fx31svf0P93diaU8aCHenoDPVcF+PPR6N7c9PyPSSXmMvfeQHu/JpayO4CHYaGRu7qF8JnY/sy/oedFNa0PZ+F+F/QYx+pvuSSS5gxYwYzZszA3d0dLy8vZs+ejen4j8Qvv/ySIUOG4OLigr+/PzfffDOFhZY/Sg4ePMj48eNxdXXFxcWFkSNHkpqaanV/u3btwtfXl3nz5nU6j1988QXh4eG4ubkxadIkKiubf2jp9XoeeughfH19cXBw4MILL2THjh0dbm/x4sWEhobi6OjIhAkTKCkp6TB9y/Xmzp3L3r17USgUKBQKFi9eDFg+Up2RkYFCoWDp0qWMHDkSrVbL0KFDSUlJYceOHQwZMgRnZ2fGjh1LUZFlY/j5558THx+Pg4MDcXFxfPhh5+5KGQwGZsyYQUBAAA4ODoSHh/Pqq68CEB4eDsCECRNQKBRNfwO89tpr+Pn54eLiwrRp06irq+vU/k7HdWFB/JZdwOqcArKqa/n3oXSK6vRcGWK9s/bKkAAK6/T8+1A6WdW1rM4p4PecAq4Pb77geH1/Ciuy8kmrrCarupZ3Dh5BoYCBXu5NaW6KCKa4Ts/8A0c4XFFFQZ2exNIK8mptF6vJZKJ4/Tp8x16B28BBOAQFEXz7nTQaDJTv2N7ueiXr1+Icl4Dv2Ctw8A/Ad+wVOMfFUbx+bVOaiAcfwWPEBTgEBqENDiH4tjsxlpZSm3msKY3Kzc3iU7kvEaeYWNQ+PjaLsSOTooP4JaOAXzIKOFZZy7v70ims0TMh0vqxza/R886+NFZnFlJl447fU3FjRCArswr4NauAzKpa3k9Kp7BOzzVhAVbTXx3mT2GdnveT0smsquXXrAJWZRUyMbLtD85SvdHi09LNvYIprNPz+r6jHKqoIr9Wz+6SCnJrbFMmz9a5BtBgMlFmMDZ9Koy2+8HZVb9v2Mvct5by8+qO24hzxbRbh/Ddsv0s/Wk/qemlvPTWH+TlV3LLjQOspq+sMlBcUtP06Zvgj5urA98tb+4AvvbKBD76dDsbNqeTlVPBf7/by8a/MrhrypAzFJXZbQlB/HS0gB+PFpCuq+WNnWnk1+i5Kdb6uZdbref1nWn8klZIlcF6merv7UpioY6VGUXkVuv5K6+cVRlF9PZ07rY4TCYTpX+sxXvMeFwHDMYhMIjAKVNpNBjQdVD3l/6xBqe4BLzHXIHGPwDvMVfgFBtH6R/Ndb9L777HRz0OtroNe60jYQ8+htvgoWj8/HGM6IX/TZOpyzyGsbRz1zWn4pa4IH5OK+DntAIydLW8vSeNgho9N0RZP2Z51Xrm70nj14xCqjqoB+wU8PKIWP5z4Bg51d13DdKRycfbsOUZBWRU1vLO8TbsunbasLwaPQv2prEqs7Ddm5fJZVW8vz+DtdnFGBsbuzP7Ta4NC2LN8fo7u7qWT1LSKK7TMy7Y+jEaGxxAUa2eT1LSyK6u5fecAtbmFjAhLLgpzTWhQSSWlvF9RjbZNbV8n5HN3tJyrg5rbvduCDdfZ72bdIQjuioK6/TsKy0n34bXWSfa65XZBWRW1/JBsrm9vrq99jrU3F5/kJxOZnUtK7MLWJVdyE0Rbdvrlm1WmcGyvf6rsIztRWVkV9eRXV3HpymZ1NY3kODuYrPYTuaOPkH8kJLPDyn5pFXU8tr2NPKq9UyKsx77a9vT+Gx/NgeKqzimq+OdXRkc09VySajXGctze7qj7tcZ6impMzZ9RgS4U1ffwJrM4tPOZ6PBQGXibnwn3IBjdAxqXz98xl+Dysub8k0bOlw3/+svcB1yHg4R1m80lP+1mbQXZ3P44ftIe3E2ZRv/OGl+/G66GY+L/4XK29vq93YODijd3Jo+9ZU6DPm5uJ9/4Um3fTJ3Hi9/3x/OJ628lle2pZFfrWdyvPVj9sq2ND7Zl83+4+VvwU5z+ftXi/L3+IZDfJWcx6HSatIqapm9OQU7BYwIdO9yfns0heJ/4/M/qsd2OAIsWbIEpVLJ9u3bWbhwIQsWLOCTTz4BzB1ZL730Env37mXZsmWkp6dzxx13NK2bk5PDRRddhIODA+vXr2fXrl1MnTqVeit3NTds2MCll17K3LlzefbZZzuVt9TUVJYtW8aKFStYsWIFf/75J6+99lrT97NmzeKHH35gyZIl7N69m6ioKMaMGUNpaanV7W3fvp2pU6cyffp0EhMTGTVqFC+//HKn8jJx4kQee+wxevfuTV5eHnl5eUycOLHd9C+88AKzZ89m9+7dKJVKJk+ezKxZs3j33XfZtGkTqampPP/8803pFy1axLPPPsu8efNITk7mlVde4bnnnmPJkiUnzdvChQtZvnw5S5cu5fDhw3z55ZdNHYsnOmA///xz8vLymv5eunQpL7zwAvPmzWPnzp0EBAR0uoPzVCkVCqJdndlVUm6xfFdJOQnurlbXiXdzaZN+Z3E5Ma7O2LdTGWns7VEqFFQamy8Yh/t6kVJRxbP94/j2kmF8MGIA44L9uhRPa8biYup1FTgn9G5aZqdS4RQdQ007ne8ANWlpuCQkWCxzSehNTVr76zTUmu+o2zs6Wc+LTodu/348bXCR0RlKhYJYd2f+Liy3WP53YTl9Pa0f23OBUqEg1s2ZHa0ei9pRVE5vD+s/JHq7u7RJ/3dRGbFulmVSa2/PN6MG892/hvDqkHiiXC2P1fl+nhwur2bOoFh+umwoiy7sz/gQ25TJs3muAQQ5avnq4qEsGTmEp/vFNj2GJk6NSmlHn3g/Nv2VYbF807YMBvXv3Kjgm67ty5btx8jNax5hoVbZo2/1o02vr2fIwI5HoNmS0k5BvKcLW/MsH+/7K7eMAT6nX2fsKdIR7+VMHy9zB2OQswMjgzzZmGP9esAWjCXmut8p3rLud4yKpSb9aLvr1aSn4RxvWfc7J/SmNq39dTqjobYWFArstI5d2k5rSjsFcR4ubMu3PGbb8svo5921ev6u3qGU6Y38nFbQpe2crhNt2PaCcovl2wvL6et17rZhrSkVCqJcXNhTYnmM9pSWEd9O3R/n7sqeUsv0u4vLiGpR98e5WdlmSRnxbs3bHObjxVFdFU/2i+OLi8/jnfMGMjrIdk/+KBUKYlyd2VlcbrF8Z1E5fdrp+EvwcGFnm/bdenv99ajBLB01hFestNct2WEeaelgb8/B8jPz6KfKTkGClwtbci2PwdacMgb4dq58KgAnlT0V+rN7A7C76v7WJkT5s/pYEbX1p9/Rb2pshMZGFEqVxXKFWkVN6pF21yv/azPGoiK8r7jK+vdbNlL8y0/4XD2BiOdewufqCRStWEbFti2nnVer+9m6CbWvH45RMV3ajspOQW9vFzZnWx6zLdllDPQ7tfJX3kH50yrtUdopznoZFeJs6tGPVIeEhLBgwQIUCgWxsbHs37+fBQsWcPfddzN16tSmdJGRkSxcuJBhw4ZRVVWFs7MzH3zwAW5ubnzzzTeoVOZKOSambeX2888/M2XKFD7++GMmT57c6bw1NjayePFiXFzMFxRTpkxh3bp1zJs3j+rqaj766CMWL17MuHHjAHOn3Zo1a/j000954okn2mzv3XffZcyYMTz11FNNed26dSurV68+aV60Wi3Ozs4olcpOPUL9+OOPM2aMef68hx9+mMmTJ7Nu3TouuOACAKZNm9Y0QhLgpZdeYv78+Vx33XUAREREkJSUxMcff8ztt9/e4b4yMzOJjo7mwgsvRKFQEBYW1vSdz/FRbu7u7hb5fuedd5g6dSp33XUXAC+//DJr167tllGOrmoV9nYKyg2Ww+TL9QY8vN2truOhUVNebNnAlRsMKO3scFMpKW11FxpgakwYJXoDu1t0ngRoHbgyJIAfj+XwTVoWsW4u3B8XibHRxNpc2zxCaNSZHwNTulg2vkpXV4wdjKCt11W0XcfFtd1HMEwmE3nfL8WxVxQOQdY7CMq3bcXeQYPrGXqc2l2jQmmnoLTVI02legOeDu5nJA+nw+14mWw9mqFMb8RTo7a6jqdGTZm+3DK9wWguk2olpXojmVU1vLbvCGm6ahyVSm6ICOD98/sybWMiOcdHMAY6OnBNmD9L03P48mg28e7OPNQ7AmNjI7/ndO0RoLN5rh2qqOTNAylkV9fioVYxuVcoC87rzz1bdlN5Do10/Cfw8NCiVNpRXFpjsbykpAYfr/Z/EJ/g4+3ExRdE8Mgzv1os3/RXBlNvHcLfu7M5llXOBcPCuOziKOzsz9wdZY/jdUZJqzqjpM6It4OqnbVObnVGER4aFUvG9AeFeeqGbw/n8tnBto+f2Up9R3V/B6MMzXW/m+U6LuZRKaer0Wik8OcfcBsyDHut9rS3Y427ur16vmvHrL+3K9dE+nPz6t0nT9xN2m3D6gx4+bmfnUydhvbrfiPuXtaPkYdaRXmrEfgn6n5XlZIygxF3jZpyQ+s0RjxatJP+WgfGBQewLDOb79KziHF14Z7YSIyNjfyR1/XrrKb2ulVey1rloyVPjZoyQ7llen2r9rra3F6nV5rb6+vDA3hvRF/u2tTcXoN5Ps4PRvRDbWdHbUMDz+8+xLEz9Dj1ifJZUmsZe0mtAW/Hzs0df2efYLRKe1and+36oqu6q+5vqY+XM9EeTrzwV8rJE3fA3sEBbUQvilf/gto/AKWrK7qd26nLSEft42t1HUNhAUU//0DYo0+isLe3mqZ41Qp8r7sJl+Mj19XePujz8ijfvBG34Rd0Kc8nNBqN6HZsw2v0uC5vy8PBevkrrjXgo+1c+Zva11z+VqW1X/4eGxpBQbWBrbnnxjyjQpwNPbrDcfjw4Sha3O0bMWIE8+fPp6GhgX379jFnzhwSExMpLS2l8fhjIZmZmSQkJJCYmMjIkSObOhut2b59OytWrOC7775jwoQJp5S38PDwps5GgICAgKZHulNTUzEajU0deAAqlYphw4aRnGx9wvHk5OQ2eRgxYkSnOhxPVb9+/Zr+38/PPHqpb9++FstOxFJUVERWVhbTpk3j7rubXwBSX1+Pm5vljxJr7rjjDi6//HJiY2MZO3YsV155JaNHj+5wneTkZO677z6LZSNGjOCPPzoe2q/X69HrLefsaDQYsFNbv+hrqfV0bgoF0MEUb+19ZW35jeFBjArw4Ym/91vMv6NQwJGKKj4/Yn4EObWymjBnR8aH+J92h2PZ39vI/erLpr/Dpj94fGdWMnqyoeGtvjZ18A+S+81X1OVk0+vxWe3nbesW3Iedh10H5+SZ8E8ZEG+1THZwDFofn9ZxJpVXkVTePEn+gTIdiy7sz3XhAbyXlN60j8MVVXxyOBOAo7pqwp0duSbMv8sdjk35PAvn2s4WnZYZQFLFQRaPHMLlgb78eKz7X5bQE5naHEgry6y44ere6CrrWPOH5UiMF99czyvPjWbNj1MxmSAzu5zvlx+w+rKZ7mYltI6K6EkN8XPj7r4hzPv7KPuLKwlx0fLk0EiKag38Z39WV7LapOLvbeR+/UXT36HTHzL/T5u6vxORnM467TA11JPz2cdgMuE/8dbT3s5J99Pq764cM0elPS8Oj2XejiNUtPOo5Jlky9jOpjZxnKQxbtumKdpsx9q/Q8viqlCYXyT2xVHzdVZaZTWhzo5cERxgkw7HjvJxSu318X+LE3lPLq8iuVV7/Z9W7TVAVlUtd21OxFml5CJ/L57qF80j2/efsU5Hc57bxtKZKuOKSB+mDwzjwXUHKa1re/PwbLB13d/ShCh/jpRVc6Ck6y8rCrh9GnlfLib12cfBzg6HkFBchwyjLiuzTVpTYyO5ny/Ce/w1qP2sD0qpr6ykvqyUvC+XkPff/2v+orEBu+M3ibI+eIeao+Z2W+XpReRzL55yvqv27qaxTo/bsPNPed32WDuXOnPMxkf6MGNQGNPXtF/+7uoXzPhIH25buQ9Dwz+x1hXCNnp0h2N76urqGD16NKNHj+bLL7/Ex8eHzMxMxowZg+H4HVRtJ+6i9+rVCy8vLz777DPGjx+PuhMdUye07shUKBRNnZ4nGl9Fq6spk8nUZlnL786Ulnk/kZ/Wy07EcuK/ixYt4rzzzrPYjn07d8laGjRoEOnp6axatYq1a9dy0003cdlll/H99993OY7WXn31VebOnWuxLPKWO4maMrWdNUBnMNLQaGpzJ9pNrW4zwuyEMr2hTXp3tZr6xkZ0rUZL3RAexKTIEJ7aeYD0KssRQaV6A8eqLZdlVddwod/pz2Xj2m8AjuHNc7OY6s0x1Ot0qNzcm5bXV+rajHxpSenq1mY0Y0NlJUrXtuvkfvsVlfv3EjnzCVQenla3V30kBX1BPiF33XMq4XRJud5IfaMJTwfLY+WhUZ8zF7fWVBwvk54ayzrGXa1qM+fiCaV6Q5vRj+5qFfWNje3+YDYBhyqqCHZqritL6gwcq7T8oXKsqpaLAro+v9LZPNda0zc0klFZTZCjbUdb/S8oK6ulvr6xzWhGL0/HNqMerbnxmr4s+zUJY6tHykrLarlv5s+o1fZ4uGkpKKriyYcuIiv3zL2so+x4neGttSxzng4qSrpQZ8zoH8aKtEJ+PGp+NPdIeQ1apR3PD49m0f4sm/ygde43gF7hzW8obTw+fUzbut96PX6Cue63/Devr+q4vWiPqaGe7E8/xlBSTNhDj9t8dCOYR7TVN5rwalPPn/4xC3Z2IMjZgbdHtngc/fil27abLuT6lTvJqer+OR1PtGFtYnM4t9uw1prqfnXrul/VZoTiCdZGCLodb9NOjEov1xvwULdtJ1uOpCzTG8hqc51Vy/m+1uebO1XttdcealWbUY8nlOoNeKqtt9et27UTTMCh8qo2bVa9ydQ0x3JKRRVxbs5cHx7I2wfan/7GVk6UT2/H1vWlmpLajl+uMTbCh5cujOHR9cn8lVvejbnsnO6q+09wsLdjbLgPH+49dvLEnaD28SXs0Vk06vU01tWidHMn59N/o/JqW64b6+qoy8ygLjuTgqVfmReaTGAycejBewiZ8SiaAPN0KP4334a2RTsCgJ159jb/W27HdPzcUtifXvdD+ZZNOPfth7ITA1ZOpqzO+jHzclBTfJLyNy7Sh3kXxfDwuvbL39S+wdzbP5Q7V+3j8Fl+odE/Qo+e5E/06MO7bdu2Nn9HR0dz6NAhiouLee211xg5ciRxcXFtXhjTr18/Nm3ahNHYfkPh7e3N+vXrSU1NZeLEiR2mPRVRUVGo1Wo2b97ctMxoNLJz507i4+OtrpOQkGA13s5Sq9U0NNj+JRd+fn4EBQWRlpZGVFSUxSciIuLkGwBcXV2ZOHEiixYt4ttvv+WHH35omstSpVK1yXd8fPxp/Vs8/fTTVFRUWHwiTzKiot5k4oiuikGtXjAxyMudpHLrj5AlV1S2ST/Yy50UXRUNLTqObwgP4ubIEJ7ddZAjurZ3NJPKdYQ4WV48BjlqKbTy5snOsndwQOPr2/wJCETp6kZVclJTmsb6eqqPpODYq1e723GMjKSyxToAlUlJOEY2r2Mymcj55isq9uwh4pHHUHu3/yKY0q2b0YaGoQ0OOe3YTlW9ycTh8iqG+bpbLB/q687+Uhu9na8b1JtMHK6oYoiPu8XyId7uHCyzPjfTwfJKhrR6LHmojzuHKyzLZGtRrk4Wb3I+UFZJiLPl22tDnLRW34Z6qs7mudaaSqEgxNmRUkPHF6WiLWN9IweSC7hweLjF8guHh7N7b8ejRc8bHEJ4qAdLlx1oN43B0EBBURVKpR1jLo1m7YauzR14KuobTSSXVjIiwN1i+fAADxKLTr/OcFDatXkreqPJPHrGVnOQ2zs4oPb1a/qcqPurDx1sSmOqr6fm6GEcI6La3Y5jRCTVrer+quQktJHtr2NNU2djYQFhDz6G0rl7XpBT32jiUFkl5/m7Wyw/z9+DfcWnd8wydDVMXLWLW37b3fTZmFPCzsIKbvltt9U3X3eH9tqwYb7u7C85d9uw1upNJo5WVrZ5kdcATw+S26n7D5XrGOBp+VjkQC8Pjrao+w9VVDLAq22a5IrmbSaX69p00gU5aim08mbs01FvMpGiq2rT/g72dudAO3MpJpVVMrhV+iHenWuvS/Udt1kKsHgrcncyNppIKqnk/EDLY3B+oDuJhe2XzysifXhlZAyzNhxiY3b3zWN7Krqr7j9hdJg3ans7VqTZblQtgJ1Gg9LNnYaaaqqTD+LSb0DbNA4ORDw7l4inX2j6uF94MWo/fyKefgFteCRKVzeU7h4YS4os2hG1r1/Ttb3K3aNpmcrr1G9CG4qLqDlyGPcRtpnH3dho4mBxJRcEtSp/Qe7sKWj/mI2P9OG1i2J47I9D/JllvfxN6xvM9IGh3LV6PweKuz4iVYh/uh7d4ZiVlcXMmTM5fPgwX3/9Ne+99x4PP/wwoaGhqNVq3nvvPdLS0li+fDkvvfSSxbozZsxAp9MxadIkdu7cyZEjR/jiiy84fPiwRTpfX1/Wr1/PoUOHmDx5stWXypwqJycn7r//fp544glWr15NUlISd999NzU1NUybNs3qOg899BCrV6/mjTfeICUlhffff/+UHqcODw8nPT2dxMREiouL2zxa3BVz5szh1Vdf5d133yUlJYX9+/fz+eef8/bbb5903QULFvDNN99w6NAhUlJS+O677/D398fd3b0p3+vWrSM/P5+yMvNjjw8//DCfffYZn332GSkpKbzwwgscPHiwg72YaTQaXF1dLT6deZz6x2M5jA32Y3SQHyFOWu6NjcDXQcOvWfkA3BkdxhN9muf/XJGVh5+DhntiIwhx0jI6yI8xwX78kJHTlObG8CBujw7j7YNHKKitw0OtwkOtwsG++ZT9MSOXODcXJkUEE+jowKgAH64I9md5Vt5J89xZCoUC739dSuHqlVQk7qYuJ4fsJZ9jp1bjPrR5xGrW4k/JX/Zj099eoy6lKjmJot9WUZefR9Fvq6g6lIz3vy5rSpP7zVeU/72NkKl3YadxwFhRgbGigsZWnTgNtbVU7N6FxwVn5mUxLX1zJIerwv0YH+ZHmIuWh/pG4OeoYVma+dje1zuM5wZbzu0a7eZEtJsTWqUd7moV0W5OhLuc2ZFw36XnMj7Ej3HBvoQ6a3kgPgI/rYblmeZ83x0bxtP9o5vSLz+Wj59Ww/T4cEKdtYwL9uWKED++TWvuALo9OoSh3u4EaDVEuToxq18UUa5OLD+Wb7HfBHcXbukVTJCjA5cGenNlqB/LMprTdMXZOtfujgmnr4crfloNsW7OzB4Qj6PSnjU5tr34P11Ojhr6JYTRL8E8x214iA/9EsIICTz7b+605tMvd3LThL7ceE0fekV4MvuxSwj0d+G/3+8F4IkHR/LWS23naLrp2j7s2ZdLSmrbN3T27+PPmH9FExLkxtCBQSx+/3rs7BR8vPjMvrn7/5JyuC7Kn2t7+RHhquWJIZEEOGn4LsVcLz80MJx551vWGbEeTsR6OOGossfDQUWshxORbs0vR/kzu5SbYgIYG+5DkLOG4QHuPNA/jA3ZpTR208MNCoUCz1GXUfzbSnSJu6nLzSHni8+wU6txbVH35yz5lIKff2j623PUZVQdSqL491Xo8/Mo/n0V1YeS8RzVXPc31tVRl5XZ9PiesaSIuqzMprkhTQ0NZC36N7XHMgi6425obKS+ooL6igpMNrjGau2/h3K4NtKfqyP8CHfVMnNgJP6OGn44aj5mD/QLZ+55lscsxt2JGHcntEp7PDQqYtydiHA1HzNDo4nUihqLT6WxgRpjPakVNdR310Gz4usjOVwd4ceVYX6Eu2h5uJ+5Dfsp3Vxn3t87jOeHtN+GeWjatmFKhaIpjdJOgY9WTbSbE8FOljebbGnZsRwuD/LnskA/gp203BUTiY+DhlXZ5mN0W1Q4j/ZujmN1dh6+Wg3TYiIIdtJyWaAflwf58dOx5nlPl2fmMNDTg+vDgwl21HJ9eDD9Pd1Z3mKajJ8zc4h1c+HG8BACtA5c7O/DmGB/fs2y3VQa36XncsWJ9tpJy/Tj7fUvx9vWu2LDeLpfi/Y6s0V77dTcXi9Nb87TbVHN7XUvFydm9T3eXmc2t8V3xYQ2tWsRLo5Miwmlv5cba3PP3HyIiw/kcEOMP9dF+xHppuXJYZEEODvw7SHzcX10cDivXhTblP6KSB9evSiWN/5OY2+RDm+tCm+tCmfVyZ+Y6m7dUfefcF2UP+uzSmw2RUNV0gGqDh7AUFxEdfJBMt95C7WvP24jzFN5Ff78A7lLPgVAYWeHJjDI4mPv4oJCqUITGISdxvwCPe8rrqLkt1WU/rEWQ0E+dTnZlP+1mdJ1v3eYF0NhAXVZmTTodJiMhqa2oXVdX/HXFpSubjj17tvOlk7d5wdyuCHWn+tj/Ih01/L0eeby983x8jdzSDivX9xc/sZH+vD6JbG8vj2NvYXWy99d/YJ5ZEg4z2xMIaeqrimNo7JHd7kI0aEe/Uj1bbfdRm1tLcOGDcPe3p4HH3yQe+65B4VCweLFi3nmmWdYuHAhgwYN4q233uLqq69uWtfLy4v169fzxBNPcPHFF2Nvb8+AAQMs5lU8wd/fn/Xr13PJJZdwyy238NVXX3XqceGOvPbaazQ2NjJlyhQqKysZMmQIv/32Gx4e1ieyHT58OJ988gkvvPACc+bM4bLLLmP27NltOlLbc/311/Pjjz8yatQoysvL+fzzzy3e2t0Vd911F46Ojrz55pvMmjULJycn+vbtyyOPPHLSdZ2dnXn99dc5cuQI9vb2DB06lJUrV2J3fIj+/PnzmTlzJosWLSIoKIiMjAwmTpxIamoqTz75JHV1dVx//fXcf//9/PbbbzaJp7U/84txUSm5pVcInho1xyprmL37YNMdcE+NGp8Wb7QtqNUze/dB7o2L5KrQAErrDHyUnMbmguaJ+K8MDUBtZ8dzAyxHtH5xNJMvU80/0lJ0VbyYmMyd0eHc0iuU/No6/n04jT/ybHux6D16LI1GI7lff0VDTTWOEZFEPPgo9g7NPy6MpaUWQ22cekUROu0eCpYvo+CXn1H7+BB61z04RjQ/rl26cQMA6Qvesthf8G134DGi+Tyr2LkDTOA+dJhN4+qMdTnFuGmUTI0LwctBTZquhse3HCT/+Ig9Lwc1fo6WbytecunApv+P93BhTKgvedV1XP/bzjOW7z/yinFVK7k92lwm06tqeHJHUtNIQy+NCr8WZTK/Vs9TO5J4ICGCa8MCKNEbeO9gOhvzm8uks1LJY3174alRU11fzxFdNQ/9dYBDFc13bw9XVPHcrkPcHRvG7dEh5NXW8X5Sus1+wJytc83bQcPT/WJxVauoMBg5VFHJI9v22myUS1cN6hfJ70ufb/r7jRduA+CL7/7knsf+fbay1a5ffz+Mh5uWB+8ZgY+3EylHi5n64I9Nb5328XYi0N/yEVwXZzVjL43hxTfXW92mRqNk5gMXEhrkRnWNgQ1b0pn53Eoqq87sMfrtWDHuGhX39gvFR6vmaHk1D6w/QF61OR8+WjX+TpZ1xndXNr8Iq7eXC+MjfMmpqmPcT+bO0v/sz8SE+dFqX0c1ZXojf2aX8t6ejG6NxevysTQaDeR/+18aaqrRhkcSOmOmZd1fVmJR9ztGRhF85z0UrlhG4YplqL19CJ5mWffXZmZw7N3mer/gh6UAuJ13PkG3TcVYXkbV/kQA0l61nOYk7OHHcYqJs2mca7KKcdOouKtPKN4OalIrqnl44wHyj49E9LZyzL4a23zMEjxdGBfuS251HVf/cmY7uE9mbXYxbmol0+Kb27CZWw42x+agxr9VG/bFZdbbsAmrzW2Yj1ZtkebWmGBujQlmd1EF0zfu75Y4NhcU46pSMSky1Fz3V1Uzd88BilrW/Q4t6v46PXP3HOSumEjGhwRSqjfwn8OpbC1srvsPVVTyxv5DTIkK45ZeYeTX1PHG/kOk6JpHFh7RVfHK3mRuiwpnUmQoBbV1LDqcxp/5trvO+iOvGFeVktuizO1aRlUNT+1IoqCuub32bdVeP70zienxEVwTery9TmrVXquUzOzbC0+1ub0+qqvm4W2W7bWHRs0z/aOb2vS0yhqe3HGQXcVnbhqK1elFuGuU3D8gDB9HNUfKqrn39wPkHq8vvR3VBLQ4926KDUBlZ8fz50fz/PnNnbA/Hcnn2U1de5lKV3VH3Q8Q5qJlkJ8b96y13bnVWFtL0fIfqS8vw87RCZcBg/C5ekLTo871FRXmuv0UuF9wEQq1htK1qyla9j0KtRpNYLDFzSZr8r5aQu2R5mOX8Zp5bsfIF19DffwRb1NjIxXbtuA2/HwUdrbruFuVVoSHRsn0gea2NaWsmnt+O0Du8esGH0c1Ac7Nx2xivLn8vXBBNC9c0Fz+fkzJ5+mN5hgmxweitrfjvcsSLPb13u5jvL/bNo/EC/FPozCdycn/zqBLLrmEAQMG8M4775ztrIh/sDG/bT55on8oF1XjyRP9Q+WW98w7iWrNP+WVNadOo+yRTREAG+/+4GxnoVsEeA0+21noNs4zzzt5on+oXgFnOwfdI6vtwNceQ6nquXW/j2vPrfurjD3zWqQg3/ZTMJ0revK5FtFD6/5DGT23Djl810VnOwtnRPjzq852Fs6IjBe7/ob1f6IePcJRCCGEEEIIIYQQQpyDbDUhtTgn9cxbb2dZ7969cXZ2tvr573//K3lq4ZVXXmk3X+PG/W/eBRBCCCGEEEIIIYT4J+uxIxw3bNhw1va9cuXKdt9Y7efnd4ZzY3Yu5gngvvvu46abbrL6nVZ7Zl+0IYQQQgghhBBCCCG6rsd2OJ5NYWFhZzsLbZyLeQLw9PTE09PzbGdDCCGEEEIIIYQQQtiIdDgKIYQQQgghhBBCiDPLTuZw7MlkDkchhBBCCCGEEEIIIYTNSIejEEIIIYQQQgghhBDCZqTDUQghhBBCCCGEEEIIYTPS4SiEEEIIIYQQQgghhLAZeWmMEEIIIYQQQgghhDiz5KUxPZqMcBRCCCGEEEIIIYQQQtiMdDgKIYQQQgghhBBCCCFsRjochRBCCCGEEEIIIYQQNiNzOAohhBBCCCGEEEKIM8qkkDkcezIZ4SiEEEIIIYQQQgghhLAZ6XAUQgghhBBCCCGEEELYjHQ4CiGEEEIIIYQQQgghbEY6HIUQQgghhBBCCCGEEDYjL40RQgghhBBCCCGEEGeWDIHr0eTwCiGEEEIIIYQQQgghbEY6HIUQQgghhBBCCCGEEDYjHY5CCCGEEEIIIYQQQgibkTkchRBCCCGEEEIIIcSZpVCc7RyIbiQjHIUQQgghhBBCCCGEEDYjHY5CCCGEEEIIIYQQQgibkQ5HIYQQQgghhBBCCCGEzUiHoxBCCCGEEEIIIYQQwmbkpTFCCCGEEEIIIYQQ4syyk5fG9GQywlEIIYQQQgghhBBCCGEzMsJRiA40mnruHZfiWvuznYVuU1nVeLaz0C3sakxnOwvdxte7597/CvAafLaz0C3ySnad7Sx0m3j78852FrqNVtkz68fGxp5bh5h6btWPxr7nBldTf7Zz0D1qevC1iEp1tnPQnXrmb5raHlwehegJeu7VmRBCCCGEEEIIIYQQ4oyTEY5CCCGEEEIIIYQQ4sySORx7NBnhKIQQQgghhBBCCCGEsBnpcBRCCCGEEEIIIYQQQtiMdDgKIYQQQgghhBBCCCFsRjochRBCCCGEEEIIIYQQNiMvjRFCCCGEEEIIIYQQZ5a8M6ZHkxGOQgghhBBCCCGEEEIIm5EORyGEEEIIIYQQQgghhM1Ih6MQQgghhBBCCCGEEMJmZA5HIYQQQgghhBBCCHFGmexkEseeTEY4CiGEEEIIIYQQQgghbEY6HIUQQgghhBBCCCGEEDYjHY5CCCGEEEIIIYQQQgibkQ5HIYQQQgghhBBCCCGEzchLY4QQQgghhBBCCCHEmaWQl8b0ZDLCUQghhBBCCCGEEEIIYTPS4SiEEEIIIYQQQgghhLAZ6XAUQgghhBBCCCGEEELYjHQ4CiGEEEIIIYQQQgghbEZeGiOEEEIIIYQQQgghziw7eWlMTyYjHIUQQgghhBBCCCGEEDYjHY5CCCGEEEIIIYQQQgibkQ5HIYQQQgghhBBCCCGEzcgcjkIIIYQQQgghhBDizJIpHHs0GeEohBBCCCGEEEIIIYSwmf/JDsc77riDa6+99rTWnTNnDgMGDOjS/jds2IBCoaC8vLzdNIsXL8bd3b1L+1EoFCxbtqxL2xBCCCGEEEIIIYQQ4lTII9U9wJw5c1i2bBmJiYkWy/Py8vDw8Dg7mfofc1WIPzdGBOGlUZNRVcNHh9I5UKZrN30/D1fujYsg3NmREr2Bpek5rMjKb/r+Qj9PJkeGEOjogL1CQW5NLd9n5LI2t6gpzRcXD8Zf69Bm28uP5fFecprNYrsmzJ9JkebY0qtqeP9gOvs7iK2/pyvTEyKIcHakWG/gm9Qclmc2xzY22Jen+ke3WW/0qq0YGk0A3BEdwh0xoRbfl9YZuG7dDhtFZd3E2ADuSAjGx1FNank1r+9IY3eh9Vi9tSqeGBJJvKczYa5a/pucyxs7Lf/dlQoFd/UN4epevvg6asioqGHB7gy25JZ1axzW3BRjjs1ba47tjZ1p7ClqP7bHBkWS4OVMqIuWrw7l8uYuy9g+ubwvQ/3c26y7MaeUB/842B0hAGfnXGtpUmQQ02LC+TEjl48Opds8vpZuvXEAd98+FF9vJ1JSi3n5rT/YsSfHato35o7lhqv7tFmeklrM2BsWA6BU2nH/1PO47sre+Ps6k3aslNff3cjGrRndGEXXXDAsjkfvu5JBfSMJ8PPgprvm88vvO892tjp0Y3QAt8Wbz7W0imre2tXBueag4tFB5nok1EXLN4dzeWu35bl2VYQvc0fEtll3+Debm+rM7mAymchb8QvFmzZRX1ODU0QEoZNvRhsY2OF6Zbt3kbt8OfqiIjQ+PgRecy0eAwdaTZu3ahW5y37C91+XEjJxYtPyjMWfU/LXXxZpnSIiiHvq6a4HZkVPOWbWXB/pz62xwXg5qEnX1bBgbxqJxdZj83JQ8XC/COI8nAlx1rL0aC4L9lrWc9dE+HFFmC+Rrk4AHCqr4qMDGSSVVXVrHCaTicJff6F080YaampwDI8gcNLNOAQGdbhexe5dFPzyM4biItTePvhdcy1uAwY1fV+4eiW6xN3o8/NRqNQ49eqF/7XXo/H3b0pTsGI5FTt3YCgrRWGvRBsahv811+IYEWmT2K4O9eemFu3ah8kdX2f183Tl/uPtWrHewLdplu1aS6MCvJk9IJYtBSU8v/tQ0/LbokK4PbrVdZbewI3ru/c669Y+gdw7KBhfRw0ppdW8uCmVHXkVVtOOifTm1j6BJPg4oba340hpDe/8ncHGTMtrqKn9g7ilTyBBLhpKa42sSi3mjb/S0Dec2XPt5oQA7uofgq+jmiNl1czbmsrOfOvHcXSEFzcnBBLvdTy2shoW7jzG5uwyizT3DQwlzFWL0k7BsYpaPt2Xzc9HCk87j2Ub/6B80waMpSUAqAMC8R53Fc69+5503ZrUI2S+8yaagCAinnnhtPNwQsF3X1OTegRDXi5qvwCr2zSZTJSu+53yLRupLy3B3tkF95GX4D12fJf3DzCl7/Hy6KThSGk1czem8neu9fI4tpc3U/o2l8eUkhoWbG9bHqcNCOLWvs3lceXRYl7feubLoxDnCulw7MH8W1wsie5zsb8398dH8F5SGgfLdIwP8eeVwQlM27ybojpDm/T+Wg0vD05gVXYBr+9LobeHKw8mRFJuMLK5wHwBoDPW81VqFlnVtRgbTQz39eDxPtGUG4zsLC4HYMbWvdgpmie9CHdx5I2hffizoNhmsY0K8GZGQgTvHEhjf5mOq0P9eWNYArf/uZvCdmJ7bWgCv2YVMC8xhb4erjzSxxzbxvySpnRVxnpu+3O3xbqtf4SlV1bz2PbmjqsGU/c21GPCvXlySCQvbz/KniIdN0YH8NGlfbhm+S7yq/Vt0qvt7CitM7JofxZTEqz/4HlwYBjjI32Z+9cR0itqOT/Qg3cuiWfK6r0cKq3u1nhaGhPmzazBkczbcZTEQh03RAfw4b/6MOGXXeTXWI+tTH88tnjrsc38MxmVXXP5c9eoWDp+EGuOWe+os4Wzda6dEOPqzBXB/qTquv/YjR8dy+wnRvH8q2vZlZjDzdf357P3r2fM9Z+Tm1/ZJv1Lb67njYUbm/5W2tvx67e3s2pNStOyx6ZfyDXj43nmpd9JTS/lovPD+ff8a7jhjq9JOnz6P2C6k5Ojhv1JmXyx9E+++c/Ms52dkxod6s3jgyJ5dedR9hbpuD4qgPcu6cMNv1o/11T25nPt04NZ3BLbfsdJpaGe61ZYdrR2d8dVwW+/UbB2LeG334GDnx95K3/lyDsL6P3iS9g7tL3ZBVCVmkraokUEXn0NHgMHULYnkbT/fEzcrFk4teqcqc7IoHjTRrTBwVa35dq7N+G339H0t0LZPZesPemYtXZZsDePDojkjd2p7CvRMSHSnwUX9mbSb7spqLVe95fr6/k8OZvJ0dY7lgf5uPF7ZhH7StIwNDYyJSaYhSP7MPl36/WwrRT/vpridWsIvu1ONL5+FK76lfSFC4iZ83K75bE6LZXMT/+D31XX4DpgILrEPWQu+g+9Hp/V1FlYfSQFr4tHoQ0Lx9TYSMHPP5H+3gJinn8RO40GAI2vH4ETJ6P29qHRaKB43VrSF75D7IvzULq4dCmuS/y9mR4fwcKDaRwo03FlqD+vDklg6qb2r7NeGZzAyuwCXt2bQh8PVx7qHUmFwcimghKLtL4OGu6NC2dfqfUOlPTKap74u/k6q5HuLZ9XRvnw/MhePPfnEXbm6bildwCLr+rL5V/tILeqbXk8L9CNzVllvLktHZ2+nhvj/flkfB8mfLeHg8XmDu5rYnx5ckQkT6w/zO68CiLcHXnrMnNn/0ubU7s1npau6OXDs+f3Ys7mo+zOr2BSQgCfXNGXcUt3kmcltqEBbmzJLmP+3+bYro/z5+Oxvbnxpz0klZivMcrr6vlodyZp5TUYG02MCvXktUtiKak1WnRMngqlhwc+11yP2scXgIrtW8n++H0innoeTQed9w21NeT932c4xcZTr2u/M/yUmEy4j7iQ2ox09DnZVpMUfvc11YeS8J1wI5rAIBpra2mots3NjauifXjhol7M3nCEnbk6bukTwJKr+3Lpl+2Xx02ZZby+1XzMbkrw57Or+nDN0j0cLDLn6dpYX548P5In1h5mV14FER6OvH28PL646cyVRyHOJefkI9WXXHIJM2bMYMaMGbi7u+Pl5cXs2bMxHe9w+PLLLxkyZAguLi74+/tz8803U1ho+WPp4MGDjB8/HldXV1xcXBg5ciSpqdZP9F27duHr68u8efM6nccvvviC8PBw3NzcmDRpEpWVzT8A9Xo9Dz30EL6+vjg4OHDhhReyY0fHdwwXL15MaGgojo6OTJgwgZKSkg7Tt1xv7ty57N27F4VCgUKhYPHixYDlI9UZGRkoFAqWLl3KyJEj0Wq1DB06lJSUFHbs2MGQIUNwdnZm7NixFBVZdhh8/vnnxMfH4+DgQFxcHB9++GGn8tad+3zyySeJiYnB0dGRyMhInnvuOYxGY9P3Jx597+g42cr14YGszi5gVXYBmdW1fHQonaI6PVeFBlhNf2WIP0V1ej46lE5mdS2rsgv4LbuQGyOaL+73lerYUlhKZnUtebV1/HQsj7TKanq7uzalqTDWU2YwNn2G+3iSU13LvlIbXQgAN0YEsjKrgF+zCsisquX9pHQK6/RcE2Y9tqvD/Cms0/N+UjqZVbX8mlXAqqxCJka2/eFSqjdafFpraDRZfF9hqLdZXNbcFh/Ej0cL+PFoAekVtbyxM438aj0TY6zHmlut5/UdafySVkhVO3m7MtKXT/ZnsSmnjOyqOpam5LE1t4zbE6z/wO4uU+KD+Cm1gJ+OFpCuq+XNXWnk1+i5qYPY3tiZxor0QiqN1mPTGeopqTM2fYYHuFNX38CaY7br8G7tbJ1rAA72djzdP4YFB49SVd+9ZRFg2q1D+G7Zfpb+tJ/U9FJeeusP8vIrueXGAVbTV1YZKC6pafr0TfDHzdWB75YfaEpz7ZUJfPTpdjZsTicrp4L/freXjX9lcNeUId0ez+n6fcNe5r61lJ9Xd++oG1u5JS6IZWkFLEs1n2tv7U6joEbPDdHWy2hetZ63dqXxa3ohVe2caye0PN9K6trWmbZkMpkoWLeWgHFX4DFoENqgIMLvuJNGg4HSv7e3u17hunW4xscTMG4cDv4BBIwbh2tcPAXr1lmka6irI/3TTwibMgV7R0er21Iolajc3Jo+Sicnm8Z4Qk85ZtZMjglieXoByzMKyKisZcHedApq9Fzfy/oN6bwaPW/vTWNVZiFV9Q1W07zwdwo/pOVzpKKaY5W1vLLrCHYKGOLr3m1xmEwmitevw3fsFbgNHIRDUBDBt5vLY/mO9stjyfq1OMcl4Dv2Chz8A/AdewXOcXEUr1/blCbiwUfwGHEBDoFBaINDCL7tToylpdRmHmtK4z7sPJzjE1D7+OAQGETADTfRWFdLXTudJKfihohAVmUXsPJ4u/Zhsvk6q7127apQ83XWh8nmdm1ldgGrswu5KcLyOssOeKZ/DEuOZJJXU2d1Ww0mk8V1ZHdfZ901IJilSfl8m5RPalkNL25OJa+qjlv7Wu/cfnFzKh/vyWJfYSUZFbW8uS2djPJaLo3wakozyN+VnXkVLE8pJLtSz6asMpanFNLXt2sdwadqat8gvj+Uz3eH8kktr2Xe1jTyq/TcnGD9OM7bmsaivdnsL6rimK6Ot//O4FhFLf8Ka47t77wK1mSUkFpeS6aujiUHcjlcUsUQf1er2+wMl74DcO7TD7WfP2o/f3yuvg47jYbajI6fjMr/+gtch5yHQzujesv/2kzai7M5/PB9pL04m7KNf5w0L3433YzHxf9C5e1t9Xt9fi5lm/4k6N4ZuPQbgNrbB4eQUJziEk4eaCfcNTCYbw/m883BfI6W1TB3Uyq5VXVM6We9PM7dlMq/dzeXxzf+MpfHy1qVx115Ffx8ojxmlvFzSiH9znB5/Kexs/vf+PyvOmdDX7JkCUqlku3bt7Nw4UIWLFjAJ598AoDBYOCll15i7969LFu2jPT0dO64446mdXNycrjoootwcHBg/fr17Nq1i6lTp1Jv5Ufihg0buPTSS5k7dy7PPvtsp/KWmprKsmXLWLFiBStWrODPP//ktddea/p+1qxZ/PDDDyxZsoTdu3cTFRXFmDFjKC0ttbq97du3M3XqVKZPn05iYiKjRo3i5Zdf7lReJk6cyGOPPUbv3r3Jy8sjLy+PiS0eS2rthRdeYPbs2ezevRulUsnkyZOZNWsW7777Lps2bSI1NZXnn3++Kf2iRYt49tlnmTdvHsnJybzyyis899xzLFmypFP56659uri4sHjxYpKSknj33XdZtGgRCxYssNjvyY6TLSgVCmJcndnVaiTUruJyertbb1zi3V3apN9ZXEaMqzP2Cuuv6Rro6Uawk5b9ZdbvUisVCi4N9OG3HNuNUlIqFMS6ObOjyDKvO4rK6e1hPbbe7i5t0v9dVEasm2VsWnt7vhk1mO/+NYRXh8QT5dr2h2SQk5bvLx3K16MG8/zAGAK0mi7H1B6lnYIELxe2tnrUeWteGQN8Tv/CTm1vh76h0WJZXUMjA31Pf5unSmmnIN7Thb/yLGP7K6+M/l2IrbUJvfxZfayI2lbx2srZPtceTOjF9qIy9pRYPwdtSaW0o0+8H5v+yrBYvmlbBoP6d/w46wk3XduXLduPkZvXfANCrbJH3+oHpV5fz5CBHT+SKDrnxLm2rfW5ll9Gf++unWtapT2/XjOUVdcO492LE4j16J7OtxMMxcXU63S4JjT/sLNTqXCOiaEqtf0fplVpqRbrALj2TqC61Q3fzK+/xq1vX1zj2//hWJWSwt7HH+PAc7M59sX/YbTVqJoWetIxa02pUBDn7sz2gnKL5X8XlNPXy3Z1v4PSHns7BTpj93WoGouLqddV4JzQu2mZnUqFU3QMNe0MJgCoSUvDpVV5dEnoTU1a++s01NYCYO9o/Xg11tdTunkjdlotDu2Mzu2sE+1a69H0u4rbv85KsNKu7SguI6bVddaUqBAqDEZWZbd/XRjkqOXbUUP58uLBzO7fvddZKjsFfXxd2JRl+VtoU1YZgzvZgaYAnNT2lLfovN+ZV0FfXxf6H+/QCXF1YFSYJ39kdG7ghi2o7BT09nFpM+pwc3YZg/xOITaVPeX69jt9RwS5E+Hu2O4j6KfK1NiIbuffmAwGtBG92k1X/tdmjEVFeF9xlfXvt2yk+Jef8Ll6AhHPvYTP1RMoWrGMim1bupS/qv17UXt7U7V/L6nPP8XR554k77+LbTLCUWWnoK+vCxszW5XHzDIGB5x+edyRW0EfXxf6+5nLY6irA6PCPVl/BsujEOeac/aR6pCQEBYsWIBCoSA2Npb9+/ezYMEC7r77bqZOndqULjIykoULFzJs2DCqqqpwdnbmgw8+wM3NjW+++QaVSgVATExMm338/PPPTJkyhY8//pjJkyd3Om+NjY0sXrwYl+OPUUyZMoV169Yxb948qqur+eijj1i8eDHjxo0DzB1oa9as4dNPP+WJJ55os713332XMWPG8NRTTzXldevWraxevfqkedFqtTg7O6NUKjv1CPXjjz/OmDFjAHj44YeZPHky69at44ILLgBg2rRpTSMkAV566SXmz5/PddddB0BERARJSUl8/PHH3H777SfdX3ftc/bs2U3pw8PDeeyxx/j222+ZNWtW0/KOjpOtuKlV2NspKDNYXmiXGYx4aNRW1/HUqNlpKG+TXmlnh5ta2TTaz1FpzzeXDEVlp6DRBAuTUtndTmfH+X6eOCuV/G7DDsd2Y9Mb8ewgtjJ9uWX6VrFlVtXw2r4jpOmqcVQquSEigPfP78u0jYnkHL8Ln1Reyat7j5BVXYunWsWU6BA+OL8fd2zcg+4kI0pOh4dGhdJOQUmrx5dKao14BapOe7tbc8u4LSGIXQUVZFXWMTzAnVEhXu12dnWHpthq28bm3YXYWurj5Uy0hxNztqWcPPFpOpvn2iX+3kS7OvHAX3ttG1Q7PDy0KJV2FJfWWCwvKanBx+vknRY+3k5cfEEEjzzzq8XyTX9lMPXWIfy9O5tjWeVcMCyMyy6Ows7+zJXHnsy9nXqktNaIV8Dpn2sZulrmbDvMkfIanFX2TI4N4rPL+zNp1W6yKq2PXOqqE517SlfLH14qF1cMpe3/cKrX6VC1XsfV1aKzsHTH39RkHiP+mfZv8rr27oPH4MGoPb3QFxeTu/xnUha8Tfwzz2Knsk29BT3rmLV2IrZSfau6X29guIO7zfbzQJ8wimoN7GjVsWlLRp25Pla6WJYtpasrxg6eCKrXVbRdx8W13UdCTSYTed8vxbFXFA5BljdidPv3kvXpIhoNBpSubkQ89ChK566NWmpq1/RWrrPUp3Cdpbds13q7uzAuxI97Nie2u+9D5ZW8vu8I2dW1eGhU3NIrhIUj+jFtUzddZ2nN5bGoxjLWohoj3o7WY23t7oHBOKrs+fVo81NRvxwpwlOr4rvrB6DAPOXBF/tz+Gh3li2z3yEPB3NsxbWWsRXXGvB27Nxc+tP6B6NV2bMy1fKJL2e1PZtvHY76+PXJnM1H2JJT3qX81uVkc+ytVzHVG7HTaAi6ezqaAOs3Mw2FBRT9/ANhjz6Jwt7eapriVSvwve4mXAYMBkDt7YM+L4/yzRtxG37BaefTWFyMsbSEyj27CLhtKqbGRgp/+JacT/5N6MOPn/Z2ATyPl8diK+XRp5Pl8Z5BwTgq7VlxxLI8emlV/HBDc3n8v305fLjrzJVHIc4152yH4/Dhw1G0+FE+YsQI5s+fT0NDA/v27WPOnDkkJiZSWlpKY6N5RE1mZiYJCQkkJiYycuTIps5Ga7Zv386KFSv47rvvmDBhwinlLTw8vKkTCyAgIKDpke7U1FSMRmNTZxqASqVi2LBhJCcnW91ecnJymzyMGDGiUx2Op6pfv35N/+/n5wdA3759LZadiKWoqIisrCymTZvG3Xff3ZSmvr4eNze3s7rP77//nnfeeYejR49SVVVFfX09rq1+5HR0nKzR6/Xo9ZZzdjQaDNi1c9HXUutZbxTQNAWA9fSW350o6S1Xqa1v4L6tiWjt7Rno5cZ9cRHk1dZZfWR6XLAffxeXUaK3/fxJrcMwn5anHtsJSeVVJJU33508UKZj0YX9uS48gPeSzJPT/91ilGQ6cLC8kq8uGcyYYF++S8899SA6y2qsp++1v9OYMyKK5dcMwQRkVdby89ECrony69qGT0ObMqpoe2xP14Qof46UVXOgpHtfGgBn/lzzcVAzPT6Cp3YexHiG519rE5ei41hPuOHq3ugq61jzxxGL5S++uZ5XnhvNmh+nYjJBZnY53y8/YPVlM8J2unqu7S+pZH9J83QgiUU6vho3kEkxgW1e5nS6SrZvJ/O/Xzb9HTVjBmCtDjTRtlZvzfL7lrEbSkvJ+vZboh9+pMOOQ8+hQ5v+XxsUhFN4GPuffpqK/fvxGDSo3fVs5Z9wzDrLSjVis7r/1pggLg/1Yfqf+206P2XZ39vI/aq5PIZNf9D8P62LnomTN9Stvm7dJrSU+81X1OVk0+vxWW2+c46JI+qZ52moqqR0yyYyP/mYqFnPtOmUtwlFx/nsqF3T2tvzdP8Y3t5/tMOOw79bjJJMrzLf6P3i4sGMDvLl+4xuvM5qpbOXWVdH+/DIsHDu/vUAJS069oYHuTFjcBjP/XmExIJKwt0ceH5kFIXVBt7bmdk9mW6HtePSmXPtyl4+PDg4jPt/O0hpq6kXqg0NXP39LpxU9owIcufpEb3I1NXxdxdGOWr8/Il4+nkaamupTNxF3hefEfrIrDadjqbGRnI/X4T3+GtQ+1kf1FJfWUl9WSl5Xy4h77//1/xFYwN2Wi0AWR+8Q81R8/WIytOLyOde7FQ+TSYTpvp6Am+b2rT/gFvuIOP1l9AX5KNpJ0+nwvo15cnXuzrGh0fPC+euFVbK49AwZm84wp58c3mcc7G5PC7ccWbLoxDninO2w7E9dXV1jB49mtGjR/Pll1/i4+NDZmYmY8aMwWAwd7Zoj1dwHenVqxdeXl589tlnjB8/HnUnOpVOaN2RqVAomjo9T/wYVChaX3Cb2ixr+d2Z0jLvJ/LTetmJWE78d9GiRZx33nkW27Fv5y7Xmdjntm3bmDRpEnPnzmXMmDFNo1nnz5/f7n5b78eaV199lblz51osi7jlTnrdOq3ddSoMRhoaTXiqLfflrlZRbrD+eFGp3tDmzrW7WkV9Y6PFxaEJyD0+4i+1sppQJ0cmRwazrzTJYl1fBw0DvdyZu+cQttQUm6ZtbNbmXITjsWmsx9be3EAm4FBFFcFO7Z+3dQ2NpFXWEOxkfWL4rirTG6lvNOGltcy7p4PK4kLidLb78IZk1HYK3DUqCmsNPDoonJyqMzPC5UQe6htNeFuLzQZzijnY2zEmzIcP9x47eeIuOFvnWrSrMx4aNR+OGNCU3t5OQV8PV64JDeCK37di64fIy8pqqa9vbDOa0cvTsc2oR2tuvKYvy35NwlhvmbPSslrum/kzarU9Hm5aCoqqePKhi8hq542M4tSUn6hHHCzLnIeDqs2PyK4wAQdLKgl1Ofm1Tme59++PU0RE8z6OT0FjrNChcnNvWm6srOywg0Xp6to0Gu2E+srmUY81mceor6wk+ZUWTxo0NlJ15AiFG/5g0AcforAy0ZHKzR21lxf6Dm4ano5/8jE7mfZi89So223DT8UtMUHcERfCjE0HOFpx8nrpVLj2G4BjePNccaZ6c37rdZblsb5S12YEY0tKV7c2oxkb2inDud9+ReX+vUTOfAKVh2eb7+00GjS+vuDri2NkLw4//yylWzfjO/aKUw2vyYl2zaPVdZaHWtVmNP8JVq+zNM3tWrizIwGODrw8uPlR8hM/P34fcz63b9ptdU7HuoZG0itrCOqu66xac3n0cbSM1dtRRXFNxzfLr4zy4fV/xTJ9dRJbssstvpt5XgQ/Hi7g2yTzW7oPl1SjVdrz6qgY3t+Z2c2vwTErqzseW6vrLC+tus3TJa1d0cuHVy6O4aG1yWy1MnLRBGTqzMcruaSaXu6O3DcwpEsdjgqlErWv+ca3NiycumMZlP2xFv+bb7NI11hXR11mBnXZmRQs/ep4hkxgMnHowXsImfFoUyel/823oQ2PsFj/xKR1/rfcjun4b3SFfee7HpSubmBnb9HZqfY3z4lZX1rSpQ7H0o7K40mO2VXRPrx5aSz3r0pic1a5xXePD4/gx0MFfHOwuTw6qux57V8xvLfjzJTHf6Iz+OCXOAvO2Q7Hbdu2tfk7OjqaQ4cOUVxczGuvvUZISAgAO3davgWwX79+LFmyBKPR2O4oR29vb3788UcuueQSJk6cyNKlSzscEdlZUVFRqNVqNm/ezM033wyA0Whk586dPPLII1bXSUhIsBpvZ6nVahoarE/u3RV+fn4EBQWRlpbGLbfcYvPtn+4+t2zZQlhYmMWcm8eOdb2z4+mnn2bmTMu3oE7YsKvDdepNJlJ0VQzydmdLYfM8IIO83dlaWGp1neTySob7Wl7MDvZ2J0VX1fGbmBWgsvJDbEywL+V6I9uLrO/vdNWbTByuqGKIjzubC5q3PcTbnS0F1vd1sLyS81vFNtTHncMVHccW5epEWmX7P1hUdgrCnLU2fSFOS/WNJpJKKhkR6M76rObHs0YEePBHVtfnXTE0miisNaBUKLgs1JvfuvFNzq3VN5pILq1kuL9lbMP9PdiQ3fXYRod5o7a349f07n3L8dk61/aUVHD35j0WXz/eN4qsqlq+Tc+xeWcjgLG+kQPJBVw4PJzf/zjatPzC4eGs3XC0gzXhvMEhhId6sHTZgXbTGAwNFBRVoVTaMebSaFauOWyzvP8vO3Gunefvzh/Ztj/XWor1cOZoue3elm7v4GDxpl+TyYTS1RVdchKOoaGAee66qpQUgo5Pd2KNc2QvdMnJ+F12edMyXVISTr3M84O5xMWT8PwLFutkLFmMg78//mPGWu1sBKivqsJQWorqFJ6u6Ix/8jE7mXqTiUPlVQzzc+fP3OZYhvm5szG3a7HdGhPEnfEhPLzpIIfKbD+y3Xp5dKMqOQltSHN5rD6Sgv+E69vdjmNkJJXJSXhf2lweK5OScIxsnq/OZDKR++3X6BL3EDnzcdTePp3MpampY/50nWjXBntZXlcN7uA6K6m8khGt2rUh3u6kHL/OyqyuYdomyzZrakwoWnt7PkhOp8jK28nBfJ0V6qxlf1n3XGcZG00cKKzkwhAPfktrLn8XhniwJr398nh1tA9vXBrLQ78l88extv8mWqVdm4EbjSYTCoVtn+ToiLHRxMGiSi4I9mBNi7n6Lgh2Z20Hc/dd2cuHVy+J4dF1h9iQ2blreIVCgdrexq9gMJlotFKW7RwciHjWciBG2cY/qEk5RNBd96Py8sZOo0Hp7oGxpAi3YcOtbl7l3rnHyltz7BVFSWMDhqLCprdqGwoLzNv09Opo1ZMyNprYX1jJyFDL8jgy1IPf0zoojzE+vHVZLDNWJ7M+w0p5VLUtjw1nuDwKca45Zzscs7KymDlzJvfeey+7d+/mvffeY/78+YSGhqJWq3nvvfe47777OHDgAC+99JLFujNmzOC9995j0qRJPP3007i5ubFt2zaGDRtGbGxsUzpfX1/Wr1/PqFGjmDx5Mt988w1KZdf+SZycnLj//vt54okn8PT0JDQ0lDfeeIOamhqmTbM+Uu6hhx7i/PPP54033uDaa6/l999/P6XHqcPDw0lPTycxMZHg4GBcXFzQaGwz8fOcOXN46KGHcHV1Zdy4cej1enbu3ElZWVmbzjlbOdk+o6KiyMzM5JtvvmHo0KH8+uuv/PTTT13er0ajafPv1pnHqX/IyOXJftGkVFSRXF7JFSH++DpoWJFpvrs1NSYMb42aN/abHydYkZXP1aEB3BsXzqqsAuLdXRgb7Mcre5vnv5sUGURKRRW5NXWo7OwY5uPB5YE+LEyyfBRLAYwJ8mVNbiHd8bTnd+m5PDMgmsPlVRwsr+SqEH/8tBqWH4/t7tgwvB3UvLrXHNvyY/lMCAtgenw4K7IK6O3uwhUhfry0pzm226NDSCqrJLu6FieVkuvCA4hydeKdA82x3R8fztaCUgpq9XhoVEyJCsFRaW/Tl+K09n/JObx6QSwHS6rYW6TjxugAApw0LE3JA+DhgeH4Oqp5dktzLCdeAuCotMfTQUWshxPGRhNpx0d79PV2wddRzeHSanwd1dzfPww7BXx+oOtvtjwVXyTnMO/8WJJKzbFdfzy2746YY3togDm22Vutx+ZhJbYTJkT580dWSbe/3RLOzrlW29BARpVlzHUN5pEkrZfb0qdf7mT+y1ewPymf3ftymXxdPwL9Xfjv9+Z5JJ94cCR+vs48/twqi/VuurYPe/blkpLa9m3h/fv44+/rQtLhQvx9nXn43vOxs1Pw8eJz9w3QTo4aeoU3j2IID/GhX0IYZeVVZHWx06Q7/PdQDi+NiCW5tIp9xTquiwrA31HDD8fPtRn9zefa8381l8EY9+Zzzd1BRYy7+VxL15nL1z19QtlfoiNTV4eTyp7JsYHEeDjx2s6OO5+7QqFQ4HfpZeSvWoXG1w8HX1/yVq3CTq3Gc1jz0wfpn3+G2t2doAnmTkjfSy/l8Ftvkr96Ne4D+lOeuBddcjJxx+dXtndwQNtqbjw7jQalk3PT8oa6OvJW/IL7wEGo3NwwlJSQs+wnlM7OuA8caPNYe8oxs+brlBzmDIvhUFkV+0t0XBvpj5+jhh/TzHXm9D5h+Gg1zN3RHFu02/HY7O1w16iIdnOivrGR9Erzy1RujQni3t5hPP/3YXKr65qegqitb+i2l4YpFAq8/3UphatXovb1RePjR+Hqldip1bgPbS6PWYs/ReXugf+15vLoNepS0t5+k6LfVuHSfwCVexOpOpRs8ch07jdfUb5jO2H3PYCdxgFjhXnkmL1Wi51aTaNeT+GqX3Ht1x+lmzsN1VWU/LkBY1kZboMGdzm279Nzeap/NCm6KpLKKhl/vF375Xi7Ni3GfJ31+j5zu/ZLZj7XhAZwf1w4v2YVkODhwrhgP+Ylmo+hsdHUpm068Tb1lsvvjQ3nr6JSCmv1uKtV3HriOquDl8x01SeJ2bx9eRz7CqvYna/j5t4BBDo78N8D5ke4Z42IwM9JzWNrzTfBro72Yf5lcczdlMqeAl3TaLS6+kYqDeaBFusySpg2IJiDxVXmR1jdtcw8L4K16SXdcl3cns/25/DmqFgOFFWyp0DHxPgAApwd+DrJXI88NiwcPycNs/4wx3ZlLx/eGBXLy1tTSSzQ4a09HltDI1XHY7t3QAgHiirJ1NWhsldwcYgn10b78sLm069Hin7+EafefVB6eNJYV0flrr+pOXKYkAceAaDw5x+oLy8n8PZpKOzs0ARa1tf2Li4olCqL5d5XXEXBd99g56DFOaEPjfX11GVm0FhTg+elo9vNi6GwgEa9ngadDpPRQF2W+ZFjTUAgCqUSx9h4NCGh5H25GL8bJoGpkfxvv8IxLqHdR7xPxSd7slkw+nh5zNNxcx9zefxyv7k8Pnl+BP5Oah49flP26hgfFlwex5yNqezJt14e16aXcNfAYA4UVR1/xF/L48MjWJN2ZsujEOeSc7bD8bbbbqO2tpZhw4Zhb2/Pgw8+yD333INCoWDx4sU888wzLFy4kEGDBvHWW29x9dVXN63r5eXF+vXreeKJJ7j44ouxt7dnwIABFvMqnuDv78/69eu55JJLuOWWW/jqq69O6XFha1577TUaGxuZMmUKlZWVDBkyhN9++w0PD+t3eIYPH84nn3zCCy+8wJw5c7jsssuYPXt2m47U9lx//fX8+OOPjBo1ivLycj7//HOLt3Z3xV133YWjoyNvvvkms2bNwsnJib59+7Y7WvNM7POaa67h0UcfZcaMGej1esaPH89zzz3HnDlzui1PHfkzvxhXlZJbo0Lw1KjJqKzh2V1JFNaZ7yJ7aVT4tnjzX36tntm7krgvLoKrQwMoqTPwYXI6mwuafzw72NvzUEIvvB3U6Bsayaqu5bV9R/gz37ITYZCXO35aB1ZnF3RLbH/kFeOqVnJ7tDm29KoantyRREFtc2x+rWJ7akcSDyREcG1YACV6A+8dTGdjfnNszkolj/XthadGTXV9PUd01Tz01wEOVTSPkvBxUPPcwFjc1ErKDUaSyiqZvnVf0367w28ZxbhrVNzXLxQfrZqj5dVMX3eAvGrzPn20agKcLDukv7+qeS6x3t4ujI/0JaeqjrE/mjtwNPZ2PDggnGAXB2qMDWzKKeWZzYepNNp+RHJHfjtWjJtGxT19m2N74I/m2Ly1avxbxbZ0fIvYvFwYH2GO7YplzZ1TYS5aBvm6ce/a/WckjrN5rp1pv/5+GA83LQ/eMwIfbydSjhYz9cEfm9467ePtRGCrN3u6OKsZe2kML7653uo2NRolMx+4kNAgN6prDGzYks7M51ZSWdV951VXDeoXye9Ln2/6+40XzI98ffHdn9zz2L/PVrba9Xum+Vy7u08o3lo1qRXVPLThAHk1Lc41R8tz7Zsrms+1BC8Xrgj3JbeqjiuXm881F7WS2cOi8XJQU2Ws53BZNXev3cfBbp4z1W/MGBqNBjK/+i8NNTU4RUQQ/fAjFiPPDKWlFtPFOPfqReRdd5Pz8zJyl/+MxseHyLvvwSki0tourFLY2VGbk0PJtm001NSgcnPDJTaWyLvvsdi3rfSkY9ba2uxi3NRKpsaH4O2gJk1Xw6ObD5J/PDYvBzV+rWL78vLmTt14TxfGhvqSW13HhFXmp4mu7xWA2t6O10bEW6y3KCmTT5K6b44y79FjaTQayf36KxpqqnGMiCTiwUctyoSxtNTi2TynXlGETruHguXLKPjlZ9Q+PoTedQ+OLcpj6cYNAKQveMtif8G33YHHiAvAzg59QT7H/vMXDdVV2Ds5oQ0LJ/KxWTi06ow5HRvyzddZU3qF4Olgbtee3tmqXXOwbNee2ZXE9LgIrg4zt2vvJ6WzqeDUbsD4OKh5tr/5OqvCYCSpvJIH/9rXtN/usOJoEe4OKh4eGoaPk5qUkmruXLGfnErzPn0d1QS5NB/Pm/sEorK34+VLonn5kuim5d8n5/P4OnMn0Hs7jmEywWPnReDvrKak1si69BLe2pbebXFYszK1CHeNkgcGh+HrqCaltJq7Vx0gt6o5tkDn5uM4KSEAlb0dc0dGM3dkc2w/Hs7nyQ3mzmNHlT1zRkbj76Smrr6RtPIaHv/jcJsXy5yK+koduUs+pUFXgZ2DFk1QMCEPPIJTvPkN8PUVFRjLTq0suV9wEQq1htK1qyla9j0KtRpNYDCeoy7rcL28r5ZQe6T5ZkfGa+a5HSNffA21lzcKOzuC73uIgu++InPB6yjUGpx798H3uptOMWrrfjlyvDwOC8P3eHm8fblleQxsUR5vOV4e542KZt6o5mP2XVJ+Uyf5wr/N5fGJEc3lcW16CW9uPbPlUYhzicJ0JicQ7KRLLrmEAQMG8M4775ztrIj/cZev3nK2s9BtznCf1xlVUtI9oyzOtnaeNuwRfL17bnCpT/91trPQLfJKOp5y4p8s/rXpZzsL3SYusGfWj4dye24dolL33AmuQjx7ZnkEKNN3bQDDuSo1tfufaDhbVKqee64l9OqZse1J6rl1SOZDF5/tLJwRER/8ebazcEakP/C/cTxbO2dHOAohhBBCCCGEEEKInkleGtOz9dzbwaepd+/eODs7W/3897//lTy18Morr7Sbr3Hjxp21fAkhhBBCCCGEEEKIs+ecHOG4YcOGs7bvlStXYjQarX7n5+d3hnNjdi7mCeC+++7jppusz6Oh1WrPcG6EEEIIIYQQQgghxLngnOxwPJvCwsLOdhbaOBfzBODp6Ymnp+fZzoYQQgghhBBCCCFEj/Hhhx/y5ptvkpeXR+/evXnnnXcYOXKk1bQ//vgjH330EYmJiej1enr37s2cOXMYM2ZMU5rFixdz5513tlm3trYWh254MR/II9VCCCGEEEIIIYQQ4gxTKBT/E59T9e233/LII4/w7LPPsmfPHkaOHMm4cePIzMy0mn7jxo1cfvnlrFy5kl27djFq1Ciuuuoq9uzZY5HO1dWVvLw8i093dTaCjHAUQgghhBBCCCGEEOKc8PbbbzNt2jTuuusuAN555x1+++03PvroI1599dU26d955x2Lv1955RV+/vlnfvnlFwYOHNi0XKFQ4O/v3615b0lGOAohhBBCCCGEEEII0Q30ej06nc7io9frraY1GAzs2rWL0aNHWywfPXo0W7du7dT+GhsbqaysbDMFXlVVFWFhYQQHB3PllVe2GQFpa9LhKIQQQgghhBBCCCFEN3j11Vdxc3Oz+FgbqQhQXFxMQ0NDmxcE+/n5kZ+f36n9zZ8/n+rqaouX/MbFxbF48WKWL1/O119/jYODAxdccAFHjhw5/cBOQh6pFkIIIYQQQgghhBCiGzz99NPMnDnTYplGo+lwndZzP5pMpk7NB/n1118zZ84cfv75Z3x9fZuWDx8+nOHDhzf9fcEFFzBo0CDee+89Fi5c2JkwTpl0OAohhBBCCCGEEEKIM+o03qfyj6TRaE7awXiCt7c39vb2bUYzFhYWthn12Nq3337LtGnT+O6777jssss6TGtnZ8fQoUO7dYSjPFIthBBCCCGEEEIIIcRZplarGTx4MGvWrLFYvmbNGs4///x21/v666+54447+Oqrrxg/fvxJ92MymUhMTCQgIKDLeW6PjHAUQgghhBBCCCGEEOIcMHPmTKZMmcKQIUMYMWIE//nPf8jMzOS+++4DzI9o5+Tk8H//93+AubPxtttu491332X48OFNoyO1Wi1ubm4AzJ07l+HDhxMdHY1Op2PhwoUkJibywQcfdFsc0uEohBBCCCGEEEIIIcQ5YOLEiZSUlPDiiy+Sl5dHnz59WLlyJWFhYQDk5eWRmZnZlP7jjz+mvr6eBx54gAceeKBp+e23387ixYsBKC8v55577iE/Px83NzcGDhzIxo0bGTZsWLfFIR2OQgghhBBCCCGEEOKM+l+Zw/F0TJ8+nenTp1v97kQn4gkbNmw46fYWLFjAggULbJCzzpM5HIUQQgghhBBCCCGEEDYjHY5CCCGEEEIIIYQQQgibkQ5HIYQQQgghhBBCCCGEzUiHoxBCCCGEEEIIIYQQwmbkpTFCCCGEEEIIIYQQ4oxSyBC4Hk0OrxBCCCGEEEIIIYQQwmakw1EIIYQQQgghhBBCCGEz0uEohBBCCCGEEEIIIYSwGZnDUQghhBBCCCGEEEKcUQrF2c6B6E4ywlEIIYQQQgghhBBCCGEz0uEohBBCCCGEEEIIIYSwGelwFEIIIYQQQgghhBBC2Ix0OAohhBBCCCGEEEIIIWxGXhojhBBCCCGEEEIIIc4oO3lpTI8mHY5CdMBV1Xi2s9Bt6nvw2V/WQ8du9w3pueUxwll/trPQbQpmnne2s9At4u17ZlwAyU99eLaz0G08Pp5xtrPQLTw8znYOuk+j6WznoPtU1/fQBhtQ2/fMAxcbbX+2s9BtenbHR88sj9HRPfgHjRA9QM9t5YUQQgghhBBCCCGEEGecdDgKIYQQQgghhBBCCCFsRsYgCyGEEEIIIYQQQogzStGjpzIQMsJRCCGEEEIIIYQQQghhM9LhKIQQQgghhBBCCCGEsBnpcBRCCCGEEEIIIYQQQtiMdDgKIYQQQgghhBBCCCFsRl4aI4QQQgghhBBCCCHOKHlpTM8mIxyFEEIIIYQQQgghhBA2Ix2OQgghhBBCCCGEEEIIm5EORyGEEEIIIYQQQgghhM3IHI5CCCGEEEIIIYQQ4oxSyCSOPZqMcBRCCCGEEEIIIYQQQtiMdDgKIYQQQgghhBBCCCFsRjochRBCCCGEEEIIIYQQNiMdjkIIIYQQQgghhBBCCJuRl8YIIYQQQgghhBBCiDNKIUPgejQ5vEIIIYQQQgghhBBCCJuRDkchhBBCCCGEEEIIIYTNSIejEEIIIYQQQgghhBDCZmQORyGEEEIIIYQQQghxRikUZzsHojvJCEchhBBCCCGEEEIIIYTNSIejEEIIIYQQQgghhBDCZqTDUQghhBBCCCGEEEIIYTPS4SiEEEIIIYQQQgghhLAZeWmMEEIIIYQQQgghhDij5KUxPZuMcBRCCCGEEEIIIYQQQtjM/2SH4x133MG11157WuvOmTOHAQMGdGn/GzZsQKFQUF5e3m6axYsX4+7u3qX9KBQKli1b1qVtCCGEEEIIIYQQQghxKuSR6h5gzpw5LFu2jMTERIvleXl5eHh4nJ1MnUPa+/fpbiaTicJfl1O2ZSMNNTVowyMInHgLDoFBHa5XsWcXhb8sw1BchNrbB7+rJ+A6YFDT90WrV6JL3I2+IA+FSo1jZC/8J9yAxs/fZvkuXrmciuP5dgiPwP+mW9CcJN+6PbsoXrEMY3ERKm8ffK6agEuLfAOUbfyD0rW/UV9RjjogEL8bJuEYFdMc268/U7lrB8ayUhT2ShxCw/C5agLaiEgADCXFpD3/lNX9B067D9dBQ7oU+00xAdyREIy3Vk1qeTVv7ExjT5HOalpvrYrHBkWS4OVMqIuWrw7l8uauNIs0n1zel6F+7m3W3ZhTyoN/HOxSXk/GZDKR+8svFG3aRH1NDc4REYTdfDPawMAO1yvdtYuc5cvRFxWh8fEh+Npr8Rg4sOn7nOXLyV2xwmIdpasrA996C4DG+npyfv6Ziv370RcXY6/V4hofT/B116Hu4k2U9phMJg7+sJK09VswVtfgGRXOoDtvwi24/VgrsnM58N2vlKVnUlNcyoAp1xMz7l8WaRobGjj4w0oyt+ygrlyHg7sr4RcPJ+HasSjsuv9+3cSYAO7obVkedxe2Xx4fHxxJgqczoa7m8vjGzrQ26W6NC+SmmAD8nTSU6+tZk1nMu7vTMTSaujscCzdGB3BbvDm2tIpq3trVwbnmoOLRQZHEe5rPtW8O5/LWbsvYrorwZe6I2DbrDv9m8xmPrbMuGBbHo/ddyaC+kQT4eXDTXfP55fedZztb7bo61J+bIoLw0qjJqKrhw+R09pdZP2YA/TxduT8ugnBnR4r1Br5Ny2FFVr7VtKMCvJk9IJYtBSU8v/tQd4XQrp4S2zWh/kyMbI7j/aSO4+jv6cr0+OY4vknL4ZfM9uN4fmAsm/NLeK5FHF9fMhh/R4c26Zcdy+Pdg23roNM1PsSfG8KD8VSrOVZdw8eH0jhY3n5sfT1cuTs2kjAnR0r0Br7PyGZldnNsoU6OTIkKJdrVGT+tAx8fSmNZZq7FNrT29twWFcoIXy/c1SpSK6v5+FAaKboqm8XVHbGNDfLj0kBfwpydADiqq2LxkQyLfPfxcOWG8GCiXJzwctDw4p4k/ioqtWlcAFeG+HNjeDCeGjXHqmr496E0DpwktntjIwlzNsf2XXo2v7aIbVywH5e1iu3zIxkcrrA8Jl4aNdNiwhnq7YHa3o6c6lrePniEo7pqm8R1No7ZTRHBXODrRbCTFkNjI0nllXyWkkFOTe1pxXCya25rTA31lPy2iortW6kvL0Pt54/PNTfg3LvPaeXhhEajkfyvv0CfdQx9fh7OffoRfO+MNukq/t5G6drVGAoLsdNqcU7ojeNVk7B3cu7Ufs5GXX9VqD9Xh/jj56gB4FhlDV8czeLv4vJO5VmIfzrpcOzB/P1t0wElTk/xmtWUrF9D0JQ70fj5U7RqBRnvvU30C/Owd2h7cQ5Qk5ZK1qcf43fltbgOGIgucQ+Zn3xM5GNP4nj8AqD66GE8Lx6FNiwcU2Mjhct/Mm/3uZew02i6nO/SNaspW7+GgCl3ovb1p3j1CrLef5uI59vPd21aKrmffYzPldfi3H8gVXv3kPPpx4TNfLLpwkW3628Kvv8G/4m3oO0VRfnmjWR98C6Rz72IytMLALWvP3433YzK2weTwUDpH2vIen8BkXNeQenigsrDk6hX5lvsu3zLRkrWrMY5oWsXO2PCvJk1OJJ5O46SWKjjhugAPvxXHyb8sov8Gn2b9Go7O8r0Rhbtz2JKvPXO2Jl/JqOya56YxF2jYun4Qaw5VtSlvHZG/m+/kb92LRF33IGDnx95v/7K4QUL6PvSS+0ex6rUVFIXLSLommvwGDCAssREUj/+mLhZs3CObL4A1QYGEvvoo80rtuh8azQYqMnMJPDKK9EGB9NQU0Pmt99y5IMP6P3ss90S66Ff1pCyaj3D7p2CS4AvST+t5s9X3mfc/OdRaa3H2qA34uzrRch5A0n88od2t5u6dhPD7r8Nt+AAStOOsePjL1FptcSMG9UtsZwwJsybWUMimff3UfYU6rgxxlwer13eQXmsM7LoQBa3tlMer4jw4eFBEbywNYXEIh1hrlpeOt/c4f+mlc7J7jI61JvHB0Xy6s6j7C3ScX1UAO9d0ocbfrUem8refK59ejCLW2Lbv/FRaajnuhWWHXbnamcjgJOjhv1JmXyx9E+++c/Ms52dDl3i7830+AgWHkzjQJmOK0P9eXVIAlM37aawztAmvb9WwyuDE1iZXcCre1Po4+HKQ70jqTAY2VRQYpHW10HDvXHh7CutOFPhWOgpsY0K8OaBhAjeOWCO46pQf14fmsAdG9uP49UhCfyaVcC8RHMcj/Qxx7Ex3zIOPwcN98eFs9dKHPdt3Ysdze1chIsj88/rw4a8YpvFdpGfN/fGRvJBcipJ5TquCPbnpUG9uXfrborq2tYZfloNLw7qzersfN7cf5gEd1ceiO9FhcHIlkJzbA72duTX1rG5oJh7Yq13sDzcO4pwZ0feOpBCSZ2BfwX68srgPty7dTcl+rb/pudKbP083diQX0RyeRqGhkZujAhm3uA+3Nci3w729qRVVvF7TgHPDYi3SSytXezvzX1xkbyflMrBch3jQ/x5eXBv7t7SfmwvD+rNqpx8Xt9/mN7ursxI6EWF0cjm4+dWPw83/sgrIqk8DWNjIzeGB/PK4D7cs6U5NmelPW+f1499pRXM3n2Qcr2RAEcHqo0NNonrbB2zvh5u/JKVR0pFFfYKBbdHhzFvsHm/+obGU47jZNfc1hT9sgzd39vwv/k21P4BVCcdIGfRB4Q99jQOIaGnnIcmjY3YqVR4XHIplXt2WU1Sc/QIef/3Kb7XT8S5b3/qy8vJ/+YL9N98jve0B0+6i7NV1xfX6VmUcozcanPH8OggX14cHM+9WxI5VnV6ncU9jczh2LOdk49UX3LJJcyYMYMZM2bg7u6Ol5cXs2fPxmQy/3D48ssvGTJkCC4uLvj7+3PzzTdTWFhosY2DBw8yfvx4XF1dcXFxYeTIkaSmplrd365du/D19WXevHmdzuMXX3xBeHg4bm5uTJo0icrKyqbv9Ho9Dz30EL6+vjg4OHDhhReyY8eODre3ePFiQkNDcXR0ZMKECZSUlHSYvuV6c+fOZe/evSgUChQKBYsXLwYsH6nOyMhAoVCwdOlSRo4ciVarZejQoaSkpLBjxw6GDBmCs7MzY8eOpajIsjPk888/Jz4+HgcHB+Li4vjwww87/e+UnZ3NpEmT8PT0xMnJiSFDhrB9+/am7z/66CN69eqFWq0mNjaWL774oum7E3luOTKxvLwchULBhg0bgObH09etW8eQIUNwdHTk/PPP5/Dhwyf99+lOJpOJkvVr8Rk7HreBg3EIDCLotqk0GgxU7Nje7nrF69fgHJeAz9gr0PgH4DP2Cpzj4ij5Y21TmvAZj+Ix4gIcAoPQBocQNOVOjKWl1GYes0m+S/9Yi9eY8bgMGIwmMIiAKeZ86zrId+kfa3CKS8BrjDnfXmOuwCk2jtIW+S5dtwb3ERfifsFFaPzNoxtVHh6UbdrQlMZt6Hk4xSWg9vZBExiE73UTaayrRZ+TDYDCzg6lm5vFp3LvblwHD8WunU60zpoSH8RPqQX8dLSAdF0tb+5KI79Gz00xAVbT51breWNnGivSC6k01ltNozPUU1JnbPoMD3Cnrr6BNcds90PMGpPJRMHatQRecQWegwbhGBRExJ130mgwULK9/eOYv24dbvHxBI4bhzYggMBx43CJj6dg3TrLhHZ2qNzcmj8tLkyVjo7EPvoonkOGoPX3xzkyktDJk6k5dgx9J+u1U431yOo/iL9mDMHDBuAWEsiw+6fQYDCQubX9etezVxj9b7mO0POHYKe0fu+t5Eg6QUP6ETiwD04+XoScNwi/vvGUpXf9XDuZ2xKC+OloAT8eL49v7DxeHmPbL4+v70zjl7RCqgzWy2N/b1cSC3WszCgit1rPX3nlrMooordn50YG2MotcUEsSytgWao5trd2p1FQo+eGaOux5VXreWtXGr+mF1LVzrl2QsvzraTO2B3Zt5nfN+xl7ltL+Xl1x9cH54IbIgJZlV3AyuwCMqtr+TA5ncI6PVeFWj9mV4X6U1in58PkdDKra1mZXcDq7EJuirAcdWwHPNM/hiVHMsmrqTsDkbTVU2K7MSKQlVnNcXxwPI6rw6zHcfXxOD5oEceqduJ4dkAMi9uJo8JQT5nB2PQZ4etJTnUte0vbHzV0qiaEB/F7TgG/5RSQVV3Lx4fTKarTMz7Y+o318cEBFNbq+fhwOlnVtfyWU8DvOQVcH958wyJFV8WnKRn8mV+MsbFtZ43azo4Lfb35NCWDA2U68mrr+G9qJvm1dYwPsd0N/e6I7Y39KfyalU9aZTXZNbW8e/AIdgoY4OnelGZncRn/dzSTrYW2b5dPuC4siN+yC1h9PLZ/HzLHdmU7/35XhgRQWKfn34fMsa22Etvr+1NYcTy2rOpa3jl4BIUCBno1x3ZTRDDFdXrmHzjC4YoqCur0JJZWkFdrm/PwbB2z53YfZG1uIZnVNaRXVbPgQAp+WgeiXU+vDT/ZNbc1ur//wmvMFTj36Yfa2wePi0bhFN+b0nW/NaUxmUyUrFlF6vNPcfiR+0l/ZQ663R2P3rfTaPCfPAX3Cy7C3tXNaprajDRUXt54jroMtbcPjlHRuF94McasjE7Fe7bq+r8Ky/i7qIzsmjqya+r47EgmtfUNJLhb79QVoqc5JzscAZYsWYJSqWT79u0sXLiQBQsW8MknnwBgMBh46aWX2Lt3L8uWLSM9PZ077rijad2cnBwuuugiHBwcWL9+Pbt27WLq1KnU17f9obJhwwYuvfRS5s6dy7OdHH2TmprKsmXLWLFiBStWrODPP//ktddea/p+1qxZ/PDDDyxZsoTdu3cTFRXFmDFjKC21/qjC9u3bmTp1KtOnTycxMZFRo0bx8ssvdyovEydO5LHHHqN3797k5eWRl5fHxIkT203/wgsvMHv2bHbv3o1SqWTy5MnMmjWLd999l02bNpGamsrzzz/flH7RokU8++yzzJs3j+TkZF555RWee+45lixZctK8VVVVcfHFF5Obm8vy5cvZu3cvs2bNovH4hd1PP/3Eww8/zGOPPcaBAwe49957ufPOO/njjz86FXtLzz77LPPnz2fnzp0olUqmTp16Wv8+tmIsKaZeV4FzfO+mZXYqFU7RsdSkHW13vdr0NJzjEyyWOcf37nCdhtoaAOydnLqYa3O+G3QVOLXKt2NULLXpHefbqVW+nRJ6U3s836b6euqyjllsF8Apvje1adZvBJjq6ynfshE7rRZNcLDVNHWZGeizs3A7/8JOxdcepZ2CeE8X/sors1j+V14Z/X1cu7Ttlib08mf1sSJqT+NO9KnQFxdj1OlwTWg+JnYqFS4xMVSltT+SrTo11WIdALeEBKpa3azRFxaS+MQT7H36aVL/8x/qijoesdlQUwMKBUpHx9OIpmPVhSXUlevw79c8QsNepcInPorilPQubds7thcFBw5TmVcAQPmxbIoPpxIwoGujaU/mRHnc2ro85pYxoAvlcU+RjngvZ/p4mX+cBDk7MDLIk405tn+Mrj0nYtvWOrb8Mvp7d+1c0yrt+fWaoay6dhjvXpxArEfX60QBSoWCGFdndrZ6/GtXcTm9Paz/YEpwd2FXq/Q7isuIcXPGvsVQhilRIVQYjKzKLuRs6CmxtRfHzqJy+rTzozbBw4WdRZbpdxSVEdsqjtuiQyg3GFnZiTiUCgWXB/nYNGalQkG0izO7SyzzuruknAR363VGnLuL1fTRrpaxdcReocDeTtGmM9LQ2Ehvd+sdIqfqTMWmsbfHXqGg0njmbsIoFQqiXZ3Z1SqvuzqILd7NpU36ncXlxJwkNmWr2Ib7epFSUcWz/eP49pJhfDBiAOOC/boUzwnn0jFzPH6ztL2b3qeiM9fcYJ42R6FSWSxTqNTUpDb/Rij+5Scq/tqC36RbiZj9Ih6jLidvySfUHDncpTxqI3tRX15G1YF9mEwm6nUVVO7ZhUNC/5Oue67U9XaYR6M7KO1JKq88aXoheoJz9pHqkJAQFixYgEKhIDY2lv3797NgwQLuvvvups4kgMjISBYuXMiwYcOoqqrC2dmZDz74ADc3N7755htUxyvFmJiYNvv4+eefmTJlCh9//DGTJ0/udN4aGxtZvHgxLsdH9UyZMoV169Yxb948qqur+eijj1i8eDHjxo0DzJ12a9as4dNPP+WJJ55os713332XMWPG8NRTTzXldevWraxevfqkedFqtTg7O6NUKjv1CPXjjz/OmDFjAHj44YeZPHky69at44ILLgBg2rRpFiMAX3rpJebPn891110HQEREBElJSXz88cfcfvvtHe7rq6++oqioiB07duDp6QlAVFRU0/dvvfUWd9xxB9OnTwdg5syZbNu2jbfeeotRo07tccV58+Zx8cUXA/DUU08xfvx46urqTunfR6/Xo9dbPgrRYDBgr1afUl4A6ivMQ+qVLpYXH0oXV4yl7d9NrtdVoGx1Z0/p6ka9zvpIAZPJRP4PS3HsFX3SuSE7o15nzrd9q3zbu7pSf5J827tY5tvexY2GSnO+66uqoLERe9dW23VxpUFn+fhB1f695Hz2H0xGA0pXN0IenInS2frFQPnWzaj9A3CMjLL6fWd5aFQo7RSU1Fo+UlFSa8Q7UNXOWqemj5cz0R5OzNmWYpPtdcR4vLyoWv17q1xdOxxlaNTprK5jbFH+nCIiiLjzThz8/DDqdOStXEny66/Td84clM5t77I3Go1k//QTnsOGYa/VdiUsq+oqzHlzcLMsIw6urlQXd60jLe6qyzHW1LLq8ZdQ2CkwNZroe9NVhJ7ftblCT6apPLZ6xKekzoi3w+mXx9UZRXhoVCwZ0x8UoLKz49vDuXx2sP3RDLbm3k5spbVGvAJOP7YMXS1zth3mSHkNzip7JscG8dnl/Zm0ajdZlWdn5FxP4aZWYW+noExv+cO3TG/Es5320VOjpkxf3ia90s4ON7WSUr2R3u4ujAvx457Nid2U85PrKbG1G4fBiIemgzgM5ZbpW8XRx8OFK4L9uKuTcVzo54mzUslqG3Y4ujbFZllnlBsMeGjcra7joVZTbrC8qVGmN6C0s8NVpaTMcPKOt9qGBpLKdUyODCWz+jDlegMXB/gQ6+ZC7mnOmdfamYrtzugwSvQG9pSW2yTfnXEitnJDq9j0Bjy83a2u46FRU15sGVu5wRybm0pJqZXYpsaYY2vZoRegdeDKkAB+PJbDN2lZxLq5cH9cJMZGE2tzu1Y2z6Vjdk9sBAfKKjhWVXPKcZxwKtfcYB4EUbpuDY5RMai8fag5nEzVvkQwmTvmG/V6StevIfShx9FG9gJA7e1DbdoRyjf/iWN027mWO8sxMoqA2+8i97OPaTTWQ2MDzn0H4Hb9zSdd92zX9RHOjrw3oh9qOztqGxp4YfcheZxa/M84Zzschw8fjqLF3YMRI0Ywf/58Ghoa2LdvH3PmzCExMZHS0tKmEXOZmZkkJCSQmJjIyJEjmzobrdm+fTsrVqzgu+++Y8KECaeUt/Dw8KbORoCAgICmR7pTU1MxGo1NHXgAKpWKYcOGkZycbHV7ycnJbfIwYsSITnU4nqp+/fo1/b+fn/luX9++fS2WnYilqKiIrKwspk2bxt13392Upr6+Hje3k9/dTUxMZODAgU2dja0lJydzzz33WCy74IILePfddzsf0HEt4woIMA+NLywsJDS08/OJvPrqq8ydO9diWdyUO0i4fWo7azQr/3sbuV83Pw4edv9D5v9pc+PSZGXZSZjan4Ms79uvqMvJJvKxJ09xo2YVf28jv0W+Q6ab893mhmsHeTihM+so2gRvarOiY0wcEU8/T0N1FeVbNpH76ceEPfFMm87bRoMB3c7teI298qR566zWOVYoOhV6p0yI8udIWTUHSmw72TxAyfbtZHz5ZdPf0TPaTrQN5g7qk06UcpLv3VvUFwDOvXqx79lnKf7rL/wvv9ziu8b6elL/8x9obCT85pNfEHbGsc1/s+vTr5v+vnDW9BMZt0hnwtTlOWGy/trFsc1/M/yBO3ANDqD8WDaJX/yA1sON8IuGd23jndC67CloW0ZPxRA/N+7uG8K8v4+yv7iSEBctTw6NpKjWwH/2Z3Ulq13W1XNtf0kl+0uaRwskFun4atxAJsUEtnmZk7ARhfk8a0/r706cjiaT+WUcT/eP4e39R9HZYHSOzf1DY7Oe41OI43ggJ+J4pn8Mbx3ofBxXhPixvajMZvMbttSmfbayrMP0p9EevLU/hUd7R/Pfi4fR0GjiaGUVG/KKiDrNR1jb052x3RAexCUBPszasR/jWZjTtk07dpLg2vvK2vIbw4MYFeDDE39bxqZQwJGKKj4/Yp7+JLWymjBnR8aH+He5w7G9/JzpYzY9LpIIFyce/3tfJ3ILlTu2UfzN/zX9HfLAwzhGxXT6mvsE3xsmk//VEtJenA0KBWpvH9xGXEDFX1sA0OfnYjIayXzvbYv1TA31OASbf5OlvfR80+ALx6hoQh54pFMx6PNyKfz+a7zGXYVTQm/qKyoo+uk7ypb+H56TT/5bzaozVNdnVddyz5ZEnJVKRvp78WS/aGZu3y+djuJ/wjnb4dieuro6Ro8ezejRo/nyyy/x8fEhMzOTMWPGYDh+F03biVE0vXr1wsvLi88++4zx48ejPoVRbK07MhUKRVOn54l5JhWtWhKTydRmWcvvzpSWeT+Rn9bLTsRy4r+LFi3ivPPOs9iOvb39SffVmePQ0b+T3fEXUbT89zG282iBtbgarczJ05Gnn36amTMtJ+6/bUvn5tZy6TeAXuERTX+bjj++X6/ToXJzb1peX1nZbiMOJ0YzWo74q6/UoXRtu07ut1+h25dI5MxZqDysd+qejHO/AUS0k29li3w3VFa2GZ14snw3VOmaRkoqnZ3Bzq5tmsrKNqMp7TQa1L5+gB/aiF6kznmGiq2b8RpzhUW6yj27aDQYcDvv/E7H254yvZH6RhPeWst6wNNBZZN54Bzs7RgT5sOHe7tn7j/3/v3pHdH2OBp1Oos3Q9dXVrYZwdiSytUVY4XlMbI26rEle40Gx6Ag6lrNo3uis1FfUkLczJk2G90YOLgfnlHhFvsB80hHrUfzjRC9rhKNW9ce0d371U/EXT26aUSje2gQNcWlJP/8e7d2OHZXeZzRP4wVaYX8eNT8iPiR8hq0SjueHx7Nov1ZXerM7Kzy47F5OVjG5uGgotSGcy6agIMllYS62H5U7f+aCoORhkYTHhrLax8PtardkWKlegOerUbWuWtU1Dc2ojPWE+7sSICjAy8Pbp7C4cTlwO9jzuf2TbvPyLyHPSW2E3F4WotD30Ecra593dVt43jFShxrx57PbRt3k9siDj8HDYO83Xlhl23fxK1ris0yr25qNeXtxFZmMODRJjZ1U2ydlVdbx6yd+9HY2+Fob0+ZwchT/WLJt9FcgN0d2/VhQUyMCOGZXQfI6MIouNOhazq32sbW3rlVpje0Sd9ebDeEBzEpMoSndh4gvVVspXoDx6otl2VV13Chn9fphtPkXDhm98dFMtzXiyd27KO4k537Tn374xLRPGWW0t0D6Pw1d9N6Li4E3zuDRqORhuoqlG7uFP38Ayovb3OC4x2kIdMfsvgdATQ9ih0y/WFMDea4Fafw+7vkt5VoI6PwunyseUFQCHZqDZkLXsftiuuwb7W/ls52XV9vMjXVlym6KmLdnLkuLJAFB61PK/W/xu40bgiJf45zdg7Hbdu2tfk7OjqaQ4cOUVxczGuvvcbIkSOJi4tr88KYfv36sWnTpnY7pwC8vb1Zv349qampTJw4scO0pyIqKgq1Ws3mzZublhmNRnbu3El8vPW3wCUkJFiNt7PUajUNDbZ581pLfn5+BAUFkZaWRlRUlMUnokXnRnv69evXNArVmvj4eIt/J4CtW7c2/Tv5+PgAkJeX1/R9yxfIdFZn/300Gg2urq4Wn84+Tm3v4IDG16/5ExCI0tWNquSDTWka6+upPnK4w8d/tRGRVB1KslhWlZxksY7JZCL32/+iS9xNxCOPo/b26VQe28u32tev+RMQiL2rG9WHmvNtqq+n5uhhtBEd57s62TLf1clJaI/nW6FU4hASRnWr2KoPJTU9ctEuk4nG+rbnZ/lfm3DpO6DdN+mdiv9n777Dm6r+P4C/k7YZ3XvvlraUUSjIEgRkI8gSFPmiyBRUUEQRGSoqbgREERUUFQSRrey9ZbWsFlq6995Nk6bJ74+UtGnT0kLaIr/363n6PM3NuTfnk3tyc/O5556jVKkRmVuEbs7WOsu7OdvgataDD3w/0MseIiMh/olrmrG8jCQSSBwdq/5cXGBiaYnCiKr3W6VUoigqSme26ZrM/PxQWKMndmFEBMz96t5HqvJyyNLSYFKt17M22ZiZicA33tB7q/X9MpFKYOHsqP2zdHOBxNoSGderfuRWKJXIirwD+4B7H6fqU6Eor3VRRCAUNvlForvtsbuLtc7ybi42CH+A9igxFkJVo+6qyk7XzTVD4N3Yuur7rGUbbpIJAAi0MUe2zPA9rf6/UarViCosRqdqkzIAQCd7a9zM0z8GVUR+ETrVuG2ys701ogqKUaFWI7GkFFNOhWH6mXDt37nMXITnFGD6mXBkyWrP9NoUHpXY7sbRuUa9Otlb40Yd44RF5OmP43a1OF46GYapp8O1f2czNHFMPR2OzBpxDPZwRL68HOeyDDsmrFKtRnRRsc6kIAAQameNiHz9x4xb+UUI1VM+ulATW2PJK1TIU5TD3NgInexscN5AE600ZWxjvN0w3tcDi6/cRHSh4e+suBelWo3owmK9da0rtsiC2rF1srNGVI3YnvF2w/O+Hlh4WX9sEfmF8DDTvdjkZiqt1WbvR0vvs5lBvujhaId3Ll1HRiPiEUqkOuf7wrp+39Rxzl1reyYmMLG2AVQVKAq7DIv2HQAAIhdXCIyNUZ6bq/v7wtFJ2znCxM6ualll4rMhVOWKWicrAuHdVEb9n+uH7VgvAGDCLBv9P/HQJhyTkpIwd+5c3L59G3/88Qe++eYbzJkzB56enhCJRPjmm28QGxuL3bt348MPP9RZ99VXX0VhYSGee+45XLp0CdHR0fjtt9+0Mxff5ejoiKNHj+LWrVsYP3683kllGsvMzAwzZ87EW2+9hf379yMiIgLTpk1DaWkppkyZoned2bNnY//+/fj8888RFRWF1atXN+p2am9vb8TFxSE8PBzZ2dm1xiF8EO+//z4++eQTrFy5ElFRUbh+/Tp+/vlnLF++/J7rjh8/Hs7Ozhg5ciTOnDmD2NhYbNu2DefOnQMAvPXWW/jll1/w/fffIzo6GsuXL8f27dsxb948AJoekt26dcOnn36KiIgInDx5EosWLWp0DE35/tRFIBDA7sn+yDqwF4XhV1CWmoKUX9dDKBLB6rGq3qLJv6xD+s5t2sf2ffujODICWQf3QZ6ehqyD+1B8KxJ2fftry6Rt3oj8C+fh8dI0CMUSlBcUoLygACrFg/+wFggEsO3bHzkH9qIo/ArkqSlI+01Tb8tq9U7dsA6Zu6rqbdO3P0puRSCnst45B/eh5FYkbKvV27bfAOSfPYX8s6chT09Fxl+bUZ6bC5uefQBoxn3J2rUdsrgYlOfkoCwxAWkbf4EyPw+WHXXHzFNkZkB2JxpWPXo9cMx3/RaZgtH+zhjp5wQfSynmdfKFi5kYW6M1Ce/ZHbzxUQ/dsWADbcwQaGMGU2Mj2EhMEGhjBl+r2hOjjPJ3xrGkHBTUMXuwoQkEAjj174+0ffuQFxaG0pQUxP3yC4QiEeyq9VaOXb8eSdu3ax879euHgogIpO3fD1laGtL270dhZCSc+vXTlkncuhWFt29Dnp2N4thY3Fm7FhVlZbDv3h0AoK6oQMzatShJSIDvlCmASlXVRg1wjNUXa6vBfRG56wCSL4ajICkVF7//DUYiETx7PKYt9+93G3Bt8y7t4wqlEnnxSciLT4JKWQFZbj7y4pNQlF6VFHYNbYvIXQeQGnYDJVk5SL4Yjqi9R+H22L0HKH9Qv0botse3Ole2x6jK9tjRGx/X1R5N9LfHE8m5GBfggsHeDnAzF6ObizVeCfHC8eRcNOeddhtvpWCUnzNG+GpiezPUF86mYmyr/Ky9GuKNpd11YwuwNkOAteazZi0xQYC1GXwsq2Kb3tYT3V2s4WYmQYC1Gd7r2goBNmb4604aHlZmpmK0D/ZC+2AvAIC3hwPaB3vBw/XBe+EY2l9xqRjq4YTB7o7wNJNiZpAPHCVi7ElMBwBMCfDC/PattOX3JKbDUSLGzCBveJpJMdjdEUPcnfBnXCoAoFylRnxxqc5fcbkSsooKxBeXQtmMd348KrFtrYxjSGUcs1r7wEkqxp4ETRxTA72woFocuxPT4SQVY1ZrTRxD3B0x1OMecSiVKFXWjkMAYLC7Iw6kZDbJsWRHfAoGuTlhoKsTPMykmB7oAweJGHuTNbFN8vfCm22rjhn/JKfBUSrGtAAfeJhJMdDVCQPdnLAtPkVbxlgggK+FGXwtzGAsEMBOIoKvhRlcpBJtmVA7a3Sys4aTVIyOttb4tHM7JJfKcNBAt+U2VWzPeLvhRX8vfH0zGhmyMtiITGAjMoHEqOpnn8RIqI0fAJykEvhamMFBIjZYbNsTUjDYXVM/DzMpZgRqPlv/JGlie6mVF96qFtvfSWlwkogxPbAyNjcnDHLXjW2stxtebOWF5fXEtj0+FUFWFnjOxx2uphL0dXHAUHdn7E4yzPdBS+2zV1r74UkXR3x+/TZkygptGZGw8T/nG3rOXfN8XxYXi6Lwy1BkZ6H0ThSSVq8A1GrYVvY6NJJIYNt/EDK3bUHB+TNQZGWiLCkReSeOouD8mXrrJE9LRVlSIlSlJVDJZChLSkRZUqL2efO2ISgKD0PeyWOa14+JRsbWP2Di6QMjq3snLlvqWD8lwBPtbCzhJBXDx9wUk1t5IsTOCkdS659wkehR8dDeUv3CCy9AJpOhS5cuMDIywmuvvYbp06dDIBDgl19+wbvvvotVq1YhNDQUX375JZ5++mntunZ2djh69Cjeeust9O7dG0ZGRujQoYPOuIp3OTs74+jRo+jTpw8mTJiATZs2Neh24fp8+umnUKlUmDhxIoqKitC5c2ccOHAANjb6D4bdunXDTz/9hPfeew/vv/8++vfvj0WLFtVKpNZlzJgx2L59O/r27Yv8/Hz8/PPPOrN2P4ipU6fC1NQUX3zxBd5++22YmZmhXbt2eP311++5rkgkwsGDB/Hmm29i6NChUCqVCA4OxrfffgsAGDlyJFauXIkvvvgCs2fPho+PD37++Wf06dNHu43169dj8uTJ6Ny5MwIDA/H5559j4MCBjYqhKd+f+tgPGAyVQoHUzRtRUVoCqbcvvF+bCyNJ1cmsIi9Hpx+5qZ8/PCZPR8aencjcsxMiewd4TJkOU5+qXmm5p44DAOJWfKHzem4TX4JN99ptvLFsBwyGqlyB9C0boSotgcTbFx6v6ta7PC9H5yqjqa8/XF+ajuy/dyLrb0293aZMh7RavS07dUFFSQmy9+1BRWEBRC6u8Jg1ByZ2lT+uhULIM9JQ8ONZVJQUw8jMDBJPH3jOnQ9xjQlxCs6dgbGVda2ZsR/EgYRsWIlNML2dJxykItzJL8Erx24grUSToLaXiuBspnsi/udTodr/29hZ4CkfR6QUl2Hozqpb8b0spAh1tMKMw9cNVteGcB40CCqFAgkbN0JZWgpzHx8EvP66bvvLzdXZjxZ+fvCbNg0pO3ciZdcuiB0c4Dt9uk6vyPK8PMT+9BOUxcUwtrCAuY8Pgt95B+LK/ajIy0P+1asAgJs1jmGBb74Jy8D7HzC8LkHDB6BCUY4rP2+BoqQUdn7e6L3gVZhU++FYmpMHQbXPWlleAQ69+6n28e1/juD2P0fg0LoV+i5+HQDQ8cVxuLH1b1z5eTPkBcWQ2FjBt19PBI8eYvAYajqQkA1rsQlmtK/WHo9WtUcHPe1x6zD97XHIDk17/OF6ItTQ3FrtaCpCnrwcJ5Jz8U1YfJPHU93BRM1nbVpbT9hLRYgpKMHs4zeQVlrts2aqG9vmoVWxBdtZYKi3I1KLyzBstyY2C5ExFnVpBTuJCMXlStzOK8G0w9dwswnGTDWU0Pa+OPhn1S1un7/3AgDgt60nMP3N71uqWnodT8+GpcgYE/08YCsRIb6oFAsuRSCzTLPP7MQmcKyWqEiXyfHu5QjMCvLB014uyClTYHVEHE5lGKZnmCE9KrEdS8uGpYkxXvD3gK1YhPjiUrxzMQIZ1eOQ6sax4FIEZrX2wQhPF+TIFfgmIg4n0xsfRyd7azhLJdiXnGGweKo7mZENC5Exnverim1J2E3tPrIVi3T2UYZMjiVXbmJ6oC+GV8b2/a1YnKnWM9FWLMK33TtqHz/j7Y5nvN1xLbcA8y9pvq/NjI3xUisv2EvEKCpX4nRGNjbcSbivXpLNGdswDxeYCIVY1EH3zqrfYxKxMUaTwGllaYHPH6sak3lGkOZ7/lBKBpbfjDZIbCfSs2FhYowJlbElFJVi0RXd2BykurEtunITM4I0seWWKbAmMhanq322hnm6QCQUYnGN2H67k4jfK2OLKizG0vBIvNTKGxP8PJEuK8P3t2NxLM0wCZ6W2mfDPDRj1H/+WHudMl/diGr82JQNPOeueb6vVpYja89OlGdnQSiWwKxNO7i8OBVGplUXAO2HjYSRuQVyDu6DIvtXGElNIfHwhN2gp+qtUtJ3K3UmqIz/dCkAIOjbnwAA1t0fh0pehrwTx5C5fSuMTKUwDQiC2VPjGhRySx3rbUQivNO+FWwlIpSUKxFbVIoFF2/ick7BvVcmegQI1M05gGAD9enTBx06dMCKFStauir0/9yYI6daugpNRvnQffINJz69pWvQNNp5NG5c0v8SH3PDjd/3sNkVYbgeIw8T4we7NvdQi3znu5auQpPpsVb/pFL08GqBuT6ajcT4EQ7uEfUot8dH+S5XkfDR3HHF5Q/tDZsP7MiQB+9I8l/Q6Y9H9/d2dZfHG+7OvP+SR/cTSkRERERERERERM2OCcca2rRpA3Nzc71/GzduZJ2qWbZsWZ31GjKk6W85JCIiIiIiIiKih89DOYbj8ePHW+y19+7dW+eM1U5OTs1cG42HsU4A8PLLL2PcOP3jZkilUr3LiYiIiIiIiIjo0fZQJhxbkpeXV0tXoZaHsU4AYGtrC1tb25auBhERERERERERPUSYcCQiIiIiIiIiomYleIQnayKO4UhEREREREREREQGxIQjERERERERERERGQwTjkRERERERERERGQwHMORiIiIiIiIiIialUDIQRwfZezhSERERERERERERAbDhCMREREREREREREZDBOOREREREREREREZDBMOBIREREREREREZHBcNIYIiIiIiIiIiJqVgLOGfNIYw9HIiIiIiIiIiIiMhgmHImIiIiIiIiIiMhgmHAkIiIiIiIiIiIig+EYjkRERERERERE1Kw4huOjjT0ciYiIiIiIiIiIyGCYcCQiIiIiIiIiIiKDYcKRiIiIiIiIiIiIDIYJRyIiIiIiIiIiIjIYThpDRERERERERETNipPGPNrYw5GIiIiIiIiIiIgMhglHIiIiIiIiIiIiMhgmHImIiIiIiIiIiMhgOIYjERERERERERE1KyHHcHyksYcjERERERERERERGQx7OBLVw0iobukqNBllxaN7OcnbuaVr0DSKyh/da0Q38sQtXYUm4+fS0jVoGlJjVUtXocnYrH21pavQZM7OWN3SVWgSZ8MmtHQVmkxW2aN77J++5tE9Fxk6VNLSVWgS+7YUtnQVmkz74bYtXYUmM9qrtKWrQET/Dz26ZzBERERERERERETU7JhwJCIiIiIiIiIiIoPhLdVERERERERERNSsBI/uyBoE9nAkIiIiIiIiIiIiA2LCkYiIiIiIiIiIiAyGCUciIiIiIiIiIiIyGI7hSEREREREREREzUrALnCPNO5eIiIiIiIiIiIiMhgmHImIiIiIiIiIiMhgmHAkIiIiIiIiIiIig2HCkYiIiIiIiIiIiAyGk8YQEREREREREVGzEghaugbUlNjDkYiIiIiIiIiIiAyGCUciIiIiIiIiIiIyGCYciYiIiIiIiIiIyGA4hiMRERERERERETUrAQdxfKSxhyMREREREREREREZDBOOREREREREREREZDBMOBIREREREREREZHBMOFIREREREREREREBsNJY4iIiIiIiIiIqFlxzphHG3s4EhERERERERERkcEw4UhEREREREREREQGw4QjERERERERERERGQzHcCQiIiIiIiIiombFMRwfbezhSERERERERERERAbDhCMREREREREREREZzH824Xj8+HEIBALk5+c36+vGx8dDIBAgPDz8gbbj7e2NFStW1FtGIBBg586d9/0akyZNwsiRI+97fSIiIiIiIiIiosbiGI6PgPj4ePj4+CAsLAwdOnTQLl+5ciXUanXLVewhUdf7Y2hqtRoZf+9BzumTqCgtham3D9zHPw+Jq1u96+VfuYz03bugyM6CyN4BLiNGwqpjqPb57BPHkXPyOBQ5OQAAiYsrnJ4aBsu27bRl0vfsRv6liyjPy4XA2BhSTy84jxgJMx/f+4oje+9uFJzRxCHx9oHzuAkQ3yOOwrDLyP57J8qzs2Bi7wCH4aNg0SFUp0zeyWPIPXwAyoJ8iFxc4fTMczD1D9A+n/XPLhRdrozDyBgSTy84DB8FaWUcFSXFyPpnN0ojb6I8Lw9G5uawaN8B9sNHwkhq2qjXqqk0+jYytm2BIi0VxlbWsB0wGDa9+hg8xtRf16Pw37M660i8feH91rvax4qsTGTu2ApZTDTUSiXMWreF07jxMLa00lv3h3mfAYCyoACZO7ai5FYEVPIyiJycYTdwKCxDO9dbv7qo1Wpk7d2N/Mp4pZXx3uuzVhh2GZnV4nUcPgqW1eItiY5CzuH9KEtKgLKgAO7TX4FlSEedbWT+swuF1eKVVsZreh+ftYclLnWFEpl7dqL45nUosrNgJJXCLDAYjiPGwMTa+oHjuhtb2t97kH3qFJSlpTDz8YHn+OchdXWtd728K5eRuns35FlZEDs4wHXESNh07Ki3bNq+fUjduQOOT/aDx7PPapfH//Izcs6d0ylr5uODoHcWPHhgejzt6YxxPm6wE4sQX1yK7yLjcD2vsM7y7W0tMTPIB97mpsiWK7AlNgV/J6XrLdvXxR6LOgTiTEYOlly51ST1f1CPdwnCGy8PQ2g7X7g42WDc1K+w5+Cllq5WvdRqNf5adxBHd59HcWEp/Nt4YfKbo+Hh69yg9c8eCsOq935H515tMO+zydrlr47+CNnpebXKDxzdA5PnjTFY/eujVquxb8MBnPnnHGRFMni19sS42WPg4uNS5zrhJ6/h4KZDyE7JRkWFCg5u9nhybB90GfiYtkxZaRn+Wb8PV09fR3F+Mdz93TDm1VHwCvJsjrAAAP/r4okZvXzgaC5GVGYxlu6NxMWE2u83AHT2ssE7AwPh52AGqYkRUvJl2HQxCevOxuuUm9zdGxO6eMDNWorcUgX23UjH54eiIFeqmiGiKmq1GnG7/kbKidNQlpTC0tcbgRPHw9yt7mNmcUoqYnfsQVF8AspyctFq/Fh4DuynUybvdjQS9x1EYUIiFPkFaP/ay3AI7dDE0VT5X09vTH/SH46WEkSlF+HD7ddxMTb3nut18rHF5tceR1RaEZ764rjeMsM6uuGbSZ1x8FoaZqy7YOCa6ydPT0XWzm0ojY4C1CqIXNzgNmUGTGzt7n+bqSnI+mcXyhIToMzNgeOYZ2H75ACdMuqKCmTv3Y3Ci/9CWVgAY0srWHV7HHaDn4JA2PT9idRqNU5t2ofwA2dRViyDa4AXBs0cCwevuo8rt85exdk/DyIvLRsqZQVsXB3QdVRftHuyS5PXtzEe5diIWgITjjUoFAqIRKKWroZBWFnpT05Q08g6uB9ZRw7B48WXIHZ0Qua+fxCz8msEffARjCQSveuUxMYg4acf4Pz0CFh16IiC8DDE//gD/N96W5ssNLGxgcvIMRA7OgAAcs+dQ/yabxGwcLE2ESF2coLbc+MhsneAulyBrCOHEbtyBVp/+DGMLSwaFUfuof3IO3oILhNfgsjRGdn7/0bS6uXwWfJxnXHIYmOQun4tHIaNhHlIRxRfDUPKurXwmjtfm3gqvHwBGX9thvOzEyD180f+6ZNI+nYlfBcv1Z6YiRyd4TTueZjYO0CtUCD32CEkrf4avu8vg7GFBZQFBVAW5MNh9FiInV1RnpuD9M2/Q1lQALdpM7X1achrVafIzkLSdyth/fgTcJ00FbKYO0jfshFG5haw7NjJoDECgFlwW7j87yXtY4GxkfZ/lVyOpNVfQ+zmDo/Z8wAA2X/vRPL338Br3rt6TyQf5n0GAKm//gSVTAb3l1+FkbkFCi/+i9T1ayFycITEo/E/TnMO7Ufu0UNwrRZv4url8Ksn3tLYGCSvXwvHYSNhEdIRRVfDkLxuLbznztcmC1UKOSTuHrDu/jiSf1yjdztiR2c4j3seInsHqCrjTVz9NfyrxXu/WioulUKBsqQE2A8eBom7BypKS5Dx1xYkrf0GvvMXP1BMd2UcOICMw4fh/eIkSJyckLb3H0Sv+Bptln5YZ2zFMTGI/fFHuD49AjYdOyAvLByxP6xF0Ntv17qYUhIfj+xTJyF1d9e7Lcs2beD94iTtY4Fx05z+9HG2x6zWPlh1MxY38goxzNMZn3QOxuRTV5BZpqhV3lkqxrJOwdibnIFPrkahrY0lZrfxRYGiHKcycnTKOkrEmBHkjWu5BU1Sd0MxMxXjekQifvvzBDb/MLelq9Mgu38/hr2bT2Dmoufg4uGA7b8cxrLX12L5H/MhNdPfPu/KSsvF76v3ICik9kWHZeteh0pVlahKik3Hx3PWouuTIQaPoS6HNx/Fsb+OY8Lbz8PRwwEHfj+E1W9/j8UbFkBiqj82M0tTDJowAE6eTjAyNsLN8zex8fPNsLCxQOvHggAAm77cgrS4NLywYAKs7C1x8dBlrH5rDRaunw9rB+smj2tYW2csGdoai/fcxKXEPEx4zBO/vNAZA1adQmpBWa3yMkUFfv03AZHpRZApKtDZywbLRrRBqaICf1xKAgCMCHHF/IEBeGvHdVxJzIePvRm+HK25uPvhvuZN8CfsPYjEA0cQPOVFmDo7Im7PPoR9uRLdl30AY6n+/aaSKyB1sIfjY6GI/mOr3jIVcjnMPdzh0rMHrn+7tilDqOWpjq5YPKodlmy9iktxuXi+hzd+frk7Bn5yFKl5sjrXs5AY46v/heJsVDbsLcR6y7jZSPHuyDa4cCe7qapfiyIrEwnLP4N1956wf2oEhFIpFOlpEJiYPNB2VeUKiOwcYNmxMzK2bdFbJufQPuSfOgGXFyZD5OKKsoR4pP/+M4RSKWz79n+g12+I89sO48LOYxj2xv9g6+qAM1sO4o/F32LG94sgruO4IjU3xePjBsLOQ3Ncib5wE3+v2AQzKwv4dmrd5HVuqEc5tocVJ415tDX6EkifPn3w2muv4fXXX4eNjQ2cnJzwww8/oKSkBC+99BIsLCzg5+eHffv2adeJiIjA0KFDYW5uDicnJ0ycOBHZ2dkPtM27zpw5g5CQEEgkEnTt2hXXr1/Xef7s2bN44oknIJVK4eHhgdmzZ6OkpET7vLe3Nz766CNMmjQJVlZWmDZtWoPeh9jYWPTt2xempqYICQnBuRq9J7Zt24Y2bdpALBbD29sbX331Vb3bi46OxhNPPAGJRILg4GAcOnSoQfUAAB8fHwBAx44dIRAI0KdPHwC1b6m+3/f5XvuvPiqVCp999hn8/f0hFovh6emJjz/+WPv89evX8eSTT0IqlcLOzg7Tp09HcXGxTp1ff/11nW2OHDkSkyZN0j729vbGsmXLMHnyZFhYWMDT0xM//PDDPd8fQ1Kr1cg6cgROQ4bCumMopG5u8HjxJagUCuRf+LfO9bKOHIZF62A4DR4KibMLnAYPhUVQELKPHNaWsWofAst27SB2cobYyRkuI0dBKBajJC5WW8amS1dYtA6G2MEBElc3uD4zDqoyGWQpyY2OI/fYYdgNegoWHTpB7OoGl4mToVIoUHix7jhyjx2CWVAw7AYNhdjZBXaDhsIsMAi5x6riyD1yCNbde8L68Scgdtb0lDOxsUHeqeNVsT7WFWZBwRDZO0Ds6gbH0c9CVSaDvDIOsasb3KfNgkW7DhA5OMIssDUcho9C8Y2rUFdUNOq1qss/fQImNrZweuY5iJ1dYf34E7Du3hO5Rw4YPEZAk+wwtrLS/hmZmWufk8XeQXlONlwmTobEzR0SN3e4THwJZQnxKI2q/YPnYd9nmphiYdO7H6TevhDZO8B+yDAITU1RlpRQZ/3qcjde+0FPwbJDJ017b0S89pXx2uuJ16JNu8regZ3q3I7VY11hXhmvxNUNTpXxljXys/YwxWUkNYXXa2/CqtNjEDs5w9THD87jxqMsMQHluTl612lsbBlHDsNlyFDYhGqOj96TNMfH3HqOj5lHjsCydWu4DBkCibMLXIYMgWVQa2QcOaJTrqKsDHHrfoLXxIkwMjXVuy2BsTFMrKy0f8ZmZg8clz7P+LhiX3IG9iZnILFEhu8i45BZJsdwT/09I4Z7OiOzTI7vIuOQWCLD3uQM7E/OxDgf3V5MQgDvhgRgQ3Qi0kprJ1MeJgePX8UHX/6JXfsvtnRVGkStVmPfnycx8sX+6NKnPTz8XDBr8XjIyxQ4cyis3nVVFSqs/mAjnpk6CI5utrWet7Qxh7WdpfbvypkIOLnZIbijX1OFo0OtVuP4thMYOGEAOjzRHq4+Lvjf/OdRXqbApSNX6lyvVQd/hPRqD2cvJzi42aPPmN5w9XVBzHXNeYdCrsDVk9cwYsZw+If4wcHNAUMnDYadsy1O7z5b53YNaerjPvjzcjK2XE5GTFYJlu6NRFpBGf7XRf9FrJtphdh9LQ3RmcVIzpdh59VUnIzOxmPeNtoyoR7WuJSYh93X0pCcL8OpO9nYfS0N7dya9wK+Wq1G0qEj8B42BI6dO8Lc3Q1tpr4IlVyB9PN199yz9PVGq2fHwLnrYxDWcVHFvn1b+I0ZAcfO+nuKN6Wpffzx5/kEbDmfiJiMYny44wbS8mSY8Lh3vet9/GwIdl9OxpV4/T0hhQLg6xc6YcW+W0jMKW2CmuuXtWcHzIPbwXHUWEg8PCGyd4B52/YwtrDUlqmQlSJt06+Inv8Got58FYkrv0RZclK925V6+cBx9FhYdu5S58UxWVwszNt3gHnb9hDZ2cMytDNMW7dBWUK8IUPUS61W48KuE3j82YEI6hECR29XDJ87AeXyctw8cbnO9bzat0JgjxDYezjDxsUBXUb0gaOPK5IiYutcp7k9yrERtZT76nO9YcMG2Nvb48KFC3jttdcwc+ZMjB07Fj169MCVK1cwaNAgTJw4EaWlpUhLS0Pv3r3RoUMHXLp0Cfv370dGRgbGjRt339us7q233sKXX36JixcvwtHREU8//TTKy8sBaJJZgwYNwujRo3Ht2jVs2bIFp0+fxquvvqqzjS+++AJt27bF5cuXsXhxw3pzLFy4EPPmzUN4eDgCAgIwfvx4KJVKAMDly5cxbtw4PPfcc7h+/Tref/99LF68GL/88ovebalUKowePRpGRkY4f/48vv/+e8yfP79B9QCACxc0Jx+HDx9GWloatm/fXmfZxr7PDd1/dVmwYAE+++wzLF68GBEREdi0aROcnJwAAKWlpRg8eDBsbGxw8eJFbN26FYcPH661fxriq6++QufOnREWFoZZs2Zh5syZuHXrVqPfn/ulyM6GsrAA5q3baJcJTUxg3ioAJbExda5XGhsLi9bBOsssgtvUuY5apULexQtQKRQw89H/g0WlVCLn1EkIpdI6e/vUpTwnGxWFBTCrEYepfyBkcXfqXE8WFwuzGnGYBbeBLFazjlqpRFlSgs52AcCsdRvI6opVqUT+GU0c4nriUMlKIZRIIDAyuu/XksXG6C1flpAAdYXS4DGWRt9G9Pw3EPPBQqRt3ABlUdXtliplOSAQ6JxkCoxNAIEApTHRter+X9hnpn7+KLxyERUlxVCrVCi8dAHqciVMWwXWWb+6lOdoPmv64i2tJ97SuFiY14jXvFq890OtVCKvMl5JIz9rNT1McQFAhUwGCAQQSvUn8BpDc3wshGVwVT2FJiYwDwhAcUzdJ+PFsTE66wCAZZtglMTotr/EP/6AVbt2sKzxPuhsKyoKV+e9iRuLFyHht19RXlj3Lc73y1ggQIClOS5l5+ssv5ydjzY2+nu/Bltb4HKN8hez8xBgZQ6japf8J/p7oEBRjn3JmYau9v97mam5yM8pQvsuVUNFmIiM0bqDH6Kux9e77rafD8LS2hxPDu96z9dRlitx+sBl9BnWBYJm6s6Rk5aDwtwiBHWuOtaaiIzhH+KPuJtxDdqGWq3G7StRyEzOgn97zXmHqkIFlUoFE5FuTy4TsQlibjT9D2wTIwHaulriVI3ebKfuZKOTp00da+lq42KJTp42+DeuKol1KSEP7VytEFKZYPSwkaJvgAOORWUZrvINUJaVDUVBIezaVvWMEpqYwDqwFQru/DcTGCZGArT1sMKp27rv5anbmejkUztZf9czXT3haW+Glftv11lm9uBA5BYr8Of5RIPV917UKhVKblyDyMkJSau/RvT8NxD/+ccoulp1kUKtViP5u1WoKCyA+6w58J6/GBIPTySt+goVJcX1bP3eTP38UXI7EooMzfAbZclJkMVEw7zacEtNJT8jByV5hfDpGKRdZmxiAs+2fkiJbPhxJS78NnKTM+HZtnkuwDTEoxwbUUu5r3uKQkJCsGjRIgCahNKnn34Ke3t7be/AJUuWYM2aNbh27Rr27t2L0NBQLFu2TLv++vXr4eHhgaioKAQEBDR6m926ddNu67333sOAAZpxLTZs2AB3d3fs2LED48aNwxdffIHnn39e20OuVatWWLVqFXr37o01a9ZAUnkb15NPPol58+Y16j2YN28ennrqKQDABx98gDZt2uDOnTsICgrC8uXL0a9fP23yMiAgABEREfjiiy90eubddfjwYURGRiI+Ph7ulT9aly1bhiFDhjSoLg4Omltt7ezs4Oxc/3hDjX2f16xZ06D9p09RURFWrlyJ1atX48UXXwQA+Pn5oWfPngCAjRs3QiaT4ddff4VZZW+T1atXY/jw4fjss8+0icmGGDp0KGbNmgUAmD9/Pr7++mscP34cQUFBDX5/5HI55HK5zrIKhQJGDbjFXlmoucXNxNJSZ7mxpSUU9fQQ0oy7UnsdZY0fw7KUZNz5/FOoysshFIvhPWMWJDXGPiu8dhUJ636ESqGAsaUV/Oa8AWPzxt3ieTcOIwvdOhlZWkJ5jziMLHR7ABhZWKGiMpGmLC4GVCoY1YjVyMISFYW6twcWX7+KlPU/QF2uicPjtbl1xlFRXIzsfX/Dumfvqro04rW06xQV6o0ZqgpUFBfD2MraYDGat2kLy9DOMLG1gyInC9l7diFx5Zfwnr8YQhMTSL39IBSJkbVrGxyeHgWogcydfwFqNSoKatf/v7DPXKfMQOq6tYh++3VAaAShSAT36bMgcnCss3711RuATg8CQPO5qa83nrKwAMY14jW2sNJJ9jZU0fWrSK4Wr1c9bbShHoa47lKVlyNz1zZYde4CI6n0vrdz193kXs1jnYnFvY6PhbWOqSaWljrJwtyLF1CamIDW7y6sczuWbdrCplMniGztIM/ORuruXYj6ejlav7sQwge89a06K5EJjIQC5MnLdZbnycthW8f3iK1YhDx5fq3yxkIhrETGyJWXo421BYZ4OGH66XCD1ZWq5Odq2pOVre5n2MrWAtnpdY8td/taHI7tuYBPNzTstvGLJ2+gpLgMvYc+du/CBlKYWwQAsKyR8LawMUduhv6xDu+SFcuwaNz7UJYrIRQKMe71Z7SJS4mpBD7B3tj/20E4ezrBwsYCl49eQUJkIhzc7JsmmGpsTEUwNhIiq1j3nC2rRA578/rP2c691Re2ZiIYCwVYcTQaWy5X9U7fcz0NtmYibJ3WDQIBYGIkxG//JmDNyeZN8skLNG1SVOP4J7KyRFn2vcc7fBjZmIlhbCREdqFuD+3sIjkcLPTfpurtYIb5w1tj3MrTqFDpH5O+k48txnXzwlOfHzd0letVUVQElVyOnIP74DB8JBxGjEFJ5A2k/PgdPOfMg2mrQJRG3YI8NQX+ny7Xftc4jh6HoqthKAq7rHPu2li2A4agQiZD7IeLAYEQUKvgMHwULDvf++LHgyqpHJPYzFq3fZpZW6Igs/72WVYiwzcvLkZFuRICoRCDZ47VSe61tEc5NqKWcl8Jx/bt22v/NzIygp2dHdq1q7qicjdRlJmZicuXL+PYsWMwNzevtZ2YmBhtwqox26yue/fu2v9tbW0RGBiIyMhIAJqehnfu3MHGjRu1ZdRqNVQqFeLi4tC6tebKYefOjZ+4oHp9XVxctHULCgpCZGQkRowYoVP+8ccfx4oVK1BRUQEjIyOd5yIjI+Hp6alNNtaMy5Aa+z43dP/pExkZCblcjn79+tX5fEhIiDbZCGjeJ5VKhdu3bzcq4Vg9LoFAAGdn51pt5V4++eQTfPDBBzrLgl+YhDaTXqpVNu/f80je9Lv2sc8rr1W+eI2CakBQa2ENtdapfVIldnJGwMIlqJCVouDKFSRuWA//uW/pJB3NAoMQsHAJlMVFyD19Cgk/roX//Hdr/WCvruDCeaT/8Zv2sces2ZoqNaBOtcJowDq13wt1rRVNA4Lgs2AJKkqKkX/mFFLXrYXXW+/WSsRUyGRIWrMKYhdX2A8dfl+vpVv/Gs9p6y+oVqbmJhsfo2WnqgGkxa5ukHp6487i+Si5eQ0WHTrB2MICblNfRvrm35F3/AggEMCyUxeIPTwBofA/uc+y9uxERWkpPF57E0bm5pXjRX4PzzfmQ+JWf8/AggvnkVotXs/KeBvyudETTOPX0cMsIAh+C5ZAWRlv8rq18NHTRuvzMMYFaCaQSVm/FlCr4fzs/+5rGzn//ovEjVXHR//KXuu1P35q1K58TbrPVw9NkZuLpC1b0GrO6/UmDm0fq0rwSN3cYObthesLFqDg+nXYhIbWuZ7BCAA16t4nNZ+7G7FaDUiNjLAgJADLr99BYbmyCSv5/8fpA5fx4+d/aR/P/3IqAP3fAXX1RJSVlGH1B5sw7Z2xsLSufX6kz7E9/6JDtyDYOjTd7bkXD1/G5uV/ah+//EnlMEF6vt7u1ctSbCrGOz/Og1ymwO0rUdjx3U7Yu9ihVQd/AMDEBROw6YvNWDTufQiFQri3ckenfqFIjn6w4SUexD3PtwCM/ek8zERG6OhhjfkDA5GQW4rd19IAAN18bPFqbz8s3nMT4cn58LY1w5KnWiOzSI5vjtd9t8qDSj/3L25t2KR9HPL6K5p/9J2X/MfHOqt5JBRAoPf4KBQAK17ohK/33UZcVkmt5wHATGyMryeGYsHmcOSV1B4j15DqOveyaN8Btk8OBABIPDwhi41B3qkTMG0ViLLEBKjkZZqLrdWoyxVQZGehPDcHsR8u0S63GzQU9oOfalB9ii5fROGF83CdNA0iF1fIk5OQsW0zjK00k8cY0o1jF7Hv26qxJMe9NwOA/nPIe3XeFkvFmLJqPsrL5IgPj8LhdTth7WwPr/atDFrnhnqUY/svEf7Hj2tUv/tKOJrUOLEXCAQ6y+6exKhUmlsu7vZYq+luoq6x27yX6mVnzJiB2bNn1yrj6Vk1xovZfYzlVF/d1HpOUuubLVrfc011u01j3+eG7j99pPfoGaPvfapZD6FQWOv9uXvLfHX64mpIW6luwYIFmDtXt6fCS+f0j5VjGdIBAdUmLVArNXUqLyiEiZW1drmyqLBWr57qjC2toCzQ7YmkLCqqtY7Q2BhiR01vMFMvb5QmxCPr2BF4TJioLWMkFsPI0RFiR0eY+fohcvFC5J49DafBQ+t8ffP2HeDj7VMtDs0PWmVhIYyrxVFRVFSrp1utOGr0eqsoruo1aGxuDgiFtcsUFdXqmScUiyFydALgBKmPH2LefxcFZ0/DblBVHBVlZUj+dgWEYjHcpr8CgVHVoawxr6Vdx8JSb3kIjWBkbmbwGHVe28pa09uxWoLcrHUb+H3wCZTFRRAIjWBkaorod+bCxM7+P7fPFFmZyD9xFD4LP9DOmi1x90BpTDTyTx6D8/iJqI95+w7wqxavqlq8up+12p+be8WrLC5sVJLwrrvxiuAEUx8/3Hn/XeSfPQ37QXV/1mp6GONSVyiRvG4tFDnZ8Jo97757N1qHhMDMp3YbrXl8LL9nbJYorxlbUVWvx9LEBCiLihC5rGpcYKhUKI6ORubxYwj99ju9kyyZWFlDZGcHeSMvSt1LgaIcFSo1bMS630c2IhPkKWp/bwFArlwBW7FujyxrsQmUKhUKy5XwNjeFi6kEH3Wqul387tfmwUE98OKpKw/9mI4Pm04928C/jZf2cblC0z7zcwphY1/VHgvyimv1erwrIyUHWWm5+OLt9dpl6soeWM/3egvL/5gPZ/eqnn5Zabm4fikaby6bZMhQamnXow28W1fdsaOsjK0wtwhWdlWJzuL8YljY1J8oFQqFcHDT3CHi7u+GjMQMHNx0WJtwdHCzx5wVr0Iuk6OstAxWdlZYv3QDbJ3rvj3WUPJKFVBWqOBgrjuBiL2ZCNnF9SeekisnJ7mdUQx7czHm9PXXJhzn9muF7eEp2l6PtzOKIRUZ4ZMRbbH6RMyDXMupl32HEHTxrf19oCgogNi6ar8pCotq9Xr8r8grkWv2maVub0Y7CxGyi+S1yptJjBHiaYM2blb4YIymY4RQIIBQKED08uF4Yc055Jcq4GFnhp+mVfXqE1YeIKOXD0e/j48YbEzHmudeRhYWgNAIImfdu41Ezi6Q3R3+Rq2GsZU1POfUvotOaGoKI6kpfBZUJRyNGvF7NHPHVtgNHALLzpqL2BI3d5Tn5iDn4D6DJxxbdW0H10Bv7eOKyotfxXmFMLetap8lBUW1egbWJBAKYeuqOa44+bojOzkdZ7cearGk3KMcG9HDoslnqQ4NDcW2bdvg7e0N4yaYFfL8+fPa5GFeXh6ioqIQFBSkfe2bN2/C39/f4K9bn+DgYJw+fVpn2dmzZxEQEFCrd+Pd8omJiUhNTYVrZY+1mpPQ1OfurNoV1SbNMJQH2X+tWrWCVCrFkSNHMHXq1FrPBwcHY8OGDSgpKdEmfc+cOQOhUKjtOeng4IC0tDTtOhUVFbhx4wb69u3b4Ho09P0Ri8UQi3VPXuu6ndpIItGZWVWtVsPY0grFkREwrWyPKqUSxdFRcB01ps7XNPX1RVFkBBz6D9AuK4qMgJnvPcb8UKuh1pN4rVEI6nv0iNEXh5GlFUpu3dTOHqxWKlF65zYcRjxT53akPr4oiYzQXuUFgJLICEh9NZ89gbExJB5eKLkVAYsOVT2KSm5FwLx9h3uEodaMa1ipQiZD0rdfQ2BsDPeXX63Vs+l+Xkvq64fi61d1lpVE3oTEy0ubzGyqGCuKi6HMy4Wxnlnl796mW3I7EhXFRTBv3+E/t89UisoffzUuXwr0XEzQp67PWsmtm5DWiNepnnhNK+O1qxZvcbV4H4S6RhttiIctLm2yMTMDXnPe0iSc75P+2CxRWPP4GBUFt9Gj69yOua8fCiMj4VTt+FgYEQEzP83x0SKoNYKXvKezTvyGXyBxdobzoMF6k42AZrgARW4uTPR85h6EUq1GVGExOtlZ40xG1a1Xnex1H1cXkV+E7o66CZrO9taIKihGhVqNxJJSTDmlO3HJ5ABPSI2M8G1kHLJktX+oU/2kZhKdmafVajWs7Sxw/WIUfAI1Pa6V5UpEhsfg+VnD9G7D1csRX/ymm0TY8sM+yErlmPT6SNg7Wes8d/yfi7CyMUfHHk07W6nEVKIz87RarYalrQVuX74Nj1ZVsd25egdPT699Z0B91GrNujWJpWKIpWKUFpXi1sVbGDGjcdu9H+UVatxILURPfzsciMzQLu/pb49D1R7fiwCA2LjqOCE1MaqVVFRV9mwSoHbvPEMxlkp0Zp5Wq9UQWVki92YkLLyqjpn5t6PhN3ZUE9WiaZVXqHEjqQA9Ax1w8FrVeX3PQEccup5Wq3xxmRKDPj2qs+x/PX3Qo5U9Zv18EUk5pahQqWuVeXNoa5hJjLF0+3Wk5dc983Vj1fxeAwCpl7d2DMW7FJkZMLG1A6Dp8agsLACMjCCy0z/UgOZibeOpyhW1uuE19LyqscSmEp3ZmdVqNcxsLBEXdhvOfh4ANIm6xBsx6Dvp6cZtXF2V5GsJj3JsRA+L+5o0pjFeeeUV5ObmYvz48bhw4QJiY2Nx8OBBTJ482SAJsqVLl+LIkSO4ceMGJk2aBHt7e+3MzPPnz8e5c+fwyiuvIDw8HNHR0di9ezdee+21B37d+rz55ps4cuQIPvzwQ0RFRWHDhg1YvXp1neNE9u/fH4GBgXjhhRdw9epVnDp1CgsX1j0eVU2Ojo6QSqXaCV0K9Izzdr8eZP9JJBLMnz8fb7/9Nn799VfExMTg/PnzWLduHQBgwoQJkEgkePHFF3Hjxg0cO3YMr732GiZOnKi9nfrJJ5/EP//8g3/++Qe3bt3CrFmzkJ+f36gYmvL9uUsgEMChXz9k7N+LgrArkKWkIGnDzxCKRLDuUnXlNfHndUjbUTVpjcOT/VAUGYHMA/tQlp6GzAP7UBQZCft+/bVl0nZuR3F0FBTZ2ZClJCNt5w4UR92GTRfNWKYVcjnSdm5HSWwMFDk5KE1MQNJvG1CelwfrTnXPtltXHLZ9+yPnwF4UhV+BPDUFab+th1AkguVjVXGkbliHzF3btI9t+vZHya0I5BzcB3l6GnIO7kPJrUjY9q2Kw7bfAOSfPYX8s6chT09Fxl+bUZ6bC5uefQAAKrkcWbu2QxYXg/KcHJQlJiBt4y9Q5ufBsqNm2IOKsjIkrf4aarkcLhMmQSUrg7KgAMqCAqir9Wi912tl7tqG1A3rtOWte/ZGeW4OMrZtgTw9FflnTyP/3GnY9htk2BjLypC5/U/IYmOgyMlGSdQtJH//DYzMLWAeUpXUyz93GrK4GCiyMlFw4RxS1n0Pm779IXaqPQbpw77PxM7OMHFwRPqm3yCLj4UiKxM5hw9oEpn3SlzqcTfe7AN7URh+BWWpKUjRE2/KhnXIqBavbd/+KL4VgezKeLP1xKsqK0NZUiLKkjQDz5fnZKEsKVE7hqJKLkfGru0ojdN81mSJCUitEe/9asm41BUVSPrxe8gS4uE2aRqgUlV9rpQPfrIsEAjg1K8/0vftQ15YGGQpKYj/5RcIRSLYVjs+xv28HinVjo+O/fqhMCIC6fv3oyw9Den792sSkJXDdBhJJJC6uen8CcViGJuZQ+qm6U1bUVaG5L+2ojgmBvLsbBTdvo07366Gsbk5rDsafpbWv+JSMdTDCYPdHeFpJsXMIB84SsTYk6j5UTolwAvzq/V22JOYDkeJGDODvOFpJsVgd0cMcXfCn3GpAIBylRrxxaU6f8XlSsgqKhBfXAplU3W5egBmpmK0D/ZC+2BNL0JvDwe0D/aCh6tdC9dMP4FAgCHjnsDOX4/gwonrSIpJw3cfbYZYIsLjA6rayLdLN+GPNf8AAERiE3j4uej8mVpIITUVw8PPBcYmVRdoVSoVTvxzEU8M6Qwj49oXnZs6tj5jeuPgxsO4euoaUuPS8Ptnf8BEIkLnflXfOb9+shG7f/xb+/jgpsO4dek2slOzkZ6YgaNbj+PCwYt4rH/VcS7y4i1EXIhEdloObl26jVVzv4WjhyO6DW76MeQA4KczcXi2kwfGhrrDz8EMi4cEwdVKgo0XNce5twcE4KsxVcPtTOzqiX6BjvC2M4W3nSnGhrphWk8f7Liaqi1z5HYmJnTxxPB2LnC3kaKnnx3m9muFw7cyUccQgk1CIBDAY0A/xP+9H5mXw1CcnIKInzZAKBbBuVvVsCw3f/wZd7bu0D5WKZUoSkxCUWISVBUVkOfloygxCaUZVb25lWVl2jIAIMvKRlFiEspymn5syJ+O38Gz3bwwtqsn/JzMsWhUW7jaSLHpTDwA4K1hrfHVBE27VKuBqLQinb+cIjnk5SpEpRVBpqiAQqmqVaZQVo6SMiWi0opQXtG0O822/yAUXrmI/DMnocjMQN7xoyi+fhXWvTSdIkyDgiH18UPK2m9RHHEDipxslMbeQdaeHZDVM5u0ZtK+yu/sCiWU+fkoS0qEIrMqmW7eNgQ5B/ai+MY1KHKyURR+BblHD8IipOlnHxcIBOgyojfObj2E22evIjM+FXtWbISJ2ARtelf97tj91W849stu7eOzfx5EXNgt5KVnIzspA//uOIrrRy+gbd8HO38ypEc5NqKW0uQ9HF1dXXHmzBnMnz8fgwYNglwuh5eXFwYPHgxhHb0PGuPTTz/FnDlzEB0djZCQEOzevVvbo619+/Y4ceIEFi5ciF69ekGtVsPPzw/PPvvsA79ufUJDQ/Hnn39iyZIl+PDDD+Hi4oKlS5fqnTAG0Ny2smPHDkyZMgVdunSBt7c3Vq1ahcGDBzfo9YyNjbFq1SosXboUS5YsQa9evXD8+HGDxPKg+2/x4sUwNjbGkiVLkJqaChcXF7z88ssAAFNTUxw4cABz5szBY489BlNTU4wZMwbLly/Xrj958mRcvXoVL7zwAoyNjfHGG280qncj0LTvT3UOAwdDpShH8h+bUFFaAlMfX/jOfkPniqgiN1fniqSZnz+8pkxH+u6dSN+9CyIHB3hNmw6zardrKwsLkfjzes0kH1IpJG7u8H3tdVhUzt4qEAohT09H/LlzqCgphpGZGUy9vOE/721IKm9hbQzbAYOhKlcgfctGqEpLIPH2hcerc3XiKM/L0YnD1Ncfri9NR/bfO5H1906I7B3gNmU6pNXisOzUBRUlJcjetwcVhQUQubjCY9YcmNhV/ggVCiHPSEPBj2e1cUg8feA5d772VtyyxHiUxWsGb499/12devsu/VR7Bfler6UsKNDEUElk7wCPWXOQsW0L8k8eg7GVNZzGjodlx6qTC4PFmJqCgn/PoUJWCmNLK5gGBMF1ygzddpKRjqxd21FRWgITO3vYD3oKNk9W9fL6L+0zgZExPGbNQeaubUj+/huo5HKIHBzhMnEyzNtW/RhsDLtq8VaUlkDq7QvPBsTr/tJ0ZP69E5mV8bpPmQ7TavHKEuORsPJL7eOMbZqx0Ky69oDbC5MBoRCKjDQk14jXe+78+/qsPSxxlefnofh6OAAg9hPdcWy95syDWcCDD3ruNGgQVOUKJG7aiIrSUpj5+KDVnNdrHR+rD7Nh7ucH36nTkLJrJ1J374LYwQG+NY6P9yIQCiFLSUHO+fOoKC2FiZUVLAID4Ttteq3eKoZwPD0bliJjTPTzgK1EhPiiUiy4FIHMMk1PRDuxCRwlVT3p02VyvHs5ArOCfPC0lwtyyhRYHRGHUxl1T6bzsAtt74uDf1bdJvj5ey8AAH7begLT3/y+papVr6f/1xcKeTnWf7kNJUUy+Ad74t2vp+v0hMzOyIfgPgaaun4xGtkZeegzrHkScTX1f+5JlMvL8efKv1BaJIN3ay+88vnLOj0h8zLzdGJTyBT4c+VfyM8qgInYBE4ejnjh3f+hU9+qZIasRIY9P/6D/Ox8mFqYIqRXCIZPGdpsSdW/b6TD2lSEOX394GAhQVRGEV767RJS8jVDDDhaiOFmXRWjUCDA2wMD4GEjhVKlRmJuKT4/GKVNUALAN8c1t02/2b8VnC0lyClR4MitTHx5OKpZYqrOa+hAqMoVuP3bH1CWlMLSzwcd35yt0xOyLEf3mCnPz8eF96qGmEjcfwiJ+w/BOrAVOr3zJgCgKD4BVz77WlsmerNmPFOXx7sheOqkJo3pn7BU2JiJMHtQIBysxIhKK8LkteeRUnmbu6OlBK42Dz5RWXOx6BAK5+cmIufgXmRs/QMiR2e4TZ0JU3/NRSWBQAD3WXOQvXs70n//BcriIs15n3+reocTKS/IR/ynS7WPc48cQO6RA5C2CoDX628DAJzGPY/sv3ciffPvqCgugrGVNax79ob9kKbvYQwA3cb0R7m8HPvXbEVZcSlcA73w3NJZOr0FC7NqHFfkCuz/biuKcvJhLDKBnbsjnn7zBQQ/0QxjKTfCoxwbUUsQqJui7zXRI2LcsZMtXYUmI6/gCL308Gjy7vZkcFLjxo2T+1+SIWvy67Et5uyM1S1dhSZxNmxCS1ehyWSVPbpHyOlrHt1zkaFDDX9R42Gwb0vhvQv9R7Uf3vRjkLaU0V6GGc+Sms+LrQbdu9AjYMD+My1dhWZxaLBhx1f9r3h0z2CIiIiIiIiIiIio2THhWMOyZctgbm6u92/IkCGsUzWJiYl11svc3ByJiYn33ggRERERERERET1SHt17hu7Tyy+/jHHjxul9TiptmXFFHsY6AZrxHcPDw+t9noiIiIiIiIiI/n9hwrEGW1tb2No+XON3PIx1AjSTsfj7+7d0NYiIiIiIiIjoP0Yo4JQijzLeUk1EREREREREREQGw4QjERERERERERERGQwTjkRERERERERERGQwTDgSERERERERERGRwXDSGCIiIiIiIiIialZCQUvXgJoSezgSERERERERERGRwTDhSERERERERERERAbDhCMREREREREREREZDMdwJCIiIiIiIiKiZsUecI827l8iIiIiIiIiIiIyGCYciYiIiIiIiIiIyGCYcCQiIiIiIiIiIiKDYcKRiIiIiIiIiIiIDIaTxhARERERERERUbMSCtQtXQVqQuzhSERERERERERE9JD47rvv4OPjA4lEgk6dOuHUqVP1lj9x4gQ6deoEiUQCX19ffP/997XKbNu2DcHBwRCLxQgODsaOHTuaqvoAmHAkIiIiIiIiIiJ6KGzZsgWvv/46Fi5ciLCwMPTq1QtDhgxBYmKi3vJxcXEYOnQoevXqhbCwMLz77ruYPXs2tm3bpi1z7tw5PPvss5g4cSKuXr2KiRMnYty4cfj333+bLA4mHImIiIiIiIiIiB4Cy5cvx5QpUzB16lS0bt0aK1asgIeHB9asWaO3/Pfffw9PT0+sWLECrVu3xtSpUzF58mR8+eWX2jIrVqzAgAEDsGDBAgQFBWHBggXo168fVqxY0WRxMOFIRERERERERETNSij4//Enl8tRWFio8yeXy/W+JwqFApcvX8bAgQN1lg8cOBBnz57Vu865c+dqlR80aBAuXbqE8vLyesvUtU1DYMKRiIiIiIiIiIioCXzyySewsrLS+fvkk0/0ls3OzkZFRQWcnJx0ljs5OSE9PV3vOunp6XrLK5VKZGdn11umrm0aAmepJiIiIiIiIiIiagILFizA3LlzdZaJxeJ61xEIBDqP1Wp1rWX3Kl9zeWO3+aCYcCQiIiIiIiIiImoCYrH4ngnGu+zt7WFkZFSr52FmZmatHop3OTs76y1vbGwMOzu7esvUtU1D4C3VRERERERERERELUwkEqFTp044dOiQzvJDhw6hR48eetfp3r17rfIHDx5E586dYWJiUm+ZurZpCOzhSEREREREREREzYo94PSbO3cuJk6ciM6dO6N79+744YcfkJiYiJdffhmA5hbtlJQU/PrrrwCAl19+GatXr8bcuXMxbdo0nDt3DuvWrcMff/yh3eacOXPwxBNP4LPPPsOIESOwa9cuHD58GKdPn26yOJhwJCIiIiIiIiIiegg8++yzyMnJwdKlS5GWloa2bdti79698PLyAgCkpaUhMTFRW97Hxwd79+7FG2+8gW+//Raurq5YtWoVxowZoy3To0cPbN68GYsWLcLixYvh5+eHLVu2oGvXrk0Wh0B9dyRJIqpl0IGmy/a3NHPjR/ejr3pEQ1Oomm5A35b2KMeWl69q6So0CdWjGRYAwMbm0b3e/mWXvJauQpPo0XFjS1ehyTjatGvpKjSZGRsea+kqNJkf/lK2dBWaRPxHfi1dhSYz4nBGS1ehydxcGdPSVWgaFY/oST+AO3tfaukqNItRh0+1dBWaxY7+vVq6Ci3i0T2jJiIiIiIiIiIiombHW6qJiIiIiIiIiKhZCR/dm5wI7OFIREREREREREREBsSEIxERERERERERERkME45ERERERERERERkMEw4EhERERERERERkcFw0hgiIiIiIiIiImpWAoG6patATYg9HImIiIiIiIiIiMhgmHAkIiIiIiIiIiIig2HCkYiIiIiIiIiIiAyGCUciIiIiIiIiIiIyGE4aQ0REREREREREzUooaOkaUFNiD0ciIiIiIiIiIiIyGCYciYiIiIiIiIiIyGCYcCQiIiIiIiIiIiKD4RiORERERERERETUrNgD7tHG/UtEREREREREREQGw4QjERERERERERERGQwTjkRERERERERERGQwTDgSERERERERERGRwXDSGCIiIiIiIiIialZCgbqlq0BNiD0ciYiIiIiIiIiIyGCYcCQiIiIiIiIiIiKDYcKRiIiIiIiIiIiIDIZjOBIRERERERERUbMSClq6BtSU2MORiIiIiIiIiIiIDIYJRyIiIiIiIiIiIjKY/2TC8fjx4xAIBMjPz2/W142Pj4dAIEB4ePgDbcfb2xsrVqyot4xAIMDOnTvv+zUmTZqEkSNH3vf6RERERERERERE94NjOP7HxcfHw8fHB2FhYejQoYN2+cqVK6FWq1uuYv/PDPNwxlhvd9iKRUgoLsX3t2JxI7+wzvLtbCwxI9AXXuamyJErsDUuGf8kp2ufH+LuhP6ujvAyNwMA3Cksxs/R8bhdUKyzHTuxCFMCvPGYvQ1ERkKklMiw/GY07hSWGCw2tVqNzH92I+/MSVSUlkLq7QPXZydA4upW73oFYZeRuWcnFNlZENk7wOnpUbDsEKp9viQ6CtmH9kOWlABlQQE8p78Cyw4da22nLC0VGTu3oSQ6ClCrIHZxg8fUGRDZ2hkktqy9u5FfLTbncfeOrTDsMjL/3ony7CyY2DvAcXjt2HIO70dZZWzu01+BZYhubIXhl5F3+iTKEhNQUVIM33eWQOLheV9xPOXhjNHe7rAViZBYUoofbsXiZj3tr62NJaYF+sLTzBS5cgX+ik/GvmrtDwB6ONphor8XXEwlSCstw693EnAuM0f7vFAATPDzRB8XR9iITJAnL8fh1Axsjk3C3SOPtcgEL7XyRkc7a5iZGONmXiG+vxWD1NKy+4oTAIZ7OGOsjxvsxCLEF5diza043MirO9b2NpaYEeQD78rP2p9xKfg7qSrWnk62GO/rAVdTCYwEAqSWyvBXfCoOp2bp3d5zvm6YEuCN7fGpWHMr7r7jaIhn/F0wMcgd9lIRYgtK8FVYLMKz9MdqJzHBGx190drGHB4WUmyOSsXysNg6tz3Q0wHLegTheHI25p2ObKoQ6jS2lQteaF0V25eXYxFWR2z2EhO8EeqL1rbm8LSQYvPtVHx5RTe24T6O+KB7YK11u20+DYWqeb8Ln/Z0xrhqbfS7yDhcr6+N2lpiZmUbzZYrsCVWt41W19fFHos6BOJMRg6WXLnVVCHUSa1W4691B3F093kUF5bCv40XJr85Gh6+zg1a/+yhMKx673d07tUG8z6brF3+6uiPkJ2eV6v8wNE9MHneGIPV/0E93iUIb7w8DKHtfOHiZINxU7/CnoOXWrpa9Zo4LhQzJnWDg705omOy8MHnh3ExLKnO8iOHtsGMSd3g42mLomI5jp+NwcdfHUV+gQwA8NzoDhgzvB0C/e0BANcj0vH5N8dx9UZac4SjQ61W4+pfexF15AwUxTLYt/JC18nPwsbDpc51oo6cQczJC8hPSgUA2Pl4ouP44XDw99aWSY+4g5t7DiMnLhGyvEL0nTcNno+FNHU4Wv/r4okZvXzgaC5GVGYxlu6NxMWE2p8PAOjsZYN3BgbCz8EMUhMjpOTLsOliEtadjdcpN7m7NyZ08YCbtRS5pQrsu5GOzw9FQa5UNUNEVdRqNVav/gNbthxAYWExQkICsGTJy2jVyqvOdcrLlVi7dit27jyKjIwc+Pi4Yd68SXjiiU7aMhcv3sC6ddtx40YMsrJy8e2376J//+4PVNeKsjJk/70TReFXUFFcBIm7JxzHPgepl8891y2NiUbiii8gdnGDz7vvPVA9ACBj6x8ojYmGIi0VIicXvdssjriB7H92Q5GWAoGJCaT+AXAcNRYie4cHeu0JQwMxdXRbONqYIjoxDx/9eAGXIjLrLC8yFuLV8SEY0ccPDjZSpGeX4Ls/r+Gvw3cAAM8ObIWRT/ojwMsaAHDjTg6++vUKrkVnP1A978eEp4IwdUxbONpKEZ2Qj49+uIBLNzPqLC8yFuLV5ztgxJPVYtt8DX8diq5V9qknfLDynT44dC4BMz882pRhED3U/pM9HJuKQqFo6SoYjJWVFaytrVu6Gv8v9Ha2x8tBvvgjNgmzzoXhRn4BPurUBg4Ssd7yTlIxPgptgxv5BZh1LgybY5Mws7UvejpVJdDa21jhWFoW3r54HW/8exWZMjmWdWoLO7FIW8bc2AjLu7ZHhVqNRVduYvrpK/jhdhxKyisMGl/2of3IOXoILuOeh9/8RTCxtEL8N8tRUVZ30qg0NgZJ69bCukt3+L/7Hqy7dEfiT2tRGleVJFAp5JC4e8Bl3PN1bkeelYm45Z9B7OQMnzfegv/C9+E4ZBiEJiYGiS3n0H7kHj0E53HPw+ftRTC2tELi6nvHlrxeE5vvAk1syev0x+ZcT2wquQKmvv5wHDH6gWLo5WSPaYG+2BKbhNnnw3AjrwAfhNbf/j4IbYMbeQWYfT4MW+KSMCPIFz0cq9pfkJUF3mkfhKNpmXj1bBiOpmXinfaBCLQy15YZ6+2OIe4u+D4yBi+fuYL10XEY7e2G4Z6u2jKLOrSGs6kEH4ZHYva5cGTKyvBxp7YQG93fV09vZ3vMbO2DP2KTMfNsOG7kFWJZp2A4SER6yztLxfioUzBu5BVi5tlw/BGbjFmtfXQ+a4XlSmyKScKc89cw40w4DqRkYl7bVuhsb11rewGW5hjq7owYAyb06zLAwx5vdvTF+ohETDhwBWFZhVj1RFs4merfryIjIfLKyrE+IgnR+fXXz9lUjDkdfHAls6Apqn5PAz3tMS/UF+tuJuL5fVcQllmIb/q0hXMdsZkYCZEnL8e6m0mIyqs7tiKFEgO2n9f5a+5kYx9ne8xq7YNNMcmYcSYc1/MK8UnnYDjW00aXdQrG9bxCzDgTjj9ikvFqsA96OdW+oOIoEWNGkDeu5bbMfgOA3b8fw97NJ/DS3FFYtu51WNtaYNnrayErufdFhKy0XPy+eg+CQnxrPbds3ev4fs972r+FK2cAALo+2XxJnoYwMxXjekQi3lj8c0tXpUGGDWqNJW8PwOofz+CpZ9fhwpUkbPjuWbg6W+ot37mjO5Z/NBxbdl7FgDE/YOZb2xHSxhWfvT9UW6Z7Z0/s3ncTz03diFETf0VqeiF+WzMeTo7merfZlG7sPoyIf46h60vj8NSytyC1ssShj79Buazu9ph+Mxo+PTph0JI5GPrhmzCzt8Ghj79FSW6+toxSLoeNlxu6vjSuGaLQNaytM5YMbY3Vx2Mw9LszuJiQh19e6AxXK4ne8jJFBX79NwHjfvoX/VeewjfHY/Bm/1YY39lDW2ZEiCvmDwzAymN30H/lKczfcQPD2rng7QEBzRWW1o8/bsPPP+/EkiUz8Ndfy2Fvb4OXXlqC4uLSOtdZseJ3bNmyH4sXz8Devd/hueeG4NVXlyEiIkZbprS0DIGBPliyZIbB6pq+8ReUREbA9cWp8Hn3fZi2DkbSquUoz9ef/L2rQlaKtF/XwyywtcHqArUa1t17wiL0Mb1PK7KzkLJ2NcwCguC94D14vPIGKoqLkfLjdw/0skN7emPh1C5Y8+c1PD1nNy7ezMS69wfAxcGsznVWze+DHu1dsWDVGQx4eQde/+IkYpKrvre6tHPG3ydj8b93D2DsW3uRmlWCX5YOhJOt6QPVtbGGPuGDhdO7YM2Wq3j6td24eDMD65beI7YFfdGjgwsWrDiNAdO24/XPTujEdperoxkWTH0MF27ov3hIuoT/T/7+v2pU7H369MFrr72G119/HTY2NnBycsIPP/yAkpISvPTSS7CwsICfnx/27dunXSciIgJDhw6Fubk5nJycMHHiRGRnZz/QNu86c+YMQkJCIJFI0LVrV1y/fl3n+bNnz+KJJ56AVCqFh4cHZs+ejZKSqh8r3t7e+OijjzBp0iRYWVlh2rRpDXofYmNj0bdvX5iamiIkJATnzp3TeX7btm1o06YNxGIxvL298dVXX9W7vejoaDzxxBOQSCQIDg7GoUOHGlQPAPDx0Vxl69ixIwQCAfr06QOg9i3V9/s+32v/1aepXnP//v3o2bMnrK2tYWdnh2HDhiEmpuqk4+6t79u3b693PxnKaC83HEjOwP6UDCSVyPD9rThklckxzEN/j49hHi7ILJPj+1txSCqRYX9KBg6mZGCMd1Wvus+uR+HvpHTEFpUgqUSGFTejIRAAHe2stWXG+bgju0yOr25E43ZBMTLK5AjPLUBaPSfajaVWq5Fz9DAcBj8Fq46dIHF1g9sLk6FSKFBw8d8618s+egjmQcFwGDwUYmcXOAweCvOgIOQcO6wtY9GmHZyeHgWrjp3q3E7m7h0wb9MOzqPHQurhCZG9AyzatYexhf4fS42NLffYYdgPegqWHTSxuU7UxFZYT2y5xw7BLCgY9oM0sdkPGgqzwCDk1ohN0+ux7tisu3aHw9DhMAsKfqA4Rnm74WBlG0oqkeHH23HILpNjqLv+9jfU3QVZMjl+vK1pfwdTMnAoJQOjq7W/EV6uCMvNw9a4ZCSXyrA1LhlXcwswwrOqTJC1Jf7NzMHF7DxklslxJiMHYTn5aGWp+dHpaipBa2tLfBsRg+jCYqSUyvBdZAwkRkbo7Xx/V9vHeLtif3IG9iVnILFEhjWVn7Xhnvp7swzzcEZWmRxrbsUhsUSGfckZOJCcibE+VUnRa7mFOJOZi8QSGdJkZdiRkIbYohK0sdZtYxIjIRaEBODrm3dQrFTeV/0bY0KQG3bFZmBXbAbiC2VYHhaLjFI5nvHXH2taiRxfhcXin/hMFJfXXT+hAPioeyB+uJGAlAYkiZrChCA37IzNwM6YDMQVyvDllcrYWtUd25eXY/FPXP2xAUBOWbnOX3N7xscV+5IzsLeyjX4XGYfMetrocE9nZJbJ8V2kpo3uTc7A/uRMjKvWRgHNydq7IQHYEJ2ItAfoIfwg1Go19v15EiNf7I8ufdrDw88FsxaPh7xMgTOHwupdV1WhwuoPNuKZqYPg6GZb63lLG3NY21lq/66ciYCTmx2CO/o1VTj35eDxq/jgyz+xa//Flq5Kg0yd2AVbdlzF5h1XcScuB0u/OIy09EL8b1yo3vKh7dyQnFqAXzZdQlJKAS6FJWPTX2FoH1zVfue8uxu//XkFEbczEROfg/kf7IVQKMDjXbybKSoNtVqNyL3H0G7UIHh17QAbT1f0fGUilPJyxJ6uu9fpE7MnIWjQE7D1doeVmzO6z3geUKuRfv22tox7xzYIfW44vLp2aIZIdE193Ad/Xk7GlsvJiMkqwdK9kUgrKMP/uui/A+JmWiF2X0tDdGYxkvNl2Hk1FSejs/GYt422TKiHNS4l5mH3tTQk58tw6k42dl9LQzs3q+YKC4Bmn/366268/PI4DBzYAwEBXvjsszdQVibH33+fqHO9XbuO4eWXx6F3787w8HDG888PRc+eHbF+/U5tmd69O+ONNyZi4MAeBqmrSqFAUfgVOI56BqatAiBydILDUyNgYmeP/FPH6103/Y/fYNm5KyQ+tS+uAED+udOIXboIt+e8jNili5B38tg96+M07nnY9H4SJvb2ep8vS0yAWqWG/fCREDk4QuLpBdv+AyFPSYa64v7PWSaPbIOth6Lx58FoxCQX4OOfLiAtuwQThtS+owAAngh1Q5e2zpjywSGcvZqGlMxiXIvORtitqrtG3vzqFDbuvY3IuFzEJhdg4eqzEAqB7iF190xuCpNHtcHWg9H480A0YpIK8PEPF5CWVYIJTwXpLf9EJzd0aeeEKUsO4Wx4ZWxR2QiL1O3tKRQKsPyt3lj5exiS0oqaIxSih1qjk60bNmyAvb09Lly4gNdeew0zZ87E2LFj0aNHD1y5cgWDBg3CxIkTUVpairS0NPTu3RsdOnTApUuXsH//fmRkZGDcuHH3vc3q3nrrLXz55Ze4ePEiHB0d8fTTT6O8XPMD4/r16xg0aBBGjx6Na9euYcuWLTh9+jReffVVnW188cUXaNu2LS5fvozFixc36D1YuHAh5s2bh/DwcAQEBGD8+PFQVv4AvXz5MsaNG4fnnnsO169fx/vvv4/Fixfjl19+0bstlUqF0aNHw8jICOfPn8f333+P+fPnN6geAHDhwgUAwOHDh5GWlobt27fXWbax73ND9199muI1S0pKMHfuXFy8eBFHjhyBUCjEqFGjoFLp3hZS334yFGOBAK0szXE5J19n+eWcfARb60+KtbayqFX+UnY+AizNYSQQ6F1HbGQEY4EAReVVP6C7OdohqqAYC0OCsKVPF3zbvQOGuDs9UDw1ledkQ1lYAPPWbbTLhCYmMGsViNLYO3WuJ4uLhXlr3USaees29a5Tk1qlQtGNaxA7OiH+m68R+fYbiPn8YxSG1//DtqHuxmZWIzZT/0CUxtVdz1J9sQW3gawRsRmKsUAAfwtzhNVoT1dy8tG6jvYXZG2BK3rKt6rW/oKsLBCWXaNMdh5aW1toH0fkFSLEzhqupppeFz7mZgi2tsSl7FwAgIlQ8/WiqPa5VAFQqtW1knkNYSwQIMDSHJdr1Otydj7aVKtXda2tLWqVv5SdV+9nraOtFdzNpLiep3vF+rVgP/yblYewnKbvXWYsFCDIxgLna9xiej49D+3tHyzZPrWNJ/Lk5dgVW/ctQ03JWChAa1sLnE/Tje1ceh5CHjA2qbER/hnxGPaN7IKVvYMRaFN3L4WmcLeNXtLXRm30t9FgPW30YnYeAqx02+hEfw8UKMqxL7nu29iaWmZqLvJzitC+S1WvKBORMVp38EPU9fh6193280FYWpvjyeFd7/k6ynIlTh+4jD7DukBQx+eU7s3EWIh2rV1w6pzu8AMnz8WhU4i73nUuX02Gs5MF+vbUJHrtbc0wpH8Qjp6q+/tNKjGBibEQ+YXNmwgvzsyBLL8Qru2rkgNGJiZwDvZHVlTdw0nUVCFXQKWsgMi8eXtX6WNiJEBbV0ucuqN7Yf/UnWx08rSpYy1dbVws0cnTBv/G5WqXXUrIQztXK4RUJhg9bKToG+CAY1H6hw5pKsnJGcjKykPPnlVDzIhEJnjssbYIC6t7iIjy8nKIRLp3tkgkYly5EtFkdVWrVIBKBYGx7usKRCYojal9++xd+edOozwrC/ZDh+t//sxJZO/ZAYenR8Fn8YdweHoUsv7eiYLzZx6ovhIvbwiEAhScPwO1SoUKWSkK/z0Ps6BgCIzubwQ1E2Mh2vrb4XRYqs7y02GpCG3tqHedfl09cP1ONqaPaYfTv4zFoe9H4Z3JnSEWGdX5OlKxEYyNhCgolt9XPe+HNrYrKTrL7xlbdA6mP9MOp38dh0M/jsY7Ux6rFdtr40OQW1CGrQfrbidE/580+ggUEhKCRYsWAQAWLFiATz/9FPb29tregUuWLMGaNWtw7do17N27F6GhoVi2bJl2/fXr18PDwwNRUVEICAho9Da7deum3dZ7772HAQMGANAkttzd3bFjxw6MGzcOX3zxBZ5//nm8/vrrAIBWrVph1apV6N27N9asWQOJRPMj+cknn8S8efMa9R7MmzcPTz31FADggw8+QJs2bXDnzh0EBQVh+fLl6NevnzZ5GRAQgIiICHzxxReYNGlSrW0dPnwYkZGRiI+Ph7u75gRw2bJlGDJkSIPq4uCg6SlkZ2cHZ+f6x1Bq7Pu8Zs2aBu2/5n7NMWN0x3Nat24dHB0dERERgbZt22qX17ef9JHL5ZDLdb/sVAoFhCL9t8IBgKXIBEZCAfJr3I6fL1fARs8tmQBgIxYhP1v3x3a+QgFjoRBWJsbIVdTulTM5wAs5coVOoshFKsEwDxdsT0jB5tgkBFpZYGaQL8pVahxONcyPUmWBJrlSs0ehsYUlynNz9K2iWa+wAMaWulfOjS2toCysexyzWtsoKoJKLkfWwX1wGj4STiPHoDjiBhJ//A4+c+bBLED/1dUGb7+wjtgsGxCbRY3YLKygLGp4bIaibX/yGu1PoYCN2FrvOjYiEfIVNdqfXNP+LE2Mkacoh41YhLwa7fDu8ru2xifD1NgIax/vBJVaDaFAgF/vJOBEuuaHUnKJDBmyMkxq5YXVEXdQVqHCKC832IpFOttpKKvKWO9Vr+psxSJcUuTXKm8sFMJKZIxcuWZbpsZG2NznMZgIBVCpgVURMbhSLbHYx9kerSzN8Mq5q42u9/2wFpnAWChAbpnufs2Vl8Necv/DCYTYW2KErzOe33/lQat436zFmthyasYmK4edy/3HFl8ow/vnbyM6vxTmJkYYH+iG9QNC8Ny+K0gqap5EiLaNymu0UXk5bOv4HrEVi5Anz69VvnobbWNtgSEeTph+OryJat4w+bmaY5yVrW7y1MrWAtnpufpWAQDcvhaHY3su4NMNcxv0OhdP3kBJcRl6D9V/6yA1jI2NKYyNhcjO0R2GIDunBA72+pPxl6+m4PUFu7H685EQi4xhYmKEg8ei8N6nB+t8nXfm9EV6ZhHOnG/aMW1rklWOUyy10m2PEisLlGTV3R5rurxpF0xtreDaTv+5YXOyMRXB2EiIrBqJl6wSOezN6//ePPdWX9iaiWAsFGDF0WhsuZysfW7P9TTYmomwdVo3CASaYSp++zcBa042PDFrCFlZmnMPu2p36wCAvb01Uus5b+3ZsyN++WUnHnusLTw9nXHu3FUcOXIeFRVNN/6kkUQCqY8fsvfvgcjZBcaWlii89C/K4uMgctCfkFJkZiBr1zZ4vTEfAiP9CbbsfX/DcfQ4WFTeASOyd4A8LQ35p0/Cqtvj911fkZ09PF6di5R1a5D+x2+ASgWpjx/cZ825723aWIphbCREdr5MZ3lOvgz21lK963g4WaBzsBPk5RWY9fEx2FiK8cHM7rAyF2PBKv1J1bde7ISMnFKcCW++cWCrYtM9P8jJk8Hepo7YnC3QuY2jJraPjsLGUoIPXukGKwsRFqzQxBYa7IixgwIw/NVdTR4D0X9FoxOO7du31/5vZGQEOzs7tGvXTrvMyUnTwyozMxOXL1/GsWPHYG5ee1yXmJgYbcKqMdusrnv3qsGAbW1tERgYiMhIzeD3ly9fxp07d7Bx40ZtGbVaDZVKhbi4OLRurRlXo3Pnzo18B3Tr6+Lioq1bUFAQIiMjMWLECJ3yjz/+OFasWIGKigoY1fgCioyMhKenpzbZWDMuQ2rs+9zQ/dfcrxkTE4PFixfj/PnzyM7O1vZsTExM1Ek41ref9Pnkk0/wwQcf6CzznfAS/CdO1lu+uprz8wgEAOoZOqyup/QtH+vthr4uDnjrwnWUVxuPTCAAoguK8XN0AgAgpqgEXuameMrD+b4TjvkXziP1j9+0j71mzq58MT01bWzHk8ZOYlRZ3rJ9B9j3GwgAkHp4ojQ2BrmnTzQ64VhQIzbPWXXE1pB63s86Tajmq9+j+dV+Tu++VNcqUj3MJ5zt0dfVEV9cv42E4lL4WphheqAvcuUKHEnNRIVajWXhkZjTphW2PNkdFSo1wnPzcbERPwQbUndNveqOVq0nDtSIRaaswMtnwyE1MkJHOyu8HOSDNFkZruUWwkEiwqzWPnjn0k2dz19zaOx+rY+psRGWdgvExxejUaBo+lvCG0sgeLCP0fWcIlzPqbp1KTyrEJuGdMRzAa744nLz/qiuRVC7HVZXXxuVGhlhQUgAll+/g8J73E5uaKcPXMaPn/+lfTz/y6ma+tXsdahW19kTUVZShtUfbMK0d8bC0rphY/wd2/MvOnQLgq1D897u+ajSd35S12etla893p8/AKvWnsaJs7FwdDDHu2/0w7JFg/H2+3trlZ8xqRueHhKMZ6f8DrnCsONH1xR76iLO/fiH9nG/d2Zq/qnVHvUsq8ONXYcQd+YyBr03B0Yiw4wN3RQEDTjhGvvTeZiJjNDRwxrzBwYiIbcUu69pEjjdfGzxam8/LN5zE+HJ+fC2NcOSp1ojs0iOb47H3GPL92/37uN4771vtY/Xrl0CoPYxRPMdXneMCxdOx6JF32DIkJkQCAAPDxeMHt0f27cfrnMdQ3B5cQrSfv8FMQvnAUIhJB6esOzcBWVJibXKqlUqpP78I+yfGgGRk/4OIMqiIijzcpH2+wakbfy16glVBYRSTZIr6dsVKL2j6RlnYmsH38VLG1RXZUEB0jZtgFXXHrDs3BWqsjJk/bMTKT+tgcdrcx+st3itkxFBnd9oQqFmf8798iSKSzUX35atu4DV7/TF+9+fr3WcmDa6LYY94YsJ7+6HwsBj0DdIrQNk3eeUQqEAajUw9/MTVbH9eBGr3+2L9787D2MjAb6a9wTeXXUGeYXN11vzUSDkzQyPtEYnHE1qTNYgEAh0lt09oKlUKqhUKgwfPhyfffZZre3cTQA1dpv3Ur3sjBkzMHv27FplPD2rxkExM2v8LVf11U2t58S73h/Dep5rqluIGvs+N3T/NfdrDh8+HB4eHvjxxx/h6uoKlUqFtm3b1pr0p7FtaMGCBZg7V7cHxpgT9c8+WagoR4VKXauHlZWodg+xu/LkilrlrUUiKFWqWj8on/F2w3O+Hnjn0g3E1RhQO1euQEKJ7rKkklKdCTEay6J9B/h5V82+p668BV1ZWAgTK2vtcmVRUb3jKGp6M+reeqosKoSxZcNvmTQyNweERhC76I5lJnZ2qfd2lrqY14hNVV9s9dRTb2zFhQYZV7Kx6mt/+fI62p9CARtR/e0vT66vjIlOT97JAT7YGpeMk5U9GhOKS+EokWCsjzuOVCa87xSV4LXz4TA11gwJUFiuxPKuIYguaPyYNgWVsdrW+FGoqZf+WHPlilo9y6xFJrU+a2pAO3N2TFEJPM1MMd7XHddyI9DK0hw2YhG+695BW95IKEA7G0uM8HTB0INnYeg+FvmKcihVatjVmGjERmxy3+MSuptL4GYuwfJe1YYQqPyqOT+uJ8bsvYSU4qbvCZgvryM2iQlyDTjmohrAzZwieFro76nQFAq0n0fdNmojMqnz+yBXroBtze8DcVUb9TY3hYupBB91qhrG4e4pwsFBPfDiqStNNqZjp55t4N+maubY8spEdX5OIWyq3f5ekFdcq9fjXRkpOchKy8UXb6/XLlNXJu6f7/UWlv8xH87uVWOSZaXl4vqlaLy5bJIhQ/l/KS+vFEqlqlZvRjtbs1q9Hu+aNaU7LoUnY+0GzTjGt6KzUCrbj22/vIAvV59AZnbVetNf6IpXpvTAhBmbcCu66W/N9ejcDvatvLWPKyqP4bL8QpjaVCWnywqLavV61OfGnsO4tvMgBi56FbZebvcs3xzyShVQVqjgYK47gZa9mQjZxfVPbJmcp+mFdjujGPbmYszp669NOM7t1wrbw1O0vR5vZxRDKjLCJyPaYvWJmCa7Zvrkk10QElLVOUFReRzMzs6Do2PVWK45OQWwr+OuIACwtbXCd98tglyuQH5+ERwdbfHllxvgbuBhhGoSOTjC6423oZLLoSqTwdjKGinrvoeJXe1xFFVlZShLjEdZciIy/tykWahWA2o1br02HR6vvqE9n3V+/gVIq52PAtBk6gA4T3gR6spzrcbcCp138hiMJBI4jhqrXeb64lTELHobZfGxkPo0fjzcvEI5lBWqWj3+7KwkyKnR6/GuzFwZMnJKtQk5AIhJKoBQKICznSkSqo1pOGVUG8wc2x4vLD6A2/H1T8RjaHXGZi1FTr7+71T9seVrYrM3g6nEGB7OFvjhvf7a54WVX9i39ryIgdO2IzGdYzrS/z/3N6hDA4WGhmLbtm3w9vaGsbHhX+r8+fPa5GFeXh6ioqK0vddCQ0Nx8+ZN+Pv7G/x16xMcHIzTp0/rLDt79iwCAgJq9W68Wz4xMRGpqalwddV8ETVmchNR5Y/pigrDXxVq6v13P6+Zk5ODyMhIrF27Fr169QKAWu/3/RKLxRCLdU/y6rudGtCMRxddWIxQO2uczay6DTfUzhrnMvXflhtZUISuDrqD5neys0ZUYTEqqp31PePthud9PfDu5ZuILiyutZ2I/EJ4mOl+UbqZSpEpu/+rakYSCYwkVTMhqtVqGFtaoTjyJqQems+aSqlESfRtOI98ps7tSH18UXwrQtszEQCKIyNg6tvwz6PQ2BhSL2/IM3RneJNnZsDEtvFJ1bpiK7lVFZtaqUTpndtwGlF3bKY+viiJjIDdk7qxSRsRm6Eo1WrcKSpGxxrtraOdNc7X0f5u5RehS43219HOGtHV2t+tgiJ0sLPGzsSqcXs62lsjMr/qREksFNa6YKKCGkI9vRRKlZrjk6upBP6W5vjtTkIjI9XEGlVYjFB7a5zJrOolGWpvjbOZ+ntNRuYXoZtjjc+afe3PWi2CqjEow3IKMO207rih89r5I6lYhi1xKQZPNgKAUqXGrbwidHW2xvGUqv3Y1dkGJ1Lqvt2/PvGFpXh232WdZTPbecHUxBhfXYlBRmnzXI1XqtSIzNXEdiy5KpZuzjY4nnx/sdUl0MYcd+4xY7ch3W2jneyscSajqk12std9XF1EfhG612ijne2tEVWgaaOJJaWYckq3/U0O8ITUyAjfRsYh6wGO9/ciNZNAaqZ7zLS2s8D1i1HwCdTclaEsVyIyPAbPzxqmdxuuXo744jfdYWu2/LAPslI5Jr0+EvZO1jrPHf/nIqxszNGxhwFnd/1/qlypwvXINPTq5oMDR6O0y3t188HB41F615FKTKCscZuqqqLyWFntYviMF7vi1WmP44WZm3E9onlmYTWRSmAi1W2PUmtLpF27BTsfzYzMFUol0iPuoNPzI+raDADN7NbXtu/HgHdfgb2fV71lm1N5hRo3UgvR098OByKrxtnt6W+PQ5ENH3dXAEBsXDVMv9TEqFZSUaVWQyB4sJ7z92JubgrzamNjqtVqODjY4MyZcAQHaxJgCkU5Ll68gXnzXrzn9sRiEZyc7FBersTBg2cxZEjPJqq5LqFYDKFYjIrSEpRE3oSjnvNfoUQCn4W6d0nlnTyG0qhbcJs6EyZ29hCKxTC2tkF5ThasunSrtQ0AMLFu2FidNakUckCgOzWDoPI8pr6OL/UpV6pw404OenZ0xaHzVb06e3ZwxeF/a/fyBIDLkZkY0tMbphJjlJZpLgr4uFmiokKF9JyqThJTR7XBK8+G4KX3DuHGHcN+9zeETmznqsXW0RWHz9cRW0SGntisNLFll0CtBobM3KGzztwXQmEmNcGHa/9FWnbznY8QPUyadIbuV155Bbm5uRg/fjwuXLiA2NhYHDx4EJMnTzZIgmzp0qU4cuQIbty4gUmTJsHe3l47M/P8+fNx7tw5vPLKKwgPD0d0dDR2796N11577YFftz5vvvkmjhw5gg8//BBRUVHYsGEDVq9eXec4kf3790dgYCBeeOEFXL16FadOncLChQsb/HqOjo6QSqXayVUKCgw3oUFT77/7eU0bGxvY2dnhhx9+wJ07d3D06NFavRKb2/aEFAx2d8JANyd4mEkxI9AHjhIx/knSnIS/1MoLb7WtusL7d1IanCRiTA/0gYeZFAPdnDDI3Qnb4qsGLh7r7YYXW3lh+c1oZMjKYCMygY3IBBKjqo/s9vhUBFlZ4Dkfd7iaStDXxQFD3Z2xO8lwY6AIBALYPdkfWQf2ojD8CspSU5Dy63oIRSJYPVY1+H/yL+uQvnOb9rF93/4ojoxA1sF9kKenIevgPhTfioRd36qrfhVlZZAlJUJWeWuKIicLsqREKKqNn+gwYBAKL19E7umTkGdmIOf4URRdvwrbJ/oaJDbbvv2RXT223zSxWVaLLWXDOmTsqorNtm9/FN+KQHZlbNkH96HkViRsq8WmKitDWVKi9rab8pwslCUl6owNWVFSjLKkRMjTNEk9eWY6ypISteNmNtSO+BQMdHPCAFdN+5sW6AMHiRh7kzXt70V/L8yt1v72JqfBUSrG1ABN+xvgqmm726u1v90JqQi1s8Ez3m5wN5XiGW83dLC1xq7EqjIXsnLxrK8HHrO3gaNEjO6Odhjl5aaT+OzpZId2NlZwlorRzcEWH3Vqi/OZObUmuWmobfGpGOLuhEFujvA0k+LlIM1n7e9ETayTA7zwdrtW2vJ/J6XDUSLGjCBveJpJMcjNEYPdnbA1riqR+pyvG0LtNHX0MJNijLcrBrg64EiqpseOrKIC8cWlOn9lFZreZ/E1eh0b0sZbKRjp64ynfZzgbSnF3I6+cDYVY9sdzef7lfbe+KCr7rAWAdZmCLA2g9TYCDZiEwRYm8HHUvNjT6FSI6agVOevqLwCpeVKxBSUQtmMt4tvvJWCUX7OGOHrBB9LKd4MrYwtWhPbqyHeWNpdf2ymxkawlujGBgDT23qiu4s13MwkCLA2w3tdWyHAxgx/3Wm+MaEA4K+4VAz1cMJgd00bnVnZRvdUttEpAV6Y376qje5J1LTRmZVtdLC7I4a4O+HPyjZarlLXan/F5Uptu1Q243AOAoEAQ8Y9gZ2/HsGFE9eRFJOG7z7aDLFEhMcHVE0C8e3STfhjzT8AAJHYBB5+Ljp/phZSSE3F8PBzgbFJ1YVFlUqFE/9cxBNDOsPIuO4JBlqSmakY7YO90D5Yk6Ty9nBA+2AveLje/50FTemn3y7g2dEdMG5ke/j72GHxvP5wdbHExq2acVzfnt0Hyz+qmtzi8IloDH4yEP8bGwoPN2t07uCO9+cPQNj1FGRmaS58zpjUDW++2htvv/cPklML4GBnBgc7M5hKm/eWZIFAgNZD++LazoNIuHAVeYmpOPPdbzAWm8C3Z9VwSadW/4rLm6rGU7ux6xDCtvyNx2dOgLmjHWT5hZDlF6K8rCp5X14mR258MnLjNT0CizJzkBufjOLsBxsSpCF+OhOHZzt5YGyoO/wczLB4SBBcrSTYeFFzPvH2gAB8NaZqyKCJXT3RL9AR3svD5T0AAQAASURBVHam8LYzxdhQN0zr6YMdV6u+547czsSELp4Y3s4F7jZS9PSzw9x+rXD4Viaac6QQgUCAF154GmvXbsWhQ+cQFZWABQtWQCIRY9iw3tpyb7+9HF99tUH7+OrV2zh48CySktJx6dJNTJ36HlQqFaZOHa0tU1IiQ2RkLCIjNUNoJCdnIDIytt6xIe+lOOIGim/egCI7CyWRN5G44kuIHJ1h1V0z1mLmrm1I3bBOE5tQCLGrm86fkYUFBMYmELu6QVjZocF+6HDkHNiH3GOHochIR1lKMvLPnUbukbrHSQU040OWJSWiorAQ6nKF9hzz7p1I5m3boywxHtl792jKJiYg7befYWxrB4m7/hnOG2L9zpsYO6AVnunvDz93Kyyc+hhcHMywaZ9mVvd5L4TiizeqEr97TsQiv1COz+b0hL+HFR5r44T5L3XGX4fvaG+nnja6LeZODMU7q84gOaMY9tZS2FtLYSppns4t2th23MTYQQF4ZkAr+HlYYeG0LprY9momMJo3qRO+eLNXVWzHY5FfJMdnb1TG1tYJ86d0xl+HoiFXVEBRXoHohHydv8JiBUpk5YhOyEe5sunGHCV6mDXpJ9vV1RVnzpzB/PnzMWjQIMjlcnh5eWHw4MEQCh881/npp59izpw5iI6ORkhICHbv3q3t8de+fXucOHECCxcuRK9evaBWq+Hn54dnn332gV+3PqGhofjzzz+xZMkSfPjhh3BxccHSpUv1ThgDAEKhEDt27MCUKVPQpUsXeHt7Y9WqVRg8eHCDXs/Y2BirVq3C0qVLsWTJEvTq1QvHjx83SCxNvf/u5zUFAgE2b96M2bNno23btggMDMSqVavQp0+fJqlPQ5xIz4aFiTEm+HnAVixCQlEpFl25iczKk1dbsQgO0qqekxkyORZduYkZQb4Y7umC3DIF1kTG4nRGVaJmmKcLREIhFnfQ7eXx251E/B6jOemMKizG0vBIvNTKGxP8PJEuK8P3t2NxLM2wtzbZDxgMlUKB1M0bUVFaAqm3L7xfm6vTW1CRl6MzAIepnz88Jk9Hxp6dyNyzEyJ7B3hMmQ5TH19tGVliPOJXfKl9nL7tTwCAdbcecH9BM26mZYdQuI6fiKwDe5G29Q+InZzhOW0mzPyrfrA/CLsBg6EqVyB9S1Vsnq/qxlael6PTs8PU1x/uL01H5t87kfm3JjZ3PbElrKyKLaMyNquuPeBWGVvRtatI/f1nbZmU9T8A0JyMOj5Vf++M6k5lZMNSZIzxd9tfcSneC7uJrOrtT6Lb/t67chPTAn0xzNMFOXIF1t6K1emhG1lQhM+u38JEfy/8z98L6aVl+OzabdwuqOpp+/2tWPzP3xOzWvvBSmSCXLkC+5LT8EdMkraMjViEqYG+sBaZIK9ybMfNsVXPN9aJ9GxYmhjjf/6aWOOLSrHwcoT2s2YnNoFjtc9aukyORZcj8HKQD572dEFOmQLfRcbpfNYkRkaYHewHe4kI8goVkkpk+PRatHbym5ZyKCkbVmITTG3rCXuJCDEFJZhz8gbSK3si2ktFcDbT7ZG9aXCo9v9gWwsM8XZEakkZnt5zsVnrfi8HEzWxTWvrCXupJrbZx28grXpsprqxbR5aLTY7Cwz1dkRqcRmG7dbEZiEyxqIurWAnEaG4XInbeSWYdvgabubU7h3elI6naz6PE/08YCvRtNEFl2q0UYluG333cgRmBfngaS9NG10dEYdTGc3f46Mhnv5fXyjk5Vj/5TaUFMngH+yJd7+ertMTMjsjH4L7GJDp+sVoZGfkoc+we89k3VJC2/vi4J9LtI8/f+8FAMBvW09g+pvft1S16vT3gUjYWEkxe3pPODqYI+pOFia9sgUpaZoJVxztzeHqXHV7/F+7r8PcTIwXx3fCojf7obCoDGcvJuCTFUe1ZSaOC4VYZIzvl+tO4Pf1mlNY8f2p5gmsUtun+6NCocC/67ZAXlIKB39vDHj3VZ2ekCU5uTrt8dahU1AplTi+fJ3OtkKeGYIOYzUTDebEJODA0lXa5y79uh0A4Ne7K3rOmtiUIeHvG+mwNhVhTl8/OFhIEJVRhJd+u4SUyts8HS3EcLOuik8oEODtgQHwsJFCqVIjMbcUnx+M0iYoAeCb45rbpt/s3wrOlhLklChw5FYmvjysv6drU5o2bQzkcgU++GANCgqKERISgPXrl+r0hExLy4Kw2j6TyxVYseJ3JCWlw9RUgt69O+Pzz+fC0rJqXNgbN+7ghRfe1T7+5BPN/h016kl8+ukb91VXlUyGrN3boczPg9DUDBYdQuHw9Cjtrc7KggLNOWIjWD/+BAQiMXIP70fWzr8gEIkgdnXXuWitT9qmDZBFV+2v+E81Yzv6Lv0UIjt7mAW2huukacg5vB85h/ZDKBJB6uMHj1dev+fdWvXZezoeNpZivPpcBzjaShGVkIepHxxGapamt56DrSlcHar2Q2mZEi8uOYgl07tix9fDkV8ox97TcVj+e1VP/QlDgyAyMcK3C3Q7D6zaFI5Vf4Tfd10ba+/JONhYiPHq8yFwtDVFVHwepr53CKmZlbHZSOHqUDUkRWmZEi8uPIAlM7tix8qnkV8kx95TcVj+a8tNxEf0XyBQ328/a6L/BwYdMMzt2g8jc+NH96PfzHN7NBuF6tEdVflRji0v/9G8qt2AYZX/s2xsmvQGkBb1ZZfmHSurufTouPHehf6jHG3a3bvQf9SMDY/ubOQ//PXwTdBlCPEfNX48wP+KEYcbfuv6f83NlU03QVCLqnhET/oB3Nn7UktXoVlMPnW8pavQLNb36tPSVWgRj+4ZNRERERERERERETU7JhyrWbZsGczNzfX+DRkyhHWqJjExsc56mZubIzFR/4C7RERERERERET0aGve0Vkfci+//DLGjRun9zmpVKp3eVN7GOsEaMZaDA8Pr/d5IiIiIiIiIiL6/4cJx2psbW1ha2vb0tXQ8TDWCdBMVuPv79/S1SAiIiIiIiKi/6D7mGeO/kN4SzUREREREREREREZDBOOREREREREREREZDBMOBIREREREREREZHBMOFIREREREREREREBsNJY4iIiIiIiIiIqFmxB9yjjfuXiIiIiIiIiIiIDIYJRyIiIiIiIiIiIjIYJhyJiIiIiIiIiIjIYDiGIxERERERERERNSuhQN3SVaAmxB6OREREREREREREZDBMOBIREREREREREZHBMOFIREREREREREREBsOEIxERERERERERERkMJ40hIiIiIiIiIqJmJRS0dA2oKbGHIxERERERERERERkME45ERERERERERERkMEw4EhERERERERERkcFwDEciIiIiIiIiImpWHMPx0cYejkRERERERERERGQwTDgSERERERERERGRwTDhSERERERERERERAbDhCMREREREREREREZDCeNISIiIiIiIiKiZsUecI827l8iIiIiIiIiIiIyGPZwJKqHUNDSNaD7YSRUt3QVmsQjGhYAwPgRvvxlbPJoHkjUj3B7VD3CsWWVPZofNkebdi1dhSaTmXe9pavQZPYn9W7pKjQZk9M3W7oKTaK4XNrSVWhCRi1dgSajtjdt6So0jUf5C5voEfBonnUSERERERERERFRi2APRyIiIiIiIiIialZCAXupPsrYw5GIiIiIiIiIiIgMhglHIiIiIiIiIiIiMhgmHImIiIiIiIiIiMhgmHAkIiIiIiIiIiIig+GkMURERERERERE1KyEgpauATUl9nAkIiIiIiIiIiIig2HCkYiIiIiIiIiIiAyGCUciIiIiIiIiIiIyGI7hSEREREREREREzYo94B5t3L9ERERERERERERkMEw4EhERERERERERkcEw4UhEREREREREREQGw4QjERERERERERERGQwnjSEiIiIiIiIiomYlFLR0DagpsYcjERERERERERERGQwTjkRERERERERERGQwTDgSERERERERERGRwXAMRyIiIiIiIiIialYCgbqlq0BNiD0ciYiIiIiIiIiIyGCYcCQiIiIiIiIiIiKDYcKRiIiIiIiIiIiIDIYJRyIiIiIiIiIiIjIYThpDRERERERERETNSiho6RpQU2IPRyIiIiIiIiIiIjIYJhyJiIiIiIiIiIjIYP5fJxyPHz8OgUCA/Pz8Zn3d+Ph4CAQChIeHP9B2vL29sWLFinrLCAQC7Ny5875fY9KkSRg5cuR9r/+wMNR7TkRERERERERE9eMYjgRAk5Dz8fFBWFgYOnTooF2+cuVKqNXqlqvYPUyaNAn5+fkPlFQ1hKc8nPGMtztsRSIklJRi7a1Y3MwvrLN8OxtLTAv0hZeZKXLkCvwVn4y9yena5we7OaGfqyO8zM0AAHcKi/FLdDyiCourXtPdGU95uMBJKgYAJBSXYlNsEi5l5xk0NrVajcx/diPvzElUlJZC6u0D12cnQOLqVu96BWGXkblnJxTZWRDZO8Dp6VGw7BCqfb4kOgrZh/ZDlpQAZUEBPKe/AssOHXW2oSwsQPrObSiOvImKUhnMWrWCy7jnIXZ0MmBse5B7WhObqbcPXJ97/t6xXbmMjD27qmIbMRJW1WLL3L8XheFXIE9Ph8BEBDM/PziPHAOxs7O2TMbfu1Fw6SIUebkQGBlD6ukF5xEjYerj2+g4hrq7YLS3O2xEIiSWlODH27GIqKf9tbWxwpQAH3iamSFXLse2hGTsr9b+AKCHox0m+HnDxVSCtNIy/HYnHuezcrTPP+Ptjh6O9nAzk0KhUuFWfiF+iY5HSqlMW2bPgF56X399VCx2JKQ0Ok7g0f6s1TTG1xkTAtxhJxEhrrAUX1+NxdUc/bHaSUwwu50PgmzM4WEuxZ93UrHiWpxOGR8LU0xv44kga3O4mEnw9dVYbLmT2qQx1GWMrzP+F6gbW3h23bHNaa8b29dXdWMb4eOEoV6O8LXU7MdbecVYcyMeEXnF+jZpMCM8nfGsrxvsxCLEF5didUQcrufV3R5DbC0xq7UPvM1NkS1XYHNsCvYkpust29fFHks6BuJ0eg4WX7mlXf5Hn05wNpXUKr8zIQ0rb8Y+eFD1UKvV2LfhAM78cw6yIhm8Wnti3OwxcPFxqXOd8JPXcHDTIWSnZKOiQgUHN3s8ObYPugx8TFumrLQM/6zfh6unr6M4vxju/m4Y8+ooeAV5Nmk8d00cF4oZk7rBwd4c0TFZ+ODzw7gYllRn+ZFD22DGpG7w8bRFUbEcx8/G4OOvjiK/QHP8e250B4wZ3g6B/vYAgOsR6fj8m+O4eiOtOcK5L493CcIbLw9DaDtfuDjZYNzUr7Dn4KWWrpbWSC9njPd3g61YhPiiUnxzMw7Xcuv5rNlZ4tVgH3hbmCKnTIFNMSnYnaD7WTM3NsK0IC884WIHcxNjpJeW4duIeJzP1BzbpUZGmBrkiV7OtrARmyC6oASrbsThVkHTHlf0eX5EMKY+1x6OdqaIjsvDx6vP4dJ1/ceOz97pjdGDA2stj47LxdCX/mrqqtZLrVbjh+/+xva/TqGosBRt2/lg/qLx8PN3rXOd6ZO+wuVLUbWWP96rLVateQ0AsPbbPfhhzd86z9vZWeLgiS/uu64VZWXI/nsnisKvoKK4CBJ3TziOfQ5SLx+95UuibiFp5Ze1lvss/hBi57qPkQ2RsfUPlMZEQ5GWCpGTC3zefa9WmeKIG8j+ZzcUaSkQmJhA6h8Ax1FjIbJ3eKDXntDXD9OGBMLRWorolAJ8uCkcl6Kz9ZbtGuiATe/0rbV8wIJ9iE0vAgC0crXE66Paoq23DdztzfDhpjD8cij6gep4vyY86Y9pQwPhaCVFdGoBPtwYhktRdcQW5IBNC56stXzA/7F33/FNVf0Dxz9J2ozuvXcLLWWXJYKCMsWtiIqiOMC9B+IW996Pj/Mnj4qKKIgKyJC99yy00JYOuvdIk6bJ74+UtGnT0kILit/365UX5Obce8+3596bm3PPeGIRabnW2K4dEcOVw6LoHuYJwL6MEt6at5c9aSVdF8RZ4F/dAu5fQCocu4DRaEStVp/pbHQKT0/PM52Fv73zA/24Iz6Gj5OPcKCsgglhQbyY1JM7NuygsNbQIn2gTsOspJ4syc7jzb2HSPTy4J4esZQb61hfYK3Q6ePjyaq8QpLL0jDWm7kmOoyXB/Tizg07KDYYASgyGPm/1AyONVTwjA4J5Nl+Pbh34y4yq2s6Lb6iZUso/msZoVNuQRMYROHi38n48B26PfcyKm3LH70ANWlHyPryUwIvuQKPfv2p2LWTzC8+JeaRGbYKNbPRgDYsHK+hw8j6/JMW27BYLBz99GMUKhURd9yLSqejaMVSMj54m27PvIhSozn12JYuoWjFMsJuugVNQCAFi/8g/YN36f78S63GVp12hMwvPyPw0ssbY/v8M2IffdwWW3VqCr4jLkAXGYXFbCb/1/mkf/gu3Z+dZcu3JiCQkGuvR+3nj7nOSNGK5aR/8B7xs17Gyd293TEMD/Tj9vgY/nvwMAfKKhgfGszz/Xtxz8btjo8/rYbn+vfkz+w83t5nPf7uTIijwljHhobjL97Tncd79+DbIxlsKijmnABfZvRJYMbWPaRUWG+qenl78kfWMVIrqlAqFNwUF8mspF7cvWE7BrMZgCmrN9nte4CfD/cndrPtp6PO9nOtqdFhfjzYN4Y3dx5hT3EFV0QH8e7wnly/dAf5+paxqpVKyowmvj6YzXXdHP9w0zopyamuZUV2EQ/26XjFdmcZHebHQ/1ieGOHNbYrY6yxXfdnG7EZTPxfcjbXtxJbkr8nSzML2VOchtFsZkr3MD44rxfXL91BYa2xS+K4INiPexKjeW9fGvtKK7g0IojXByUydc0OChzsM0in4dWBifyRlc/Lu1Lo5e3Bg71iKDfWsSbP/pwI1Gq4KyGK3SXlLbZz54bdKGkcYT3a3YW3h/RiVa7jH0mdafkPf7Fy3ipueHwyAeH+/PntMj56/L88M3smWgeVoACuHi6Mu2EMgRGBqJxU7N+0n+/e+AF3b3d6DEoAYM5bP5KbnstNM2/A08+Drcu289Fjn/DUVzPw8vfq0pguGdeDZx8fwzMvL2HbrmwmT+zP7P9cy+grP+NYXssKrYH9w3jnpUuZ9dZyVqxOJTDAnVeevojXn5/AHQ/9DMDQgREsXLyf7buzMRjqufOWc/jmk+sZc/Vn5Bec/sqq9nB10bD3QCbfzF3ND589fKazY+fCED/u6xXNO3vT2FdSwWWRQbwxJJGbVu2gQN/yXAvWaXhjcCK/Z+bz0s4Uevl48HBv67m2Otd6rjkpFLw9tCdlhjqe2XaQwlojATo1NaZ623Zm9I0j2sOFl3emUlRrZGyYP+8M7clNq3ZS1EXXFUcmXBDDU/cO5fn31rFjbz7XXdaDL964iItunktuQXWL9C9+uIE3P9tie++kUrLwi6tZvDq9RdrTbfZXf/Ld/5bz/Es3ExEVyJefLuLuae/xy++zcHV1fA158/07qasz2d6Xl1Vz/dUvMnrcALt0sXEh/OeLB23vVcpTq8bI++5rDMeOEXLz7Th5elK+dRNZH7xD9DOzcPbybnW9mGdfQqnVNeajA/d0rbJY8Bo6HH1GOoac7BYfG4sKyfn0I3wuHEvI1Nsx6/Xk//wjOZ//h+iZLSsn2+viweE8Pbkfz32zg+2pRVw/MpavHj6PcU/9SW5J6/c/o55YRJW+scxKKhu/27UaFVmFVSzemsVT1/c76bydqosHh/P0Df147n872J5SyPUXxPHVI+czbuaStmN7/A+qapvEVtEY25CEAH7blMmOw0UY6uqZPiGB2Y+OYPxTS8gv1TvanBBnvTNSoTxy5Ejuu+8+HnzwQby9vQkMDOSzzz6jurqaW265BXd3d2JjY1m8eLFtnQMHDjBhwgTc3NwIDAxkypQpFBUVndI2j1u/fj19+/ZFq9UyZMgQ9u7da/f5hg0bOP/889HpdISHh3P//fdTXd34BR8VFcVLL73E1KlT8fT0ZNq0ae36O6SlpXHBBRfg4uJC37592bhxo93nP//8Mz179kSj0RAVFcXbb7/d5vZSU1M5//zz0Wq1JCYmsmzZsnblAyA62vq0rn///igUCkaOHAm07FJ9sn/nE5VfW+bNm0fv3r3R6XT4+voyevRoqquref7555k9eza//vorCoUChULBqlWrANiyZQv9+/dHq9UycOBAdu7c2e6/RUddGRXK0px8/szJJ6taz6eH0imsNXBxWJDD9BeHBVOgN/DpoXSyqvX8mZPP0px8ro5qbFX3xt4U/sjKI62ymuwaPe/vT0WpgH4+XrY0mwtL2FpUSk5NLTk1tcw+fJTa+noSvDrhxqaBxWKh+K/l+I+/GM/+A9CGhBJ6062YjUbKt25udb2iv5bhlpCI//gJaIKC8R8/AbeEBIpXLrelce/Zm8DLrsSz/wCH2zAW5KNPTyPkuhtxiYpGExhEyHU3YjYYKNvW+r47ElvRXysIGD8Bz/5JaENDCbv5FsxGI2VtxFb813LcEhIJGD8BbVAwAQ2xFf3VGFv0fQ/iPXQY2pBQdGHhhN10C3UlJegzj9rSeA0egluPRNT+/mhDQgmeOAlzrZ5aBzeSbbkiMpRlDcdQdrWeL1LSKKo1cFGY46fp48OCKdQb+CIljexqPUtz8ll+LJ8rI8NsaS6PCGVXSSnzMrLJrtEzLyOb3SVlXBbZWNnz/M79rMgtILO6hoyqat7bn0qATkuch5stTZmxzu51jr8Pe0vKydfXdijG487mc62567uF8ltGPgsz8smo1PPennQKagxcFeM41twaA+/uTmNxZgHVdfUO0ySXVvHR3gyWZxdR11ApfCZc3z2UhemNsb27O538GgNXx7Ye2zsNsVWZHMf23JYUfk7LI7W8mqOVel7Zbi3HgQFeXRbHNdEhLMrKZ1F2PpnVej5OTqeg1sBlkY7PvcsigiioNfBxcjqZ1XoWZeezOLuASdH2lahK4Kl+3fk6NZPcmpbnSrnRRKmxzvYaGuBDTrWe3W209uoMFouFVT+vZuwNY+h3fh9CooO5ccZk6mqNbFuxo9X1uvWLo+95fQiKDMQ/1I+RV48gJCaYI3utrTGNBiO71+zh8jsuJa5vLP6h/kyYOh7fIB/WLdzQpTEB3D5lMD/O380P83dzOL2YWW8uJzevghsnJTlMn9Q7lOxj5Xw9ZxtZOeVs25nNnHk76ZPYWO4PPLmQb+bu4MChAo5kFDPjhUUolQqGDY7q8nhO1tJVu3nhrbn8umTrmc5KC5NiQvgjM58/MvM5WqXnw/3pFOoNXNHKuXZ5VBAFegMf7k/naJWePzLzWZRZwLUxjefahIhAPJydeHLrQfaVVpKvN7C3pJIjFdaKBrVSyfnBvnxyIIPdJRXk1NTyfylZ5NbUckWk42tVV7n1mj7MW3SIn/44xJHMMl7+aCN5BVVMvjzRYfqq6jqKSvS2V694PzzdNfy8+NBpzXdzFouFOd+s4NbpF3HhmCTiuoXywitTqa01suSPLa2u5+npip+fp+21eeMBtFo1Y8ba3z+qVEq7dN4+J/8dbTYaqdy1g4ArJ+LSrTvqgED8L74cZ18/ytauanNdlbsHTp6etpeiWcVn2cZ1pM16mkMP3EnarKcpXbPyhPkJnDQZ7xEX4uzn5/Dz2syjWMwW/C69ArV/ANqISHxGj8WQk42l3uRwnfa4dWx3flqTztw16RzJreSl73eRW6Lnhgtj21yvuMJAUUWt7WVu0ltub3opr83dw+9bsjCazty9yK3j462xrU6zxjZnpzW2USeIrdJAUXmt7dU0toc/3cR3fx0mObOMtNxKnvxqGwqlgnMTO6dnlhD/RGesBevs2bPx8/Njy5Yt3Hfffdx1111cc801nHvuuezYsYNx48YxZcoUampqyM3NZcSIEfTr149t27axZMkS8vPzmTRp0klvs6nHHnuMt956i61btxIQEMBll11GXV0dAHv37mXcuHFcddVV7Nmzhx9//JF169Zx77332m3jzTffpFevXmzfvp1nnnmmXX+Dp556ikcffZRdu3bRvXt3rr/+ekwm65fC9u3bmTRpEtdddx179+7l+eef55lnnuHrr792uC2z2cxVV12FSqVi06ZN/Pe//2XGjBntygdYK+gAli9fTm5uLr/88kuraTv6d25v+TmSm5vL9ddfz6233kpycjKrVq3iqquuwmKx8OijjzJp0iTGjx9Pbm4uubm5nHvuuVRXV3PJJZcQHx/P9u3bef7553n00Ufb/bfoCCeFgm7ubuwoLrNbvqO4jEQvD4frJHi5O0zfzcMNlULhcB2NSoVKoaCy4bhsTgmMCPJDq1JxsI3upR1VV1yEqaIctx49G/fl7Ixrt3hq0g63up4+PQ23HvY3wm49era5TnOWhnNB4exsW6ZQKlGonKg50v7ttKauqCG2xOaxdafmyJFW16tJS8M90T4298Se1KS1vk693vpUU+Xi6vBzs8lEybo1KHU6tGFhDtM44qRQEOfuzs5i+669O0tK6dHq8efBzhL79DuKSolrcvwleDrYZnEpPTwdbxPA1UkFQGWd4xtbL7UzA/18WHbMcRewEznbz7WmnBQK4r3c2JxfZrd8c0EZvX1bL4N/AieFggQHsW3J79zYtE4qVEoFFa2U46lyUijo7uHGtqIyu+XbCsvo1UpFdKK3O9sK7dNvLSwl3tP+eLypWzhlxjoWZRe0Kx9jQv1Z3I60p6o4t5iKkkoSBjZ21XRWOxHXN470/e1rOWWxWDi0I4WC7ELi+lh/1JnrzZjNZpzVznZpnTXOHNnXtV3EnZ2U9O4RzNqN9vtZszGdAX0dX4u3784mKNCdC4Zb8+/n48pFoxP4a23r30s6rTPOTkrKKk7uYcu/mZNCQXdPN7a2OHfK6NVKhVJPb/cW6bcUlpLg1XiuDQ/0Zn9pJQ/1jmHB2EF8PaIfN8aF2X4YqRQKnJQKjM0ezhjqzfT2OX3XYWcnJT3j/Vi31f5h5Lqt2ST1bF8lxjUTEtiwPYdj+We2dW1OdhHFRRWcc27jPZRa7cyAgd3Zvav1e6jmFvyynrEXDUTnYt/TJTOzgHEXPM6l455k5qOfk51VeNJ5tZjNYDajcLK/LinUztQcabv7b8Zrs0id+QiZ779FdcpBu8/K1q+h6Lf5+F92JdHPvIj/ZVdS+PsCyjetP+m8Amgjo1AoFZRvWo/FbKZeX0PF5k24JiSiUJ1ch0ZnlZJeUd6s259vt3zd/jySYn3bXPe3F8aw8d1L+eaxEZyTcGpduruCLbZ99vek6/blkRTnuFL3uN9mjWXj+5fxzeMjOSchoM20Oo0KZ5WCsqqWvTeE+Lc4Y12q+/bty9NPPw3AzJkzee211/Dz87O1Dnz22Wf55JNP2LNnD4sWLSIpKYlXXnnFtv5XX31FeHg4KSkpdO/evcPbPOecc2zbeu655xgzZgxgrUwLCwtj/vz5TJo0iTfffJPJkyfz4IMPAtCtWzc++OADRowYwSeffIK2odvlhRde2OFKrUcffZSLL74YgBdeeIGePXty+PBhEhISeOeddxg1apSt8rJ79+4cOHCAN998k6lTp7bY1vLly0lOTiYjI4OwhgqLV155hYsuuqhdefH3t34Z+Pr6EhTU9pPbjv6dP/nkk3aVnyO5ubmYTCauuuoqIiMjAejdu7ftc51Oh8FgsMvz119/TX19PV999RUuLi707NmT7Oxs7rrrrjbjMhgMGAz2XwhmoxFlG93jPdTOqJQKSg32XWvKjEa8NV4O1/FWqykz2lfmlBqMOCmVeDg7UWps+QP5lm6RFBuM7Cwps1se5ebCO4P7olYq0dfX8+KuZDKrO6/Jvqnc2p3Pyd3+5trJ3YO6kta7xZoqynHysO+O7+Thiami/RU0mqAgnH18yf/1F0InT0Gh1lC8YimminJbvk5FXUUrsXl4UFd8gtgc/D1ai81isZA7by4usXFoQ+3HhqzYu5usLz/HbDTi5OFJ9P0P4eTW/ifyx4+/MmOz489Qh5evs8N1vNXOlBnsj7Eyo/3x56VRU2ZsnqYOb03r58Jt8THsLy1vtYvxhcGB6Ovr2VBwct0+z/ZzrSkvjTNOSgUlzbrsldQa8Q306pJ9ni622JqVY7HByDlar07bzz29IinUG9narGKzs3jajkf7Y6i0jfPER6Om1Gifn1JDHU5KJZ5qJ0oMdfTydmdCWCC3r9vVrnwMD/TBzcmJJaehwrGixDqcgoe3/TXK3duNkvy2xzPVV+l5etLzmOpMKJVKJj040VZxqXXREp0YxZJvlhIUEYi7tzvb/9rB0eRM/EPb/uF3qry9XXByUlJUbN8ttai4Gn8/xw+Itu/O4cGZC/nojSvQqJ1wdlaxdGUKz722tNX9PPHABeQVVLJ+05nv0vpP46m2XjOan2slhjp82jjXSgxldsuOn2teaieKDXUEu2rpr9OyPKeQxzcfIMxVx0O9Y1ApFMxOzUJfX8++kgpu7hbO0Uo9pQYjo0L9SfR2J7v69FUce3tqcVIpKWrWHbOoVI+fj8sJ1/f30XH+kHAefvGvrspiuxU3jNPr2+zhko+vO7nH2jfG3b696RxJPcazs26yW96rTzSzXrmFiMhASoor+PLTRdx64xvM/fU5vLzcWtla61RaLbroWIqW/IY6KBgnDw8qtm2mNiMdtb/jSiYnTy+CJt+ENjwSi8lE+ZaNZH3wNhEPPIZLN+tvnaLFvxNw1STc+1lbZ6r9/DHk5lK2bg2e5wzrcD6PU/v6EX7vw+R8+Ql5338DZjO66FjC7n7gpLfp7a62HnvNHpQUlRvw7+W4+3tBeS1P/t829h0tQe2k4opzI/nmsZFMfn0lW1sZG/FMsMVW3jy2Wvw9W4mtrJYnv9rKvoxS1E5KrhgWxTczRjL5tZVsPeS4cvuxa/qQX6pn/YF8h58L8W9wxioc+/TpY/u/SqXC19fXriIpMND61K6goIDt27ezcuVK3NxafmEcOXLEVmHVkW02NXToUNv/fXx8iI+PJzk5GbC2NDx8+DDfffedLY3FYsFsNpOenk6PHj0AGDhwYAf/Avb5DQ4OtuUtISGB5ORkLr/8crv0w4YN47333qO+vh6VSmX3WXJyMhEREbbKxuZxdaaO/p3bW36O9O3bl1GjRtG7d2/GjRvH2LFjmThxIt7erY+dkpycTN++fXFxabwRa8/f4tVXX+WFF16wWxZ74y10m3LrCddtPq2OwsGyNtM7bmwFwMSoUEYG+/P41r3Ume3XzK7Wc8/Gnbg5OzEswJdHenXn8a17TroipGzLJo59/43tfeRd9zdk0EEEbeTZoQ5OPqRQOREx/S5yvp1N8qMPgFKJW0IP3Hr26uCOrUq3bOLYnG9t7yPvvq9hR83zSdsF4mAdSxulfeyHOdTmZBP76OMtPnPrnkDck89SX1VJyfq1ZH7xKXGPP4mTR8daT3TkeHKUX0VDQBa7NA7WayXMOxNiiXJzZcbW3a3uc0xoIKtyC1scwx11tpxr7dHRWP9Jmh9LCgfLTtaN3UMZE+HP3av3YjzF4+1EHG+99X22OPcajkeLxTpBxZN9u/PWvsNUtNJSuLkJ4YFsLiy1jTfambYu384P78y1vb/z1YbhYppf/yygOMFFR+Oi4YnPH8WgN3JoRwrz/7MAv2BfuvWLA2DKzBuY8+YPPD3peZRKJWHdwhgwKons1I4NMXGyWhyPitaPx24xfjw/YwwffLqO1RvSCPB348mHRvHK0+N5/PlFLdLfMfUcLrsokWtv+xaD0fGQAOLEHF3L2/rube2z40uVKCgz1vHm7sOYgZTyavy0aq6PDWV2qnXCoJd2pvJEvzjmjx2EyWwhtbyK5TmFdPfseAXWqWo+gaNCoWjX98FV4+OpqDKyfF1Gl+SrLYt+38wrLzT+fnr/Pw29w5pdL6zXkPZt89df1hPbLYReve0nbhl2XtN7w1D69I3h8oue5vdfN3LjzWNOJvsE33wbud9+zZGnHgWlEm14BB4DB1OblekwvSYwCE1gYwMIXUwsdaUllKz4E5du3TFVVmIqLSH329nkfve/xhXN9Sh11jEfsz5+j5rD1haUzj6+xDwzq115NZWXkztnNp5DzsVj4BDMtbUU/rGAnC8+Ify+h094jW6Lw+tjK2nT8ypJb5gcBmDnkWKCfVy4fXz836rC8biOXPsdx6bj9oviHVY4Tp+QwKXnRDD5tZUY685c1/F/AqXibLm7FY6csQpHZ+dmTdQVCrtlxy+MZrO1q82ll17K66+/3mI7xyvqOrrNE2ma9o477uD+++9vkSYionH2RFdXx0/C29JW3iwWS4svh7Zmi3b02al8ubSlo3/n9pafIyqVimXLlrFhwwaWLl3Khx9+yFNPPcXmzZtt4042d7Kzas+cOZOHH7YfKP2aNW3P0FhhrKPebGnxlN1TrW7Riuy4UqMR72atJr3Uakxmc4sfmVdHhnJtdDhPbt9HRlXLlmMmi4VcfS3oIbWiiu6e7lweEcKHye3vmtKUe59+xEY1/l2Pd2s2VVTg7OnVuN/Kyhat/Jqytma0b4VoqqzocEWaLiKKuCefo15fg8VUj5O7O0feeBldRFSHtgPg0acfLlGNE2VYTNbyaRlbRTtis2/NWF9Z6TC2Yz/OoXLvbmIefgxnb58Wnys1GjQBARAQgEtMLIeefYqSDesIGD+hXTEdP/6aH0+eaucWLRSPc9QCy1PtjMlstnWHLjMY8W7WvdFL7dyiJSXA9PhYBvv7MnPr7lYrPRK9PAhzdeH1PQcdft4eZ9u51pYyQx0mswVfrX3evbVqSmq7povw6dJabNYWSace2w3dQ5maEM69a/dxuLxrJvQBKLcdj/bnibfauUVLrONKDEZ8WhyPzrbjMcrNhWAXLa8MaOxuePxrfPn4c7lpzQ6ONRnTMVCrIcnPi+e2n/x51Zbe5/Ykqkdjzw2T0XrOVJRU4unb2IK9qqwKd++2K2CUSiX+odaeFGFxoeRn5rN0znJbhaN/qB8PvHcvBr2B2ppaPH09+WrWbHyCWl43O1NpaQ0mk7lFa0ZfH9cWrR6Pu/u2oWzblc2ns61j/R5MLaRGv4Sfv76Jtz5aTUFR43rTbxrCPbedyw13zOFg6sl37/w3KzdarxkdPdd8m31XeGus51p5w3FcbDBiMlto+ovgaFUNvlo1TgoFJouFYzW13L9hH1qVElcnFcWGOp5Pinc4tmpXKS2vxVRvxr9Za0ZfLy3FbUxscdzECfH8ujSVujMwVt6IC/rSu0/jPaXx+N++qBx//8ZrSGlJJT7tGFJDrzfy5+Kt3HnPZSdMq3PRENctlMyjJ9/6W+0fQORDj2M2GDDX6nHy9CLny//i7Nv+lte66BgqtjRMoGexlkHQ5JvQRTX7DdMwzmPQDTdjabjX6khX6NI1K1FptQRceY1tWcjNt3Pk6cepzUhDF932uIQOt1lptB57zVr8+XpoWrQMbMuuI8VcPjSyw/vvSrbYvJrHpm3RorMtu44Uc/m5US2W335RPHdd0oOb3ljFoaxT75UlxD/ZP2IW8qSkJPbv309UVBRxcXF2r5Op6Gtu06bGmVRLS0tJSUkhISHBbt/N9xsXF9elM1EnJiaybt06u2UbNmyge/fuLVo3Hk+fmZnJsWPHbMuaT0LTluOx1Nd3/tP3Uy0/hULBsGHDeOGFF9i5cydqtZr58+fb8t08z4mJiezevRu9vrHlUdMybo1Go8HDw8Pu1VZ3arBWQqRWVtHf18s+Zl8vDrQyvtvBskqSHKRPraiivkll6dVRoVwfE84zO/aTWtG+cXcUgPMpzMqn0mrRBAQ2voJDcPLwpCp5vy2N2WSiOvUQLjFxrW5HFx1D1cEDdsuqkg+0uU6b+dK54OTujqEgH/3RDNz79Ov4NrRaNAEBjS9bbI35tMaWgkts6zdmLjExVCbbx1Z54AAuMY3rWCwWcn6YQ/nOnUQ/+Ahqv/aOX2OxVfK2h8li4XBlZYvjr5+PN8mtHn8V9POxbyHc39ebw02Ov4PllfTzbZkmudx+m3fEx3JugC9Pbd9DvoNZoo8bGxpEakUlGVWOf8C3x9l2rrXFZLFwqKyKwc0mPBkc4MXe4q6dGKSrmSwWDpZVMbhZ1/DBgace243dQ7m1RzgPrtvPwdKuHavMZLGQUlHFQD8vu+UD/LzYV1bpcJ0DpZUMaJZ+oJ8Xh8qtx2NmdQ23rNnJ7et22V4b8kvYVVzO7et2UdBsBu/x4QGUGerYWNi+rogdpXXR4h/qb3sFRQXh4ePOoe2NE0+Y6kwc3n2Y6J6OHwC2xmKxrtucRqfB09eTmsoaDm49SJ9hJ9eivb3qTGb2Judy3jn2+T/vnGi273bculKndbabJADAXN/wvsmD3jtuHsJ904dx890/sPfAyY1dKxrOtfIqBjabrXygvxf7Shyfa/tLK1ukH+TvxcGyxmv/3pIKQl21dg12w111FNUaMTUr39p6M8WGOtycVQwK8GJdXtecc47UmczsP1TEsIH2Q7IMGxjGjv1td9Mc3C+YqDBPflrUNQ8lTsTVVUt4RIDtFRMbjK+fB5s3JtvS1NWZ2L4thb79TlwhtuzPbdQZTUy4dMgJ0xqNdaSn5+LXpGLzZCk1Gpw8vaivqaY6eX+H7kENWVk4NTzUdvLwxMnLm7riQtQBgfavhvtEZy9v2zJn37bHSWzKbDSAwv6e5PhkNSfbEKOu3sy+jFKGNRsrdFhiIDuOtD70UHOJEV4Ulv+9ZmhujM1+GLFhPQPZcbj9LTETI70pLLOPbdpF8dx7WSK3vL2GvRltDzcixL/BP6LC8Z577qGkpITrr7+eLVu2kJaWxtKlS7n11ls7pYJs1qxZrFixgn379jF16lT8/PxsMzPPmDGDjRs3cs8997Br1y5SU1NZuHAh99133ynvty2PPPIIK1as4MUXXyQlJYXZs2fz0UcftTpO5OjRo4mPj+emm25i9+7drF27lqeeeqrd+wsICECn09kmdCnvhDHyjjuV8tu8eTOvvPIK27ZtIzMzk19++YXCwkJbV/aoqCj27NnDoUOHKCoqoq6ujsmTJ6NUKrnttts4cOAAixYt4q233uq0eJqbn5HDuNBAxoYEEu6qY3p8NP5aDYuyrT8wpsZF8kivxm7jf2TnEqDTMK17NOGuOsaGBDI2NJCfM3JsaSZGhXJzXCTv7k8lX1+Lt9oZb7UzWlXjKXtzXCQ9vTwI0GqIcnPh5rhIevt4sjK381pRKBQKfC8cTeGfi6jYtYPaYznk/O8rlGo1noMab/iyv/6SvAU/2977XTCaquQDFC5djCEvl8Kli6k6mIzvBaNtaepra9FnZaJv6JpiLC5En5WJscnYkOU7tlGVchBjUSEVu3eS8cE7ePTtj3uTiV5OJTa/C0dRsGQR5bt2UJuTQ/bs/0OpVuPVJLasr78kb0HjJEq+F4yyxvbnYmrzcin80xqb34WNsR37YQ5lWzYRfuvtKDVa6srLqSsvx9zw1NpsMJC34Bdq0o5gLC5Gn3mU7G9mU1daimeS41m7W7PgaA5jQoMYHRJImKuO27vH4K/VsDg7F4Cb4qJ4qGfj8bek4fi7rXs0Ya46RocEMiY0kPlHG39cL8zMob+PN1dHhRHmouPqqDD6+nix8GjjA427EmIZGRzAW/sOoTfV46V2xkvtjLpZJZxOpWJYoB9Lc079B/fZfK41931qDpdFB3JJZCBR7joe6BNNoIuG+enWWO/qGcmzA+2Ho+jm6Uo3T1d0Tkq8Nc5083Qlyl1n+9xJobClcVIq8Nep6ebpSpir4/GKuiy2lBwujw7k0ihrbA/2tcb2S5o1trt7RfLcIMexuaiUeDXEFt0kthu7h3JHz0he2pbKsepafDTO+Gic0am67jbnp/RjTAgP5KKwACJcddzdI5pAnYbfjlrjuD0+kpl9utnSL8zMI1Cn4e4eUUS46rgoLIAJ4YHMTbeeV3VmCxlVNXavKpOJGlM9GVU1dpUgCmB8WAB/5hTQxb3GG/epUDDy6hEs/W45u9fu4Vh6Lt++/j3OWjUDRzXO6Py/V79j4ee/294vnbOcg9sOUXSsiLzMfP76aRVblm5l0OjGoWiStx7kwJZkinKLObjtEB88/DEB4QGcM/7EFQun6otvtnDtVf2YdEUf4qJ9eebR0YQEe/DdT9aZtx+/fyTvvHSpLf3y1amMvzCeG69JIjzUi4H9wnh+xhh27s2hoNBa0X3H1HN45N4RPP7cH2QfK8ff1xV/X1dcdI7H1v07cHXR0Ccxkj6J1pZIUeH+9EmMJDyk/ZUeXWVu2jEuiQhkQngAkW467u0ZTYBOw68N59r0hEie7Nd4rv2aYT3X7kmMItJNx4TwAC6OCOTHtGN2aTzVztzfK5owVy3nBHhzY7cw5mfk2tIM8vdisL8XwToNA/08eX9oL7Kq9CzK6voxU5v66qc9XHNxAhMviic2wosn7xlKcKAb3y+0Vtw9Mm0Qb8wc2WK9ayYksOtAPqnpf49KD4VCweQpo/jq88X8tXwnh1NzeO6pr9Fq1Yy/eLAt3bMz/48P353fYv1ff1nPyAv7ORyT8d0357F9awo52UXs3ZPO4w99SnVVLZdefvLDS1Ud2EfV/n0YiwqpTt5P5ntvoQ4IwnOodazFgl9/5tjsL23pS/5aRuXunRgL8jEcy6Hg15+p3LUd7xEX2NL4TbiU4j8XU7JyOcb8PGpzsinbuI6SFa2PAQtgLMinNiuT+ooKLHVGarMyqc3KtD2kduvVh9rMDIoW/WZNm3mU3G/+DycfX7RhEW1uuy1fLU1h0vnRTDwvmthgd566rh8hvi7MWWnt3fHoxN68dXtj2U0d040x/UOICnSjW4gHj07szUWDwvnfisZJtZxVSnqEe9Ej3AtnlZIgbx09wr2IDDi9QxV8teQQk0Y0iW1yQ2x/NcR2TW/emt74HTR1bHfGJIVaYwv14NFrGmJb3jiJ0PQJCTx0dW9mfLmV7KJq/Dy1+HlqcdGcsU6lQpxx/4ijPyQkhPXr1zNjxgzGjRuHwWAgMjKS8ePHo+yEFiavvfYaDzzwAKmpqfTt25eFCxfaWvz16dOH1atX89RTT3HeeedhsViIjY3l2muvPeX9tiUpKYm5c+fy7LPP8uKLLxIcHMysWbMcThgD1u5K8+fP57bbbmPw4MFERUXxwQcfMH78+Hbtz8nJiQ8++IBZs2bx7LPPct5557Fq1apOieVUys/Dw4M1a9bw3nvvUVFRQWRkJG+//bZtMpxp06axatUqBg4cSFVVFStXrmTkyJH89ttv3HnnnfTv35/ExERef/11rr766k6Jp7k1+UW4q52YHBuOj0ZNRlUNz+7cT0FDiy8fjZoAbeNMevl6A8/u2M/0+BgujQim2GDkvwfTWF/QWNF2SXgwzkolT/frYbevb49k8t0RawWdt9qZx3p3x0ejptpkIr2yhme2728x2cWp8hszHrPRyLEfvqO+phpdVAxR9z2MSttYSWEsLQZlYzsBl9g4wm+dTv5vCyj4bQFqP3/Cb5uOS3Rjl2Z9ZgYZ7zVWBOf9bB0rzOuccwm7yTpupqm8jNx5P1JfWYGTpydeQ87F/6JLOi+2seMx19Vx7Ps51NdU4xIdQ/R9D9nFVldSYtdqxTU2jojbppO/cAH5v/2K2t+fiNvtYytZswqA9HftK7rDbpqK99BhoFRiyM/j6Gcbqa+uQuXqii4yiphHHkcbYt+K4UTW5Rfh4ezMdTER+GjUHK2q5oWd+yhscvz5Nz3+ag28sHM/t3eP4eLwEEoMRj47dIQNTY6/g+WVvLH3IFPiIrkhNpK8mlre2HuQlIrG1iQTwkMAeHVg45iuAO/tO8SK3MYfY+cH+aMA1uSdeuXc2X6uNbU8uwhPtRO39QjHV6smraKGh9fvJ6/GGqufVk1Qsxk6vxnd3/b/Ht7ujIsIILe6liuXWIeG8Nep7dLc2D2MG7uHsaOwnLvX7O2yWJo7HtutPcLxa4jtoXWNsflq1QQ2i+3bMU1i83FnfEQAx6pruXKxNbarY4NRq5S8NtS+HD8/kMkXBxyPt3WqVuYW4eHsxE1xjcfjE1sP2Fr7+mqcCdA1xpGnNzBz2wHu7hHN5Q3H44cH0lmT1/6WIscN8PMiSKdlcfbpHYh+9HUXUmeoY+7786ip1BPVI5J73rgTrUvjNbO0oBRFk+8Do97I3PfnUVZYjrPGmcDwAG568kYGXNBYpvpqPb99/gdlRWW4uLvQ97y+XHrbBFROLXt0dLbf/0zG21PH/dOHE+DvRsrhQqbe8yM5udYWtwF+boQENXb3nLdwL26uGm6+fgBPPzKKispaNmw9yqvvNU7KMWVSEhq1E/99x/6+491P1vLef9d2eUwnI6lPDEvnPmt7/8Zz1kk5vvlpNdMf+e+ZyhYAfx2znms3dw/HV6MmvbKGGZsPkK8/fs1wJrDJuZarN/D4lgPc1zOaK6Os59r7+9JZndt4rhXUGnlk037u7RnN/40IoqjWwLy0XOYcbnz45uakYnqPSPy1GirrTKzOLebzg0ftWsifDotWpuHloeWem5MI8HEhJb2EaTMW22adDvB1ISTQvrLGzdWZcedH89KHG05rXk/k5lvHYait47WX5lBZUUOvPtF8/NkDuDZ58JWXW2J3DQE4mpHPrh2H+fgzx5OgFOSX8uTjX1BWWoW3jzu9+0Tz9ZwZBJ9ChblZr6dw4S+YykpRurji3i8J/8uutHV1NpWXU1faeExZ6k0U/DIXU3kZCmdnNMGhhN11P269Gu+TvIadj0KtoWT5EgoXzEOhVqMJCcOnyQN5R3LnzEafmmJ7n/GadWzHmFmvofb1wzW+ByFTp1G8fAnFy5agVKvRRccSfs+DJ+yt1ZY/tmTh5armvssS8ffUkppTzm3vruVYsbU7f4CnlmDfxu7+aiclM6/tS6C3jlpjPanHKrjt3TWs2tP40DnAS8vvs8ba3k+7KIFpFyWw6WABN7y+6qTzelKxuWm47/Ke+Hs1xPZO09h0BPs0i+26JrHlVHDb22tYtafxIcUNF8ahcVbxn/vsJwB6f/4+PliwH+GYsmtGgRN/EwrLybazFuJf4KKl606c6B/KRXX2nvqKs3TwYUP92fuNbLKcvbGVOu719493Nt89uLicvcfjzL5n53hS0ybsOtNZ6DIFpafvgcDpNujje890FrpM7ttnZwXDzmWtT/b4T3fD6q5/yHGm7Psu98SJ/olOVzP/M+DI7K5t4PR38dyO5Wc6C6fFC0ltP1g4W/0julQLIYQQQgghhBBCCCH+GaTCsQu88soruLm5OXwd7wosebLKzMxsNV9ubm5kZnZNVzghhBBCCCGEEEII0TX+EWM4/tPceeedTJo0yeFnOp3O4fKu9nfME1jHd9y1a1ebnwshhBBCCCGEEEKIfw6pcOwCPj4++Pj4nOls2Pk75gmsk9XExcWd6WwIIYQQQgghhBDiNJJJY85u0qVaCCGEEEIIIYQQQgjRaaTCUQghhBBCCCGEEEII0WmkwlEIIYQQQgghhBBCCNFpZAxHIYQQQgghhBBCCHFaqc50BkSXkhaOQgghhBBCCCGEEEKITiMVjkIIIYQQQgghhBBCiE4jFY5CCCGEEEIIIYQQQohOIxWOQgghhBBCCCGEEEKITiOTxgghhBBCCCGEEEKI00qpsJzpLIguJC0chRBCCCGEEEIIIYQQnUYqHIUQQgghhBBCCCGEEJ1GKhyFEEIIIYQQQgghhBCdRsZwFEIIIYQQQgghhBCnlVJxpnMgupK0cBRCCCGEEEIIIYQQQnQaqXAUQgghhBBCCCGEEEJ0GqlwFEIIIYQQQgghhBBCdBqpcBRCCCGEEEIIIYQQQnQamTRGCCGEEEIIIYQQQpxWMmnM2U1aOAohhBBCCCGEEEIIITqNVDgKIYQQQgghhBBCCCE6jVQ4CiGEEEIIIYQQQgghOo2M4SiEEEIIIYQQQgghTiuVjOF4VpMWjkIIIYQQQgghhBBCiE4jFY5CCCGEEEIIIYQQQohOI12qhWiDi8pyprPQZcxnb2goOTvb5ivPzrAAUCvO3gPS3+NM56BraM7i62O16ex9Hjv9k7PzQnLH7EFnOgtdZknWiDOdhS6z9Z6PznQWukxov/FnOgtdYsi3Z+/1MS78TOeg61x6h9+ZzoIQ4l/o7P3GEEIIIYQQQgghhBBCnHbSwlEIIYQQQgghhBBCnFZncw8uIS0chRBCCCGEEEIIIYQQnUgqHIUQQgghhBBCCCGEEJ1GKhyFEEIIIYQQQgghhBCdRiochRBCCCGEEEIIIcRppVRY/hWvrlJaWsqUKVPw9PTE09OTKVOmUFZW1mr6uro6ZsyYQe/evXF1dSUkJISbbrqJY8eO2aUbOXIkCoXC7nXdddd1OH9S4SiEEEIIIYQQQgghxD/I5MmT2bVrF0uWLGHJkiXs2rWLKVOmtJq+pqaGHTt28Mwzz7Bjxw5++eUXUlJSuOyyy1qknTZtGrm5ubbXp59+2uH8ySzVQgghhBBCCCGEEEL8QyQnJ7NkyRI2bdrEkCFDAPj8888ZOnQohw4dIj4+vsU6np6eLFu2zG7Zhx9+yODBg8nMzCQiIsK23MXFhaCgoFPKo7RwFEIIIYQQQgghhBCiCxgMBioqKuxeBoPhlLa5ceNGPD09bZWNAOeccw6enp5s2LCh3dspLy9HoVDg5eVlt/y7777Dz8+Pnj178uijj1JZWdnhPEqFoxBCCCGEEEIIIYQQXeDVV1+1jbN4/PXqq6+e0jbz8vIICAhosTwgIIC8vLx2baO2tpYnnniCyZMn4+HhYVt+ww038P3337Nq1SqeeeYZfv75Z6666qoO51G6VAshhBBCCCGEEEKI00qpONM5OD1mzpzJww8/bLdMo9E4TPv888/zwgsvtLm9rVu3AqBQtPwDWiwWh8ubq6ur47rrrsNsNvOf//zH7rNp06bZ/t+rVy+6devGwIED2bFjB0lJSSfc9nFS4SiEEEIIIYQQQgghRBfQaDStVjA2d++9955wRuioqCj27NlDfn5+i88KCwsJDAxsc/26ujomTZpEeno6f/31l13rRkeSkpJwdnYmNTVVKhyFEEIIIYQQQgghhPgn8fPzw8/P74Tphg4dSnl5OVu2bGHw4MEAbN68mfLycs4999xW1zte2ZiamsrKlSvx9fU94b72799PXV0dwcHB7Q8EGcNRCCGEEEIIIYQQQoh/jB49ejB+/HimTZvGpk2b2LRpE9OmTeOSSy6xm6E6ISGB+fPnA2AymZg4cSLbtm3ju+++o76+nry8PPLy8jAajQAcOXKEWbNmsW3bNjIyMli0aBHXXHMN/fv3Z9iwYR3Ko7RwFEIIIYQQQgghhBCnlepMZ+Af7rvvvuP+++9n7NixAFx22WV89NFHdmkOHTpEeXk5ANnZ2SxcuBCAfv362aVbuXIlI0eORK1Ws2LFCt5//32qqqoIDw/n4osv5rnnnkOl6liJSYWjEEIIIYQQQgghhBD/ID4+Pnz77bdtprFYLLb/R0VF2b13JDw8nNWrV3dK/qRLtRBCCCGEEEIIIYQQotNIhaMQQgghhBBCCCGEEKLTSIWjEEIIIYQQQgghhBCi08gYjkIIIYQQQgghhBDitFIqznQORFeSFo5CCCGEEEIIIYQQQohOIxWOQgghhBBCCCGEEEKITiMVjkIIIYQQQgghhBBCiE4jYzgKIYQQQgghhBBCiNNKqbCc6SyILiQtHIUQQgghhBBCCCGEEJ1GKhyFEEIIIYQQQgghhBCdRiochRBCCCGEEEIIIYQQnUYqHP+FVq1ahUKhoKys7ExnxY5CoWDBggVnOhtCCCGEEEIIIYQQ4hTIpDFCdBKLxULBHwspXb+G+poadFHRhFx7A9qQ0DbXK9+5nYLfFmAsKkTt50/gZVfi0S/J9nl1agpFy5agzzqKqbyciOn34NGvf6vby5nzP0rXrSFo4rX4XTimU+IqXLSQsiZxBU06cVwVO7dT8PsC6ooKcfbzJ+DSlnEVL19CbUNcYdPvwaOvfVwVu7ZTum4NtZlHqa+uIuaJZ9GGR5xyTE1jOxvKzGKxULRoIeUNcWgbykjTjjIqalJG/pdeiXuTOABK16ykZPmfmMrLUAeHEDjxOlziulv3W2+i8LcFVO/fi7GoEJVOh0t8Iv6XX42zl5dtG8bCAgrm/4T+SCoWkwnXHr0InHQ9Th6ef9vYmsub8z/K1q8h4Opr8Wkoo/rqKgr/WEhN8n7qSktRubnh3qcffpdegUrncsLYmpsQFsxVUWF4q9VkVlfz+aE0DpRVtJq+l7cnt3WPJsLVlRKDgZ+PZrMkO88uzbkBvtwQG0Wwi5bcmlq+OZzBpsJiuzQ+GjVTu0UzwNcbjUpJTo2eD/ancqSyqsMxtMZ6rv1GyTprObpERRNy3eQTn2s7tpP/26+N59rlV+DZpBwLliyiYtcODHl5KJzVuMbGEnTF1WiCgmxp8n9fSPm2rRhLS1ConNBFRBJ0+RW4RMecclwXhwcxMSoMH7Wao9U1fHowjf1tlFlvbw+mxccQ6epCscHIvIxsFjUpswhXF6bERdDNw41AnZZPD6axIPOY3TZ0KhU3xUUwNMAXL7UzRyqr+fRgGikVnVdejtw4OII7zosmwE1DSkEVsxYls/VoqcO0AyO9eWJsPLH+ruicVeSU6ZmzNYsvN2TYpbt1aBQ3DA4n1EtHSY2RxfvyeGNZCgaTuUtjac5isbB73iJSVqzHWKXHr1skQ269Fu/w4FbXSVmxniNrtlCWZS0f3+gI+l9/Kf5xUbY0eQcOs/+35RSnZ6IvreCCR6cRMahvl8VxRWQQ18eF4qNRk1FZw4f709lT0vrx2NfXg3sTo4lyd6G41sicIzksPGp/DXFzUjEtIZLzg31xc3Yir6aWjw9ksKnAWvY6lYrbEyI4L8gHb40zqeXVfLAvnYPlXXs8ttewwQk8dOclJPWOITjQm0m3v81vS7ed6Wy16YaL4rn9qp4EeLuQmlnGS19sYduBglbTq52U3HtdXy4fGYO/t468ohr+89Me5i0/DEC3cC8euKEfvWJ9CQt046UvtvD1wuTTFU6brksI5pZe4fjr1Bwuq+a1LUfYke/4mB0d6cu18SEk+LqiVio5XFbDf3YeZf0xx9ehrmauraXg15+p2rOL+uoqnH188R45Cu/zLzil7RqO5VD4x6/UZh7FVFJsd99xnKW+nqJFC6nYuhlTRTlOHp54njMM3/EXo1B2fnsii8XC4QV/kLVqHXXVNXjFRpE45Trcw0JaXacy+xip83+jIiMTfVEJCZMnEj1ulF2aoytWk/XXWmqKrPcl7qHBxF0+Af++vTo9BkfO1rj+aVSKM50D0ZWkhaPoNEaj8Uxn4YwqWraE4r+WETxpMrEznsbZw5OMD9+hvra21XVq0o6Q9eWneA0eStyTz+E1eCiZX3xKTXqaLY3ZaEAbFk7wpMknzEPFrp3oM9Jx8vTqjJAAKF62hJK/lhE0aTLRjz+Nk4cnmR+dOK7sr6xxxcy0xpX9peO4gtqIy2ww4hITR8DlV3VaPE2dLWVWsmwJpX8tI3DSZKIayijrBGWkTzvCsa8+xXPwUKJmPofn4KHkfPkp+iZxVGzfQv68H/AdN4Gomc/iEtedrI/fp66kuCFOI7VZR/EdfwlRTzxL6LS7MRbkk/Pph41/C4OBrI/eBSD8/keJePgJLPUmsv/7IRbziSsVzlRsTVXudlxGpvJyTOVl+F91DdFPPU/wlFuoSt5P3rezTxhXc8MD/bg9Poa56Zk8sHkH+0sreL5/L/y1GofpA7Uanuvfk/2lFTyweQc/ZWQxPT6WcwN8bWniPd15vHcPVubmc//GHazMzWdGnwS6e7jb0rg6OfHGoL7Um808v3Mfd2/Yzpcp6VSbTB2OoS1FS5dQtGIZIddOJm7GUzh5eJL+wbttlmN12hEyv/wMryHnEPfUs3gNOYfMzz+zO9eqU1PwHXEBsY/PJPqBh7DU15P+4buYDQZbGk1AICHXXk/3p58n9tHHUfv6kv7Be5gqK08ppvMD/bgjPoYf0rK4d9NO9peW82JSz9bLTKdhVlJP9peWc++mnfyYnsWdCTEMa1JmWpWSPH0t/5eaQYnB8XfqAz3j6O/rxVv7Urhrw052FJfxyoBe+GrUpxRPWy7pFcSzE3rw0aojTPjPerYeLeXrmwYS4ql1mF5vrOd/m48y6YvNjH5/LR+uOsIjo7tx/cBwW5rL+4YwY2x33l95mNHvr2XG/H1c0juYx8c4rvTvSvsWLufAHysZcsskLn7lMXSeHix7+UPq9K0fn3n7U4k+dwDjnn2ACS8+gqufN8te/pjqkjJbGpPBgHdkKENumdTlMVwY4sd9vaL5X2o2t6/ZxZ6SCt4YkkiAzvFxEazT8MbgRPaUVHD7ml18czibB3pFMyK48Xh0Uih4e2hPglw0PLPtIDeu3MEbew5TWNt4fs3oG8dAfy9e3pnK1FW72FpYxjtDe+Kn7brjsSNcXTTsPZDJQ8/835nOSrtMGB7FU7cP4pO5e7nswd/YeiCfL58bTbCfa6vrfDBjBOf2DWbmhxsYc9d8HnxrDUeyy22fazUqsvIqefN/2ykoqTkdYbTL+Gh/nhgcy2e7M5m4cDs78sv5dExvgl0dX0MHBnqy8Vgpdy3bxzW/7WBLbhkfj+5Jgk/rf5uulP/zj1Qf2EfwzbcR/cyL+Fw4hvyfvqdy985T2q65zoja15+Ay69G1cqD2eJliylbu5rASZOJfuZF/K+YSMnyJZSu/uuU9t2atEVLSV+ygsQp13Lu8zPQeHqw9c0PMLVxjaw3GnHx96P7NVeg8fRwmEbr4033SVcw7IUnGPbCE/gmxrP9/f9SmX3MYfrOdrbGJcTfiVQ4nkYjR47kvvvu48EHH8Tb25vAwEA+++wzqqurueWWW3B3dyc2NpbFixfb1jlw4AATJkzAzc2NwMBApkyZQlFR0Slt87j169fTt29ftFotQ4YMYe/evXafb9iwgfPPPx+dTkd4eDj3338/1dXVts+joqJ46aWXmDp1Kp6enkybNq3N+I1GI/feey/BwcFotVqioqJ49dVXW00/a9YsAgMD2bVr1wnz8+GHH9K7d2/bugsWLEChUPDxxx/blo0bN46ZM2e2mceTZbFYKP5rOf7jL8az/wC0IaGE3nQrZqOR8q2bW12v6K9luCUk4j9+ApqgYPzHT8AtIYHilcttadx79ibwsivx7D+gzTzUlZVybO4cwqbejkKl6rS4SlYux2/cxXj0s8YVMsUaV0UbcZWsXIZrQiJ+46xx+Y2bgGt8AiXN4rK2emw9Lq8hQ/GfcCmuCYmdEk9TZ0uZHS8j33EX495vAJqQUII7UEa+DWXk66CMSlYsw2vocLyGnY8myNoC0Nnbm9K1qwBQ6VyIuO8RPAYMQhMYhC46lsBJ11ObedRWcadPO0xdcRHBU25FGxqGNjSM4Cm3UHs0g5qUg3/b2I6rKyslf+4cQqbeDs3KSBMSSti0u3Hv3Q+1fwCu8T3wv/RKqvbtxlJf32ZszV0RGcqynHyW5uSTXa3ni5Q0imoNXBTmuIXV+LBgCvUGvkhJI7taz9KcfJYfy+fKyDBbmssjQtlVUsq8jGyya/TMy8hmd0kZl0U2PrmfGBVGUa2B9w+kklpRRUGtgT0lZeS1cbPdURaLhaK/VhAwfgKe/ZPQhoYSdvMtmI1Gytoox+K/luOWkEjA+Alog4IJaDjXiv5qLMfo+x7Ee+gwtCGh6MLCCbvpFupKStBnHrWl8Ro8BLceiaj9/dGGhBI8cRLmWj21OdmnFNeVUaEszcnnz5x8sqr1fHooncJaAxeHBTlMf3FYMAV6A58eSierWs+fDeV9dVRjK8+Uiiq+TMlgdV4RdQ4q5NVKJcMD/PgyJYN9pRXk6mv57kgmefpaLg53vN/OcPuwaOZuz+bH7dkcKaxm1qJkcstruXGw4xbn+3MrWLgnl9SCKrLL9CzYfYw1qUUMivK2pUkK92JbZikL9+SSXaZn7eEiFu7JpXfoiVs+dyaLxULyopX0vnIckUP64R0RwvB7pmAy1JG2rvWWcOffP5WEcefjExWGZ2gQQ++YDBYLeXsP2dKE9e9J0nWXEjmkX5fHMSkmhD8y8/kjM5+jVXo+3J9Ood7AFZGOryGXRwVRoDfw4f50jlbp+SMzn0WZBVwb03h9mBARiIezE09uPci+0kry9Qb2llRypMJaaaVWKjk/2JdPDmSwu6SCnJpa/i8li9yaWq6I7LrjsSOWrtrNC2/N5dclW890Vtrl1ssT+Wn5YeYuS+VIdjkvf7GV3KJqbpgQ7zD9+UkhDO4ZxG0vLGfD7lxyCqrZk1rEzoOFtjR7Dxfz+tfb+WNtBsa609t6uC039wzl59Q8fk7NI61cz2tb0sitNnBtguNj9rUtaXy1L5t9RVVkVtTy/o4MjlbouSDc12H6rqZPP4LnOefi2j0Bta8fXsNHoAkNo7bJ90+9vobcOf8jdcZDpDxyL5nvv0Vtdlab29VFRhNw1TV4DByMwslxZ0R9ehpuffrh1qsPal8/PJIG4tKjJ7VHMzozRMB6jTz651/EXjaeoIH9cQ8Lpfe0m6k3Gjm2qfXzyismioTrribknEEonR3HEdi/DwF9e+EaFIhrUCDdJ16Ok1ZD2ZH0To+jubM1LiH+bqTC8TSbPXs2fn5+bNmyhfvuu4+77rqLa665hnPPPZcdO3Ywbtw4pkyZQk1NDbm5uYwYMYJ+/fqxbds2lixZQn5+PpMmTTrpbTb12GOP8dZbb7F161YCAgK47LLLqKurA2Dv3r2MGzeOq666ij179vDjjz+ybt067r33XrttvPnmm/Tq1Yvt27fzzDPPtBn7Bx98wMKFC5k7dy6HDh3i22+/JSoqqkU6i8XCAw88wJdffsm6devo16/fCfMzcuRI9u/fb6uMXb16NX5+fqxevRoAk8nEhg0bGDFiRPsLqwPqioswVZTj1qOnbZnS2RnXbvHUpB1udT19ehpuPewr09x69GxzHUcsZjPZX3+J3+hxJ+yi2BHH43JtFpdLXDw16a3nscZRXIk90Xcwrq50tpRZXXER9a2Ukb6NMtKnp+HaLA7XJmVkMZmozTpqt10A1x490acdaXW7Zr0eFAqUDV2KzaY6UCjsbpoVTs6gUFBzJPVvHZvFbCZ39pf4jB53wi7cx5n1NSi12g5VIDspFMS5u7Oz2L5b2M6SUnp4OX56nuDlwc4S+/Q7ikqJ83BDpbD2TUnwdLDN4lJ6NHkiP9jfl8MVVczok8A3I4bw3pD+jA3t3IqCuqKGcy2x+bnWnZojrR9LNWlpuCfal6N7Yk9q2jj+6vV6AFQujlu8mE0mStatQanToQ0Lc5imPZwUCrq5u7GjuMxu+Y7iMhJbLTN3h+m7NSmzE1EpFKiUihaVkUazmZ5eXVNR56xS0CvEg7WHi+yWrz1cxIAI71bWstcz2IMBEd5sTi+xLdt2tJTeIZ70bahgDPfWcUF3f1amFLa2mS5RVVCMvqyCkD4JtmUqZ2eCEuMoTElrY0179QYjZlM9areOD6dwqpwUCrp7urG1sMxu+dbCMnr5uDtcp6e3e4v0WwpLSfBqPB6HB3qzv7SSh3rHsGDsIL4e0Y8b48JsPx5UCgVOSgXGZsejod5Mbx/H54FonbOTkl5xvqzbad8Kat3OYyQl+DtcZ9TgcPYeLmL6Vb1Y93/XsOyTK3jiloFo1J3z4LmrOCsVJPq6syHH/jtqw7FS+gW079hRAK7OKsqNndsiv71cYrtRtWc3dWWlWCwWqlMOUleQb7u3sFgsZP/nA+orygm7+wGiZjyDNjyCrA/epr761IYccImNo/pQMsZ86xAItdlZ6I+k4tar9wnW7Dh9YRGG8gr8ejV+H6ucnfGJ70ZZauvfxx1lMZs5tmkrJoMRr7hTH/LkRM7WuIT4u5ExHE+zvn378vTTTwMwc+ZMXnvtNfz8/GytA5999lk++eQT9uzZw6JFi0hKSuKVV16xrf/VV18RHh5OSkoK3bt37/A2zznnHNu2nnvuOcaMsY4JMnv2bMLCwpg/fz6TJk3izTffZPLkyTz44IMAdOvWjQ8++IARI0bwySefoNVau1FdeOGFPProo+2KPTMzk27dujF8+HAUCgWRkZEt0phMJm666Sa2bdvG+vXrCWv4QXii/PTq1QtfX19Wr17N1VdfzapVq3jkkUd4911rV86tW7dSW1vL8OHDW82fwWDA0KQbHlibzavUJ+4WZCq3dl1xcre/SXJy93DYRdO2XsO4K3breHhiqmh9zCVHipYuAaUS3wtGnThxB5gqWonLox1xuTeLy90TU2XH4upKZ0uZHS8jVbM4VB4emE4Qh6pZGancPalvKCNTVRWYzag8mm3X3YP6inIcMdfVUfjrz3gMHIxKpwNAFxWLUq2h8Nef8b/sSrBAwYJ5YLFQX+54O3+X2EqWWcvIe2T7yqi+qoqixb/jNbxjDzY81M6olArKmg1LUWaow8vX2eE63mpnygx19umNRpyUSjycnSg11uGlUVNmbJ6mDu8mXW+DdFouCgtmQWY2P6Vn0d3DnenxMdSZzazMbX3MsI6oa+s6Unyi60jL87O1c81isZA7by4usXFoQ+0riCv27ibry88xG404eXgSff9DOLk5rohpj+NlVtqs23OZ0Yi3xsvhOt5qNWVG+x/XpQb7MjsRfX09B8oquD4mgszqQ5QZjIwI9ife051jNfqTjqct3i5qnFRKCqvsvx8Lqw34ubX9/bjxsQvwcVXjpFTw3l+p/Li9sVXpb3tz8XFV89O0c1AowFml5JvNR/lkTfsr+TqDvmHMTZ2n/fGg9XSnurDE0SoObZ/zKy4+noT0Tjhx4k7mqXbGSamgtNk1ocRQh08rXe19NGpKDGV2y0oNdTgplXipnSg21BHsqqW/TsvynEIe33yAMFcdD/WOQaVQMDs1C319PftKKri5WzhHK/WUGoyMCvUn0dud7OrOayX9b+HtocFJpaSozP5cLi6vxc9L53Cd8CB3BiYGYqir5+5XVuLtoeGFO8/B013NzA82nI5snxQvjfWYLa61P2aL9Ub8dO17kDG1Vxg6JxVL0k/vQ4rjAq+5ntw5szny1GOgVKFQKgiafDMucd0AqEk5iOFYDnGvvYPS2fpdHnDVJCp376Ry5/YO3ys05TPmIur1etJefAYUSrCY8b/0SjwGDumU2JoylFuvkRoP+2ukxsMDfRvf4e1VmZXDxhffxFxXh0qrIen+O3APbX383M5ytsb1T6SUMRzPalLheJr16dPH9n+VSoWvr69dV+DAwEAACgoK2L59OytXrsTNza3Fdo4cOWKrcOzINpsaOnSo7f8+Pj7Ex8eTnGwdRHr79u0cPnyY7777zpbGYrFgNptJT0+nR48eAAwcOLDdsU+dOpUxY8YQHx/P+PHjueSSSxg7dqxdmoceegiNRsOmTZvw8/OzLW9Pfs4//3xWrVrFqFGj2L9/P3feeSdvvfUWycnJrFq1iqSkJId/y+NeffVVXnjhBbtlCVOmknjzrS3Slm3ZxLHvv7G9j7zrfut/WlwwLQ6WnYDF0qHk+swMilctJ/aJZ1G0s5VMa8qbxRVxdytxtSePJ7NOFzpbyqx8yybymsQR3lBGLTbTjjy1Zx1Fy4J0sKJ1ApljX32KxWIh8Nobbcud3N0Jvf1O8n74ltJVK0ChwGPAYDThEdBsYPO/U2y1mRmUrFxOVDvLqF6vJ+uTD9AEh+A34dITpnekeQ5PtFtLszWOx2OxS+NgvSYLFQo4XFHFN4etXcDSKquJcHNhQljwSVc4lm7ZxLE539reR9593/EMNg/gxEE2+7h5zE0d+2EOtTnZxD76eIvP3LonEPfks9RXVVKyfi2ZX3xK3ONP4uRxaq2wWpSZg2Vtpj+JS/Zbe1N4qGc3vhsxmHqzhcOVVazKLSTOo/Xvt67Q8vxp6ZovNuGqVtE/3IsZY+M5WlLDwj25AJwT7cO9I2J55rf97MouI8rHlWcv7kFBpYEPV3Ve65Lm0tZuZePn39vej3riLut/mhdGe47PBvt+XUb6+u2Me+4BVGrHDwlOB0fHV1vnTGufHV+qREGZsY43dx/GDKSUV+OnVXN9bCizU63dQl/amcoT/eKYP3YQJrOF1PIqlucU0t3z9B6PZxUHxdJaKSoVCiwWCw+/vZaqGmvl3StfbeWjGSN5/r+bMRg7NrzH6WaxNP8ea98t1YRof+7uF8l9K/ZTUnvihzWnqsX9yT0PoM9IpzY9jdA778XZxxd9air5P36Lk6cnrgmJ1GYexWyoJfXxB+22ZakzYiwqpK6kmLQXn7Ut9x03Ab/xF7crP5Xbt1KxZRMhU6ehDg7BkJ1F/s8/4ORpnTzmVORs2ML+r+fY3g94+G7rf5pdDy2t3A92lGtwIMNefBJTjZ68rTvZ8/lshsx8uNMr587WuIT4u5MKx9PM2dn+RlShUNgtO/7D1mw2YzabufTSS3n99ddbbCc4uPFi1ZFtnkjTtHfccQf3339/izQREY1jNrm6tn+g5qSkJNLT01m8eDHLly9n0qRJjB49mnnz5tnSjBkzhu+//54///yTG264wba8PfkZOXIkn332GWvXrqVv3754eXlx/vnns3r1alatWsXIkSPbzN/MmTN5+OGH7ZbdtN7xGB7uffoRGxVte29pmGDBVFGBc5OJJUyVlS1a6DRlbRln38rLVFnRoR/B1YdTMVVWcujpJj+yzWbyfp5L8V/LiX+p5fHTGrdmcZnbiquNPDqMq6qizb9FVztbysytTz+iW4mj6aQm9ZWVLVrwnSiO+qoKW2tCJzc3UCpbpqmsbNHi0FJvIufLT6krLiLi/kdtrRuPc+3Rk9gXXsVUVYlCqULl4kLqEw/j7Otnl+7vFFvN4VTqqyo58ox9GRX8MpeSlcuJe7GxjOpra8n++D2UGg2h0+9BoerYV2uFsY56swXvZq2pPdXOLVooHlfarKXi8fQms5nKOuvfrcxgxLtZ5YeX2tmuJWWpwUhWtf1wG1nVes4NsC+bjvDo0w+XqMZuQxaTNYaW51rb1wRHLYfrW7n2HPtxDpV7dxPz8GM4e/u0+Fyp0aAJCICAAFxiYjn07FOUbFhHwPgJHQ0PaCyz5q3HPNXqFi1Pjys1GluUsZdajclspqKu/V0Cc/W1PL5tLxqVEheVilJjHU/0ie/UcTebKq0xYqo34+9mP5GDn6uaoqq2J4vLLrW21DqUX4Wfm4YHLoizVTg+PKobv+zKsbV6PJRfhU6t4tXLe/HR6iNd9owqfGBv/LpF2d7XN/zt9WUVuHg3toyurahs0erRkX2/LWfPgqWMffpefCI7b0iTjig31mEyW/DR2J/v3mrnFq0ejysxGFtMNOStsV5DjndRLTYYMZktNL17PFpVg69WjZNCgcli4VhNLfdv2IdWpcTVSUWxoY7nk+LJrZEWjh1VWmHAVG/Gz9v+O9TXU0txmeMWzAWlNeSX1NgqGwGOZJWjVCoI8nXhaO6pTY7VVcoM1mPWr9mkRj46NcW1bV9Xxkf7M2t4dx5emcym3LIuzGWj5vcnTl7eZH7wNmHT78Gtl7XhhzY0nNqcTEqW/2kde9xiwcnTi4gHWvYEU7q4oNK5ED2zscJR1YHfVAXzf8J37EV4DBzcsO8w6kqKKV66+JQrHAP798ErNsr23txwjTSUV6BtMnSHsaKyRevAk6F0csI1MAAAz+hIytMzOLr0L3rdcsMJ1uyYszUuIf7upMLxbywpKYmff/6ZqKgonFoZNPhUbNq0yVZZV1paSkpKCgkJCbZ979+/n7i4uE7dp4eHB9deey3XXnstEydOZPz48ZSUlODjY/2BeNlll3HppZcyefJkVCoV1113XbvzM3LkSB544AHmzZtnq1wcMWIEy5cvZ8OGDTzwwANt5k2j0aDR2P+gaq07tUqrRaVtnJ3TYrHg5OFJVfJ+dOHWv6nZZKI69RBBV0xsdZ+66BiqDh7Ab1RjS8+q5AO4xLT/7+41eChuzSZVyfjwXbyGnIP30Na7kDvSWlzVBxvjsphM1Bw+RODlrcflEh1DdfIBfC+0j0vXgbg629lSZo7iUDWUkbZZGfm3UUa6hjLyaVJG1U3KSOHkhDY8kuqDB3Dvl9SY5uAB3Pr0a9x/Q2WjsSCfiAceQ9VGK+LjXVirDyVTX1Vpt52/W2yeg4e2mKwo66N38Rh8Dp5Nyqheryfr43dRODkRdue9tm5THWGyWDhcWUl/Xy82FTZ24+nn483mQsfdeg6WVTDY336g/P6+3hyuqKK+oabmYHkl/Xy9+TXzmF2a5PLGSrzksgpCXex/3Ia66Ciote8+2xGtn2sHmp1rKQRdeXWr23GJiaEy+QB+o8bYllUeOIBLTKzdto/9+D0Vu3YS8/CjqP0cj3PWksVWoX0yTBYLqZVV9Pf1YkNBYxkl+XqxsaC1MqtkiL99ZWiSrxepTcqsIwz1Zgz1ZtycVAzw9earlK4ZjL6u3sK+YxUMj/Plz+R82/LhcX4sa/L+RBSAxqmxVbPOWdWiUtFssaBQnLil6Klw1mlx1tkfnzovD3L3HMQ32jqLdr3JRN6BwwyYfHmb29q3cDl7flnCmCfvwS+25TAxp4vJYiGlvIqB/l6szWvsBj7Q34t1Td43tb+0knMD7Y/HQf5eHCxrPB73llQwOtTfrjzCXXUU1RoxNSu82noztfVm3JxVDArw4r8HMjorvH+NOpOZfYeLGd4vmGWbMm3Lh/cLYfkWxxONbE8u4KJhUbhonaiptV7TokM9qK83k1f895mRurk6s4UDxZWcG+LNiszGa+a5IV78ldl6d9YJ0f68OLw7j60+yJrs9g95cKqaf6/V6/VQX9+iJZxCobS12tSGR1gfbKpUqH0dP8RTBwSeVH7MdcaW+1YqW7QYPRlOOi1Oza6RGk8Pivcl4xlpvUaaTSZKDqUSP+nKU96fI+ZT+H5uzdkalxB/dzJpzN/YPffcQ0lJCddffz1btmwhLS2NpUuXcuutt1LfwRlQHZk1axYrVqxg3759TJ06FT8/P6644goAZsyYwcaNG7nnnnvYtWsXqampLFy4kPvuu++k9/fuu+/yww8/cPDgQVJSUvjpp58ICgrCy8vLLt2VV17JN998wy233GJr/die/Bwfx/G7776zVTiOHDmSBQsWoNfr2xy/8VQpFAp8LxxN4Z+LqNi1g9pjOeT87yuUajWegxrHU8n++kvyFvxse+93wWiqkg9QuHQxhrxcCpcupupgMr4XjLalqa+tRZ+ViT7LevNpLC5En5WJsWEMOyc3N7QhoXYvhUqFk4cnmsBTm/xBoVDgc8FoiprG9Y01Lo8mceXM/pL8Xxvj8rlgNFUHD1DUEFfR0sVUH0zGp0lc5tpaarMyqW2Iq664kNqsTLvxE+urq6jNysSQa60wMRTkUZuVaRt/8VRjOxvK7HgZFf+5iMpdOzAcyyHXQRkdm/0lBU3KyPuC0VQfPEBxQxzFDsrIZ9QYyjaspWzDOgx5x8if9wN1JSV4Dx8JgKW+npzP/0vt0QxCpk4DsxlTeTmm8nK7ypyyjevQpx/BWFhA+ZaN5Hz5X7wvGH3CWM9kbCo3NzQhoXYvmpVRfW0tWR+9i8VgIPiGqZj1tY3xt6NFeVMLjuYwJjSI0SGBhLnquL17DP5aDYuzra3BboqL4qGe3W3pl2TnEqDTcFv3aMJcdYwOCWRMaCDzjzaOkbcwM4f+Pt5cHRVGmIuOq6PC6OvjxcKjjRWQv2bmEO/pzjVR4QTrtIwI8mdcWBB/ZNlPWnAqFAoFfheOomDJIsp37aA2J4fs2f+HUq3Gq0k5Zn39JXkLfrG9971glPVc+3MxtXm5FP5pPdf8Lmwsx2M/zKFsyybCb70dpUZLXXk5deXlmBtacZoNBvIW/EJN2hGMxcXoM4+S/c1s6kpL8Uxqexb5E5mfkcO40EDGhgQS7qpjenw0/loNi7Ktg/hPjYvkkV6NZfZHQ5lN6x5NuKuOsSGBjA0N5OeMHFsaJ4WCGHdXYtxdcVIo8NWqiXF3JbjJj6QkXy8G+HoRqNPQ38eL1wb2JrtGz9JjnTPmpiNfrE/n2gHhXJMURqy/K89clECIp5bvtlqvcY+P6c7bVzcO7zJlSASj4gOI8nUhyteFa5JCmTY8mvm7G4+rFYcKuGFwBJf2DibMW8fwWF8eHtWN5QcLMJ/GETgUCgU9JlzAngVLObplN6WZx1j/n29w0jgTM7xx2Ji1H/2P7XN+tb3f9+sydv74O8PuugG3AF/0ZRXoyyqoa1JZX1droCQjm5IM63lZWVBMSUY2VUWdX1EyN+0Yl0QEMiE8gEg3Hff2jCZAp+HXo9bjcXpCJE/262ZL/2tGHoE6DfckRhHppmNCeAAXRwTyY9oxuzSeamfu7xVNmKuWcwK8ubFbGPMzcm1pBvl7Mdjfi2CdhoF+nrw/tBdZVXoWZXXd8dgRri4a+iRG0ifRWiEcFe5Pn8RIwkPOzMzGJ/LVrwe4Zkw3Jo6OIzbMk6duG0SwvytzFltnP3/0piTefLDxfva31emUVRh4/YFhxIV7MqhnIDOmDmDe8sO27tTOTkp6RHvTI9obZyclgT4u9Ij2JjL41FtxnYrZ+3O4unsQV3YLJMZTx4zBMQS7avnxoPX4enBAFK+c1zg794Rof145P543t6axp7ACP50zfjpn3JxP/wQ5Kp0OXbfuFMz/ieqUgxiLCinbuJ7yLRtx79sfAJeERHTRseR8+jFVB/ZhLC6iJu0whb/NR9/GbNLWie0a7o/rTZjKyqjNysRY0PiAx61XX4r/XETVvj0Yi4uo3LWDkr+W2vbdmRQKBZHjLuTI70vI27aLyuwc9nw+G5VaTcg5g2zpdn/6NYfmLrC9N5tMVBzNouJoFmZTPYbSMiqOZlGd33htOPTTAkoOpVJTWExlVg4p836lODmFkKGDOz2Of0tcQvzdSAvHv7GQkBDWr1/PjBkzGDduHAaDgcjISMaPH49Seep1xa+99hoPPPAAqamp9O3bl4ULF6JuaNHXp08fVq9ezVNPPcV5552HxWIhNjaWa6+99qT35+bmxuuvv05qaioqlYpBgwaxaNEih7FMnDgRs9nMlClTUCqVXHXVVSfMj0KhYMSIESxYsIDzzjvPFoenpycxMTF4nOJYXSfiN2Y8ZqORYz98R31NNbqoGKLue9juiaixtNhuZFyX2DjCb51O/m8LKPhtAWo/f8Jvm45LdGN3RH1mBhnvvWV7n/fzXAC8zjmXsJtaji/Z2XzHjMdcZyTvx8a4Iu61j6uutNjuSatLTBxht0yn4PcFFPxujSvMQVxH32+MK78hLs8h5xLaEFflnt0c+/b/bGlyvvoMAL8JlxJwcdstT9rjbCkznyZlZK6pRhsVQ3g7yijklukU/b6AwoYyCr1tOromcXgMGEx9dTVFi3+jvqIcdXAI4Xc/gLOv9YdaXVkpVXt3AZDxqv34p+EPPIprd2uLaWN+HoW//kJ9TTXOvn74jbsY7wvH0B5nKrb2qM3MoDbDOsFF2vNP2n0WM+u1Vls0OLIuvwgPZ2eui4nAR6PmaFU1L+zcR2FD5YWPRo2/trEFdn6tgRd27uf27jFcHB5CicHIZ4eO2LW2O1heyRt7DzIlLpIbYiPJq6nljb0HSalo7GKXWlHFK7uTuSkuiutiIsjX1/L5oTRW53XuIPx+Y8djrqvj2PdzqK+pxiU6huj7HrIvx5ISu3J0jY0j4rbp5C9cQP5vv6L29yfidvtzrWTNKgDS32083wDCbpqK99BhoFRiyM/j6Gcbqa+uQuXqii4yiphHHj+l2eEB1uQX4a52YnJsOD4aNRlVNTy7c7+tdaiPRk1A0zLTG3h2x36mx8dwaUQwxQYj/z2YxvomZeajUfPx0MYfjBOjwpgYFcaeknJmbNtr/bs4OXFLt0j8tBoq60ysyy9i9uGjJ9VKsr1+35eHl4uaBy6Ixd9dS0p+Jbd8s42cMmu32QB3DaFejWWpVCh4fGx3wr11mMwWMktqeGNpiq2CEuDDVdZu04+M7kaQh5biaiMrDhbw1vKULoujNb0uG0290cjmL3/EUF2Df1wUY568164lZHVxCYom3wUHl63FbDKx6p0v7bbVd+JF9LvGOg5b8ZGj/DnrA9tn2/5nrVCPHTGE4XdP6dQY/jpWhIezEzd3D8dXoya9soYZmw+Qr7cej75aZwJ1jcdjrt7A41sOcF/PaK6Msh6P7+9LZ3Vu4/FYUGvkkU37ubdnNP83IoiiWgPz0nKZc7jxwYabk4rpPSLxbzgeV+cW8/nBrj0eOyKpTwxL5zZ2W33juZsA+Oan1Ux/5L9nKlutWrQuA293Dfde25cAHx0pR8u4fdYKjhVWA+DvrSPEv7HrbU2tiZufXcqzdwxh/juXUFZhYNH6DN75dqctTYCPjt/ev8z2ftpVvZh2VS82783jhqf+PH3BNbMkvRAvjRN39Y3E30VNamk1dy7bR2619Zj116kJdm08Zq+JD8ZZqeSZod14Zmhj5fmC1DyeWnf6rxuht9xB4cKfyf36C+v9jY8v/pdeidd5IwHr75Kwux+gaOEv5H37NaaqSpw8PHGJ69bmMDx15WVkvDbL9r5kxZ+UrPgTXbfuRD5oHeYlcNJkin5fQN4P31JfVYmTpxdew0fgd9HJjSF9IjETxmI21nHgf99TV1ODZ0w0gx67z67FYG2J/TWytrSc9c82Tnyavng56YuX45PQjSEzrUNYGSsq2fPZ19SWVeCs0+IeHsqgR+/Dr1ePLonj3xLXP41MGnN2U1g6o+21EGepq1esPdNZ6DKnswXJ6Xa2fnGZzuIyO5udreeaRnWWBgZUm87eDiDJa/6eY7qdqukTz95n6EuyXM50FrrM1ns+OtNZ6DKh/caf6Sx0Cc2V0SdO9A8VF36W3kAC0W5dP7mO6FzvnXPhmc7CaTE79cw9+Didbu427kxn4Yw4e++ohRBCCCGEEEIIIYQQp51UOIpO88orr+Dm5ubwddFFF53p7AkhhBBCCCGEEEKI0+Ds7X8iTrs777yTSZMmOfxMp9M5XC6EEEIIIYQQQoh/n7N1KCxhJRWOotP4+Pjg4+NzprMhhBBCCCGEEEIIIc4g6VIthBBCCCGEEEIIIYToNFLhKIQQQgghhBBCCCGE6DRS4SiEEEIIIYQQQgghhOg0MoajEEIIIYQQQgghhDitVArLmc6C6ELSwlEIIYQQQgghhBBCCNFppMJRCCGEEEIIIYQQQgjRaaTCUQghhBBCCCGEEEII0WlkDEchhBBCCCGEEEIIcVpJC7izm5SvEEIIIYQQQgghhBCi00iFoxBCCCGEEEIIIYQQotNIhaMQQgghhBBCCCGEEKLTSIWjEEIIIYQQQgghhBCi08ikMUIIIYQQQgghhBDitFIqznQORFeSFo5CCCGEEEIIIYQQQohOIxWOQgghhBBCCCGEEEKITiMVjkIIIYQQQgghhBBCiE4jFY5CCCGEEEIIIYQQQohOI5PGCCGEEEIIIYQQQojTSiaNObtJC0chhBBCCCGEEEIIIUSnkQpHIYQQQgghhBBCCCFEp5EKRyGEEEIIIYQQQgghRKeRMRyFEEIIIYQQQgghxGmlUljOdBZEF5IWjkIIIYQQQgghhBBCiE4jFY5CCCGEEEIIIYQQQohOI12qhWhDbb3iTGehy6iVZ2/zddVZGpv5LD4ejeazN7Ya09kZW43pTOeg66hVZ+c1BGDCBO2ZzkKX+Gxe7ZnOQpdxXrf/TGehy4T2G3+ms9BlcnYtOdNZ6BJzPrjpTGehy3x92O1MZ6HL/LFbfvb/07x3zpnOgRCnTlo4CiGEEEIIIYQQQgghOo086hBCCCGEEEIIIYQQp5Xy7OwIJBpIC0chhBBCCCGEEEIIIUSnkQpHIYQQQgghhBBCCCFEp5EKRyGEEEIIIYQQQgghRKeRMRyFEEIIIYQQQgghxGklYzie3aSFoxBCCCGEEEIIIYQQotNIhaMQQgghhBBCCCGEEKLTSIWjEEIIIYQQQgghhBCi00iFoxBCCCGEEEIIIYQQotPIpDFCCCGEEEIIIYQQ4rSSSWPObtLCUQghhBBCCCGEEEII0WmkwlEIIYQQQgghhBBCCNFppMJRCCGEEEIIIYQQQgjRaWQMRyGEEEIIIYQQQghxWqlkDMezmrRwFEIIIYQQQgghhBBCdBqpcBRCCCGEEEIIIYQQQnQaqXAUQgghhBBCCCGEEEJ0GqlwFEIIIYQQQgghhBBCdBqZNEYIIYQQQgghhBBCnFZKheVMZ0F0IWnhKIQQQgghhBBCCCGE6DRS4SiEEEIIIYQQQgghhOg0UuEohBBCCCGEEEIIIYToNDKGoxBCCCGEEEIIIYQ4raQF3NlNylcIIYQQQgghhBBCCNFppMJRCCGEEEIIIYQQQgjRaaTCUQghhBBCCCGEEEII0WmkwlG0aurUqVxxxRVnOhud5vnnn6dfv35nOhtCCCGEEEIIIYQQZzWZNEb84ykUCubPn39GK0cvDg/iqqgwfNRqMqtr+OxgGvvLKlpN38vbg2nxMUS4ulBiMDIvI5vF2Xm2zyNcXbgxLoI4DzcCdVo+O5jGr5nH7LZxTXQY5wb4Euaqw2g2k1xWyf+lZJBTo++yOI+zWCwULlpI2fo11NfUoIuKJmjSDWhDQttcr2Lndgp+X0BdUSHOfv4EXHolHv2SbJ9Xp6ZQvHwJtVlHMZWXEzb9Hjz69u/SOPJ//43iddY4XKKiCbt+8gnjKNuxnbyFv2IsKkTt50/w5Vfg2b8xjvwliyjfuQNDXh5KtRqXmFiCr7wabVCQLU1dRQW5v8yjMvkA9TV63Lp1I/Ta69EEBp5UHF1RHgAla1ZSvPxPTOVlaIJDCJx4Ha5x3e3SGPKOkb/gZ2pSU8BiRhMcSthtd+Ds4wvAsTn/o/pQMqbyMpQaDbroOAKvuBpNUHCHYz2bz7XLI4K4NiYUX42ajKoaPjqQzt7S1mPr6+PB3T2iiXJzochg5Ie0HH7LbIxtXGgAT/Tt1mK9sUs2UGe2AHBZRBCXRQQRpNMAkFFVw/8OZ7GlsKxTY7ssIohJ0Y2x/Se57dj6+HhwV0JjbD+m5fB7Vp7DtBcE+/F0v3jW5xfz7I6DtuU3xYVzc7cIu7QlBiPX/LW1c4LCejxObDgej1bX8OkJjsfeDcdjpKsLxQ3H46Imx+P40EBGhQQQ6eYKwOGKKr5OzSClosqWppe3BxOjwohzd8VXq2HWzgNsLCzptJjaYrFYSP/1d3JWr8NUXYNHTBTxU67HLTSk1XWqco6RNv83KjOOUltcQrfrryFi7Ci7NKWHUslcvJSKo5kYy8rpc9+d+Cf16+JoGt04OII7zosmwE1DSkEVsxYls/VoqcO0AyO9eWJsPLH+ruicVeSU6ZmzNYsvN2TYpbt1aBQ3DA4n1EtHSY2RxfvyeGNZCgaT+TRE1LrJlydy+3V9CPB1ITW9lJc/2si2vY7PrdefGMFV4+NbLE9NL2HCLfO6OqsndMNF8dx+VU8CvF1IzSzjpS+2sO1AQavp1U5K7r2uL5ePjMHfW0deUQ3/+WkP85YfBqBbuBcP3NCPXrG+hAW68dIXW/h6YfLpCqfDhg1O4KE7LyGpdwzBgd5Muv1tflu67Uxnq00Wi4Xl3y5hy6KN6Kv0hCdEcMU9EwmMav1+YN+63az8YTnFxwqpN5nxC/XjvKsvIGn0IFuaZd8sZsW3f9qt5+btztM/vHhS+axpuB81NNyPhk6/B/d23o/WHEkl87030QSHEv3kcye1/6byf/qemiOpGHOPoQ4MdrjNqgP7KPpjIcbcHBTOzujiuhNw5TWo/fxPef+TE4O5vW84AS5qUkureXnDEbblOf6eGxvty+TEEHr4uqJWKUktreGDbUdZl11ql+bO/hFEeuhwUio4Wq7nyz3Z/Jra+rnbVTo7tqYujvXnvdE9WJZexN1LD3RlGP94SsWZzoHoSlLhKMQpOi/Qj2nxMfwn+QjJZRWMDwvihaSe3LVhB4W1hhbpA3UaXkjqyZLsPN7ae4geXh7c3SOWcmMdGwqKAdColOTpa1mXX8S0+BiH++3t7ckfWbmklFehUii4qVskLw3oyZ0bdmCo79ofNMXLllDy1zJCptyCOiCIoiW/k/nRO8Q++zIqrdbhOjVpR8j+6lMCLrkC9779qdy9k+wvPyXq4Rm4RFtjNBsNaMPC8Ro6jOzPP+nSGAAKly6hcMUywm++BU1AIAWL/+DI+++S8MJLrcZRnXaEo198RtBll+PZrz/lu3aS8flnxD32OK4NcVSnpOA34gJcoqKwmM3k/jqftA/eJf65Wag0GiwWCxmffIxCpSL6rntQanUUrljGkfffsaXpiK4qj/LtW8ib9wPB196AS2wcpevWkPnx+8Q9M8tWmWgsLCDjndfxGjoc/4svR6XTYcjLReHsbNuXLiISz0Hn4OzjQ311NYWLFnL0o3fpNus1FMr2N7Q/m8+1C4L9uCcxmvf2pbGvtIJLI4J4fVAiU9fsoKDW2CJ9kE7DqwMT+SMrn5d3pdDL24MHe8VQbqxjTV6xLV1VnYmbVu+wW/d4ZSNAYa2Bzw8dtVWejgsN4KUBPZi+bhcZVZ1ToToyyI+7e0TzwX5rbJdEBPHqwERuXdt6bK8MSGRRdj6v7rbGdn9Pa2xr84vt0gZoNdyREMWeknKH+06vrOaxLftt781YHKY7GecH+nFHfAwfJx/hQFkFE8KCeDGpJ3e0cTzOajge39x7iEQvD+5pOB7XNxyPfXw8WZVXSHJZGsZ6M9dEh/HygF7cuWEHxQbr30qrUpFWWcXSnHye6dej0+Jpj6OLlpL55woSb7sZl6AA0n9bzM633mfoKy/gpHN8rTEbjOj8/QgYlETq9z85TFNvMOAWHkbw8HPZ+/GnXRlCC5f0CuLZCT145rf9bMss5YZBEXx900DGfLCWY+W1LdLrjfX8b/NRkvMq0RvrGRjpzSuX96TGWM/327IAuLxvCDPGduex+XvZkVlGtJ8rb13VG4AXFx9ssc3TZcIFMTx171Cef28dO/bmc91lPfjijYu46Oa55BZUt0j/4ocbePOzLbb3TiolC7+4msWr009nth2aMDyKp24fxPP/3cz25AKuG9+dL58bzfh7fiW3qGUsAB/MGIGfl46ZH27gaG4Fvp46VKrGX7pajYqsvEoWr8/gqdsGOdzG34mri4a9BzL5Zu5qfvjs4TOdnXZZPXcF635ZxTWPTMYvLIC/5izli5mf8OiXT6JxcXwN0bm7cMH1YwgID0Dl5ETy5v3Me/t73Lzc6D6w8RoYGBnE7a/dbXvfkfuL5prej+Z04H60Xl9D7v++wjW+B6aK1h8+dYjFgtfQ4egz0jHkZLf42FhUSM6nH+Fz4VhCpt6OWa8n/+cfyfn8P0TPPLUKzwmx/jx1bizPrzvMjrxyrksM5osJvblo7jZyq1p+zw0K9mR9dilvb0mnwmDi6oQgPh3fk2vm7+RAsfW8LKs18cmOTNLKaqgzW7ggwofXRsZTrK9rtfKuK3RFbMeFuGl44pwYtuY6vjcR4t9EulQL5s2bR+/evdHpdPj6+jJ69Giqq1verG3fvp2AgABefvllAMrLy5k+fToBAQF4eHhw4YUXsnv3bttnKpWK7du3A9Ynmj4+Pgwa1HgD9/333xMcfOIWTkajkXvvvZfg4GC0Wi1RUVG8+uqrAERFRQFw5ZVXolAobO8BXnvtNQIDA3F3d+e2226jtrblD4fOcGVUKEtz8lmak09WtZ7PD6VTVGtgQliQw/QTwoIp1Bv4/FA6WdV6lubksywnn6uiGlujpVZU8VVKBmvyiqgzO67QeHbHfpYfKyCzuob0qmre3ZdCgE5LnIdbl8R5nMVioWTlcvzGXYxHvwFoQ0IJmXIrZqORiq2bW12vZOUyXBMS8Rs3AU1QMH7jJuAan0DJyuW2NO49eze0shvQpTEcj6NwxQoCL5qAV/8kdKGhhN98C2ajkbItrcdRuGI57j0SCRw/AW1QMIHjJ+CekEDRisY4Yu5/EJ9zh6ENCUUXFk7ETbdQV1KCPvMoAMaCfGrS0wibfAMuUdFog4IIu/4GzAYDZVu3tLbrVuPoqvIoXrEM76HD8R52PpqgEIImXoeztzcla1fZ0hT8Nh+3xN4EXnkNuvAI1H7+uPfqg5O7hy2N9/ARuHbrjtrXD11EJAGXXoGptIS64qIOxXo2n2vXRIewKCufRdn5ZFbr+Tg5nYJaA5dFOr5GXhYRREGtgY+T08ms1rMoO5/F2QVMim7Z0qzUWGf3ampjQSmbC0vJrq4lu7qWL1My0ZvqSfRy77TYJkaHsDi7Mbb/NMR2aYTj2C5tiO0/TWJb4iA2JfBk3+7MTs0kt8bx9b3eYrGLvdxo6rS4jh+PfzYcj58eSqew1sDFrRyPF4cFU6A38GnD8fhnw7F8dZPj8Y29KfyRlUdaZTXZNXre35+KUgH9fLxsabYVlfK/w5m2SvPTxWKxkLVsBVGXXETAwP64hYXS8/abMRuM5G1q/brlERNFt2uvJmjIIJROjp9z+/XpRezVlxMwsOtatLfm9mHRzN2ezY/bszlSWM2sRcnkltdy4+AIh+n351awcE8uqQVVZJfpWbD7GGtSixgU5W1LkxTuxbbMUhbuySW7TM/aw0Us3JNL71DP0xWWQ7de04d5iw7x0x+HOJJZxssfbSSvoIrJlyc6TF9VXUdRid726hXvh6e7hp8XHzrNOW/p1ssT+Wn5YeYuS+VIdjkvf7GV3KJqbpjQskUmwPlJIQzuGcRtLyxnw+5ccgqq2ZNaxM6DhbY0ew8X8/rX2/ljbQbGujPbErU9lq7azQtvzeXXJZ3XarsrWSwW1i9YwwXXjaHX8L4ERQUz6dEbqDMY2bVye6vrxfbtRq9hfQiICMI3xI/hV44gKCaEjP32Fd9KlRJ3Hw/by83r5L+j3Xr2xv/SK3Hv4P1o3vff4DFwCNpoxw8wyzauI23W0xx64E7SZj1N6ZqVJ9xm4KTJeI+4EGc/P4ef12YexWK24HfpFaj9A9BGROIzeiyGnGws9af2nXdr71DmHczjp4N5HCnT8/KGNPKqDExOdPz9/fKGND7fnc3ewiqOVtTyzpYMjpbruTDS15ZmS245yzKKOVKmJ7Oiltn7jnGouIqBQR4Ot9lVuiI2sLbWe/vCBN7fdpSsiq7vdSbE351UOP7L5ebmcv3113PrrbeSnJzMqlWruOqqq7BY7FuBrFq1ilGjRvHCCy/w1FNPYbFYuPjii8nLy2PRokVs376dpKQkRo0aRUlJCZ6envTr149Vq1YBsGfPHtu/FQ1P/FatWsWIESNOmMcPPviAhQsXMnfuXA4dOsS3335rq1jcutV6k/V///d/5Obm2t7PnTuX5557jpdffplt27YRHBzMf/7zn874k9lxUiiIc3djZ3GZ3fIdxWX08HL8xZng5c4OB+m7ebihUpx8m3LXhh9yVXWd94PakbriIkwV5bj26GlbpnR2xiUunpr0w62uV5OehlsP+x81bok90ae1vk5XMhZZ43BrFodbt+5Upx1pdb2atDTcm8XhntizzXXq9dYbDpWLtZuk2WQto6atABVKJQqVE9WHUzsUR1eVh8VkojbrqN12Adx69ETfEKvFbKZq3x7UgYEc/ehdDs14iLQ3XqZi985W92s2GCjbuB5nXz+cvX3aHefZfK45KRR093BjW1GZ3fJthWX0aqXiL9HbnW3Nuj1vLSwl3tM+Np1KxfcXDGDuBQN5ZWAP4jxcW82HEmtLS61Kxf6yypMNx05rsW0vKqOndyuxebmzvVn6rUWldG8W25S4cMqNdSzObr0bVqiLjh8vGMS3IwbwdN/uBOs61nq4NU4KBd3c3RweX4mdeDxqVCpUCgWVdXUOPz+daguLMJZX4NursUWR0tkZr/hulB9OO4M5O3nOKgW9QjxYe9j+4cfaw0UMiPBuZS17PYM9GBDhzeb0xm7t246W0jvEk74NFYzh3jou6O7PypTC1jbT5ZydlPSM92PdVvsWUuu2ZpPUs31DeVwzIYEN23M4ll914sRdyNlJSa84X9bttB/+Yt3OYyQlOO5COmpwOHsPFzH9ql6s+79rWPbJFTxxy0A0atXpyLIASvKKqSypoNuABNsyJ7UT0b3jOHogo13bsFgsHN6ZQmFWAdG9Yu0+K8op4uXrn+X1m2Yx55XZFOd27KHmqSrbuI66wkL8Jlzq+PP1ayj6bT7+l11J9DMv4n/ZlRT+voDyTetPab/ayCgUSgXlm9ZjMZup19dQsXkTrgmJKFQn35nRWamgp797i1aH67JLSQpsX+WgAnB1VlFmaP1+aWioF9FeLqe1NWBXxnbvgEhKauuYd8jxUBVC/NtIl+p/udzcXEwmE1dddRWRkZEA9O7d2y7Nr7/+ypQpU/j000+5/vrrAVi5ciV79+6loKAATUP3z7feeosFCxYwb948pk+fzsiRI1m1ahWPPPKIrcIyLS2NdevWMWHCBFatWsVDDz10wjxmZmbSrVs3hg8fjkKhsOUTwN/femPp5eVFUJPx8d577z1uvfVWbr/9dgBeeuklli9f3mYrR4PBgMFg34S+3mhEpVa3uo6H2hmVUkGZwb5bYJnRiLfGy+E63mo1ZUb7L7gygxEnpRIPZ6cWLZDaa1p8NPtKyzlaVXNS67eXqcJ6Q9C0BRuAk4cHdSWtt7gxVZTj5G7fusPJ3RNTZSd1Oemg43E4e7SMw3iiOBys01rXGYvFwrF5c3GNi0MXam3JpA0KwtnHl9z5vxB2wxSUGg2Fy5dhqiinrqJjN1xdVR6mqiowm1vEqnL3sO2zvrISs8FA0dLFBFx6BYGXX01V8j6yP/8PkQ88imu3xpYmJWtWkj9/HhajAXVgEJH3PYyildZOjpzN55pnQ2ylBvv8lBrr8NY4vv74aNSUGsvs0xvqcFIq8VQ7UWKoI7O6htf2pJJeWY2LkxNXRwXz4dDe3L52FzlNWgRGu7vw8dA+qJVK9PX1PLvjIEc7qTt1q7EZ6vBp5drqo1FTamg7tp5e7lwUHsj0dbta3ffBskpe35NKdrUeb40zN8SG88HQPty2dicVp1hZ7GGL69SOx9ITHI+3dIuk2GBkZ0nZKeW3MxjKrdcGdbNrgtrTg9qi0zOGZGfzdlHjpFJS2Kz7XGG1AT+31r/7ATY+dgE+rmqclAre+yuVH7c3VuT9tjcXH1c1P007B4UCnFVKvtl8lE/WnLmKWW9PLU4qJUWl9ud2UakePx+XE67v76Pj/CHhPPziX12VxXbz9tBYYymzj6W4vBY/L53DdcKD3BmYGIihrp67X1mJt4eGF+48B093NTM/2HA6sv2vV1VifZDl3uxhk7u3O6UFbV9Daqv1vDL5OUx1JpRKJZffN5FuAxrvMSISIpn02A34h/lTWVrJX98v5ZOH3uehz57AtY0HbZ3FWJBP4a8/E/nQDBQqx5XYRYt/J+CqSbZWk2o/fwy5uZStW4PnOcNOet9qXz/C732YnC8/Ie/7b8BsRhcdS9jdD5z0NgG8tc44KRUU6e2/m4r0Rvxc2vdA5ra+YeicVSw6Yv+wxU2tYt2N56BWKjBb4Pl1qazPKTul/HZEV8WWFOjBNfFBXPZz6y12RUsqGcPxrCYVjv9yffv2ZdSoUfTu3Ztx48YxduxYJk6ciLe39WK7efNmfv/9d3766SeuvPJK23rbt2+nqqoKX1/7ZuR6vZ4jR6ytn0aOHMmXX36J2Wxm9erVjBo1ioiICFavXk1SUhIpKSntauE4depUxowZQ3x8POPHj+eSSy5h7Nixba6TnJzMnXfeabds6NChrFzZeteFV199lRdeeMFuWdyNt9B9yq0nzGPzUcEUDpa1lZ5TvNDelRBDlLsrj23Zc2obcqB8yyaOff+N7X3E3fdb/9M8z5Z2jI12Mut0ktLNm8ie863tffQ997WSJ1CcqEA6EEfOD3PQZ2cT99jjjaurnIi64y6yvvma/Y88CEol7gk9cO/Z64RxnP7ycPQHUjQkt6Z379MP3wut56Q2PIKatCOUrl1tV+HoOWgIrgmJmMrLKV7xJ9lf/peoR2aibNLKsz3O5nPNcRytR2dp9tnxRnLHizG5rIrkssaWSPtKK/hseF+uigrmwwONXdGyqvTcvm4Xbs5OnB/kyxN9uvHg5r2dVunokKJl/ptqEdvx5RZrq82Zfbvzzt7DbVYcbmnSSjK9Cg6UVfLNiAGMDQ1gXsaxVtfriFM9HttqaDsxKpSRwf48vnWv3bibp0vexs0cnD3H9r7vg/dY/9M80xbLKZ9Xfzcn/A4ArvliE65qFf3DvZgxNp6jJTUs3JMLwDnRPtw7IpZnftvPruwyonxcefbiHhRUGvhwVeut4U+H5j1YFApFu0Y2vWp8PBVVRpavy+iSfJ0UBxlvLRalQoHFYuHht9dSVWOtZHjlq618NGMkz/93MwZjfdfl819q51/bmP/+XNv7qS9Od5jOYrGc8JxT6zTc/5/HMNYaOLwzlT8+XYBPkC+xDROjxQ9q7LERFA2RiVG8MfUldizbwnlXX9AJ0bTOYjZz7P8+x+/iy1EHOh5Sw1RZiam0hNxvZ5P73f8aPzDXo9RZK8mzPn6PmoZeLs4+vsQ8M6td+zeVl5M7ZzaeQ87FY+AQzLW1FP6xgJwvPiH8vodRnEKPDnD8fdyeW8xLYv25b0Akd/25n5Ja+4q9amM9l83bjquziqGhXswcGktmRS1bTvOYh50Zm6uzircuTOCpNSmU1nZtbzMh/kmkwvFfTqVSsWzZMjZs2MDSpUv58MMPeeqpp9i82Tr2W2xsLL6+vnz11VdcfPHFqBtapJjNZoKDg21dppvy8vIC4Pzzz6eyspIdO3awdu1aXnzxRcLDw3nllVfo168fAQEB9Ohx4gHvk5KSSE9PZ/HixSxfvpxJkyYxevRo5s3r3BkSZ86cycMP2w+6PWlN27P9VRjrqDdbWrRC8lSrKTM4bj1VajTi3axlj5dajclsPqlWN3cmxDAkwJcZW/fYJhXoTG59+hEbFW17f7w7sKmiAmdPL9tyU2Vli9ZwTTl5eNpaxtnWqapo0TKvq3j07Uf3JmPqWEzW8qkrbx5HxYnjKLdvzdha7Nk/zKFiz25iH3kMdbPuwy6RkcQ//Rz1+hospnqc3N1Jfe0VdE1a8DpyusrDyc0NlMoWaeorK5ulUaEJsh9bTxMUTM0R+67hKp0LKp0LmoBAXKJjOPjY/VTu3oHnwCFtxnvc2XyulTfE5qOxr3z1Vju3aBl4XInB2KKFoJfauc3YLMDBsipCXexbAJksFo41tHhMKa8iwdONq6NCeGffqVeMlNvKzUFsrbQwLTEY8WlWzl6axtii3FwIdtHy0oDGH5jHf08tHXcuN6/d4XBMx9p6M+mVNYS6Op6YoCMqbGXWNcfj1ZGhXBsdzpPb95HRxa3WW+PXry+DY1pea4zl5Wi8GltHGysqW7R6/KcorTFiqjfj72bf1d7PVU1RVdvneHZDS8FD+VX4uWl44II4W4Xjw6O68cuuHFurx0P5VejUKl69vBcfrT5yOp+12ZSW11pjbdaa0ddLS3HJiY+xiRPi+XVpKnVneJZtgNIKA6Z6M37e9tcyX08txWWOH5QUlNaQX1Jjq2wEOJJVjlKpIMjXhaO5nTOMhGiUeE4vwuMb72nqG65zlaWVePg2XkOqyqpwa2WIjeOUSiV+odZeTSGxYRRk5bPqx+W2Csfm1FoNQVHBFOV0/TAG5tpaajMzqM3OJH9uw0MaiwUsFg7eN53wex9CE2y9TwqafBO6JvdwADRMbhN0w81YjNbrTke6QpeuWYlKqyXgymtsy0Juvp0jTz9ObUYauujYNtZuY7u1dZjMFvx19t9bvjo1xfq2r48TYv15ZUR37l+ezAYHLRctQGaF9Xs6ubiaWC8X7uwfftoqHLsitggPLeEeWj4d39h44Pjsy8nTzmPcj1ttMQvxbyJjOAoUCgXDhg3jhRdeYOfOnajVaubPnw+An58ff/31F0eOHOHaa6+lrmEcqaSkJPLy8nByciIuLs7u5dcwqPHxcRw/+ugjFAoFiYmJnHfeeezcuZPff/+9Xa0bj/Pw8ODaa6/l888/58cff+Tnn3+mpMTa/cLZ2Zn6evsn0z169GDTpk12y5q/b06j0eDh4WH3aqs7NVh/qB+urKK/r5fd8v6+XiSXOe5ie7Cs0mH61Ioq6jv4K+TOhBiGBvjy5La95OtbzqjWGVRaLeqAQNtLExyCk4cn1QcbZ361mEzUHD6ES3Rcq9txiY6hOvmA3bKq5APoYlpfpzOptFo0AQGNr4Y4qprkyWwyUZWagmtM6zdnLjExVDaLozL5gN06FouF7O/nUL5zJ7EPPoLGz/GYUmCtiHNyd8eQn0/N0Qw8+/Y7YRynozwUTk5owyOpPtgszcED6BpiVTg5oYuMwphvP06NsSDfNot1qyxg6UCl39l8rpksFlIqqhjo52W3fICfF/taGUvxQGklA5qlH+jnxaHytmOL83Cl5ASVpQqs4xt1huOxDWhWDgP8vNhf2kpsZY5jS2mILbO6htvW7mT6+l2218aCEnYVlzN9/S4KWykfZ6WCCDcdJa1UCHY0rlQHx2OSrxcH2jgekxykb348Xh0VyvUx4TyzYz+pFWdurDwnnRaXwADbyzUkGLWnByX7k21pzCYTZYdS8YxzPEHC311dvYV9xyoYHmd/vRoe58f2zPbPlqoANE6Nt9Q6Z1WLSkWzxYJCceYag9aZzOw/VMSwgaF2y4cNDGPH/vw21x3cL5ioME9+WnTmZthuqs5kZt/hYob3s5/cYXi/EHYcdFzBtD25gAAfF1y0jRU50aEe1NebySs+M5X6ZzuNixa/UH/bKyAyCHcfDw7vaJx0yFRnIv3/2bvv+Kaq9w/gn4xmdKYr3ZvS0rI3irKUDTIEEQRxgKDiwvHDvUEU9+KroiggiCh7L1kie7VAS/feaToymia/P1LSpk1bRkoRP29feUmSc2/O03vPzc1zzz3n7CWExIRe3cpNJhiaOIcw6A3Iz8iDi0fLXwwRymQIe+UthM17w/JQ9O0HiY8vwua9AXloOMSubhAr3FFVVGB1DidR+kBSc47ooHC3vObg2cw5VB1GvQ4QWP+kvzxDd/0ezVejymhCXEEZbg+0vsX49kAFTuQ1PhzSyAhvfNC/LZ7bfQF7069suA2BQACJ6MalJVoitiRVJYb/dgyjfz9ueexKLcLhbBVG/37c5szXRP8FTDj+x/3zzz94//33cezYMaSnp+OPP/5AQUGBVc9DpVKJ3bt348KFC7j//vthMBhw1113oU+fPhgzZgy2bduG1NRUHDp0CK+++iqOHavtFdi/f38sW7YM/fr1g0AggLu7O2JiYrBq1Sr079//iur4ySefYOXKlbhw4QISEhKwevVq+Pr6WnpShoaGYteuXcjNzUVJifkHwtNPP40lS5ZgyZIlSEhIwBtvvIG4uLgmPuXa/ZmahcEBPrjb3wdBTnLMiAqDt0yKzZnmJMyDbULwXPu2lvKbM3OglEvxaNswBDnJcbe/DwYH+OCP1CxLGbFAgHAXJ4S7OEEsEMBTJkG4ixP85LU9cx5vF4EBfkp8ePYiNIZquEsc4C5xgETYss1aIBDAY8BdKNy2GepTJ6DNzkLWL0sglEjg2qO2t1rW0h+Qt26N5bnHgLtQfiEehdu3QJebg8LtW1Bx4Tw8BtxlKWPUaqHNSIc2Ix0AUFVUAG1GepNjEV5PHN6DBiFv62aUnjwBTVYWMpb+CKFEAkXP2jjSf/wBOX/+YXnuPXAQys7HI3/bFmhzc5C/bQvKzp+H16DaOLJ+XYGSI4cR8sijEMpkqCotRVVpKYz62kSP6vgxlF+8CF1BAUpPnULSZ5/ArXMXuMRYT9JyJXG01PbwHHQ3Sg7tR8mhA9DlZiP395WoKi6Ge9/+tWXuGoLSE0dRcnAf9Pl5KN67G2VnT8PjDvMtTPrCAhRu2wxNeiqqiotQmZyEzB++hVDiAOf21uPFNudWbmurU7IxPMgHwwKVCHaS4/F2YfCRS7EhzRzbo1EhmNextifH+vRc+MileLxdKIKd5BgWqMTwIB/8llJ7q/C0NkHo4aWAn1yKCBcnvNihDdq4OmF9em2C+NG2wejg7gofuRRhLo54pG0wOnm6YWe2/XqF/F4T29Ca2GZHh0Epk2JDTT0eaRuCl+rEtiE9F0qZFLOjzbENDVRiWGBtbFVGE1LLK60e5VUGaKqrkVpeCUPND6zHokLR0cMVvnIpot2c8UaXaDiKRdjWxCQzV+PP1CwMCfDB4Jr9cWa9/XF6mxDMrbM/bqrZH2fU7I+Da/bHNXX2x3tDA/BgmxB8EpeIPI3Wsq/J6vwQk4mEln0WAHzkMoS7OMFbZp8JcRojEAgQdPcgpG7civzjJ1GemYX475dCKJXAt3dPS7m4737EpdV/Wp4bDQaUpWegLD0Dxupq6EpUKEvPQGVe7XYwaLWWMgCgKShEWXoGtEUtPzbk9wdTcF+3IEzoGogIbye8Niwa/m4yLD9q/h568e62WDS+o6X81F7BGBSlRKinI0I9HTGhawBm9A3Dn6dr296ui/mY0jMYozr4IdBdjr4RnnhuUCR2XshHK9wdb7Fk9RlMGBGNe4dFISJYgZef6AM/H2f8ut6cRJ47owcWzuvfYLkJw6NxKj4PiSlXnoRtaUvWxWPC3ZG49642iAh0wyuP9ICftxNW1Myg/fy0rvjwmb6W8hv+SoFKrcMHT9+ONkFu6BHrg5emd8PvOy9Zbqd2EAvRLswd7cLc4SAWwsfDEe3C3BHi13Tvu9bi5ChFx5gQdIwx9yIMDfJGx5gQBPlfebLqRhIIBLh9zJ3Ys3IHzh08g9zUHKz+aAUcpBJ0HlA7G/SqhcuwdckGy/M9K3cg8fhFFOUUIj89D/vX7MGJnUfRZWB3S5lN/1uH5DOXUJxbhPQLqVj27o/QVWrR7e6euBbNnY/mr1uD7KU/mOMSCiH1D7B6iFxcIBA7QOofAGHNWPdew0ehaNsWFO/ZCX1eLrRZmVD9fQDFu7Y3WRd9fh60GemoVqthqtJb6mWq6XXu3L4jtOmpKNy8wVw2PQ05v/wIsYcnZIHB1xT/ZUvOZmFCtC/ujfJBhEKOl/uEw89Zhl/jzb255/YMxcIBtcPnjIzwxsIBUZj/dzJO5anhJXeAl9wBznUmZ3qscxBuD1AgyEWGcIUcD3UIwJhIJdYl2ue7ubVi01ebkFhSafUo0xtQoa9GYkllqwyNQnQz4C3V/3Gurq7Yt28fPv30U6jVaoSEhGDRokUYNmwYVq1aZSnn6+uL3bt3o3///pgyZQpWrFiBzZs345VXXsHDDz+MgoIC+Pr64s4774SPT+1shwMGDMDHH39slVzs168fTp06dcU9HJ2dnfHBBx8gMTERIpEIPXr0wObNmyGs+bG/aNEiPPfcc/juu+8QEBCA1NRU3HfffUhKSsJLL70ErVaL8ePHY/bs2di2bZt9/nB17M8rhKtEjPsjguAhlSCtvBJvnIxDgdZ8JctDKrH6IZin0eGNE3GYERWOkcF+KNLpsfhCMg7l1ybVPKQSfNGni+X5+NBAjA8NxJniUsw7dhYAMCLIfGX/gx61P4QA4JNzCdiZ3bJf2p53D4WxSo/cVctRXVkBeWg4gp98DiJZbZKmqqTIaqwvx/A2CHxoJvI3rkX+xrWQeHkj8JGZcKxzm7MmPRVpn31keZ63xjz2j1uv2xAwrfmxNK+W9+ChMOqrkPnrClRXVsAxLBzhTz1rFYe+uNgqDqeINgh5ZCZy169F7vp1kHh7I2TGTDjViaNo314AQNLHtbEAQNC06fC4zTwweFVpKbJ//w0GtRpiNze49+4Dn+EjrymOltoebt16orqiAoVbNsCgLoXUzx/Bjz8NSZ0r766du8Jv0lQUbd+M3NW/QqL0RdCjs+HYxpxAEogdUHkpAUV7dqC6shJiF1c4tmmL0Lnzrvp2+lu5re3JKYSrgxjT2phjSy2vxP8djUdeTWyeUgco68ywnKvRYd6xeDzeLgz31MT2RXwK9uXWxubsIMZzHSLgIZGgwmDAJXUFnj58DhdKa3vNuUsleLlTJDyk5jLJZZV46Wgcjhfa77amvbnm7TY1IggeMglSyyox71g88uvGJrOO7eXj8Xg8OgyjQ/xQpNXjy/gU7M+7ugsP3jIJXukUBTeJGKX6KsSryjDn7zOWz71e+/IK4SIRY3JE7TZ7/WScZf0eUolVXHkaHV4/EYeZUeEYVbPNvr2QjIN19seRQX5wEArxamfr4UaWJaVjeZL5h2+kqwsW9qhN1j8WbW6zO7Ly8HHc1c1yf7VChg+GsUqPi7/8CkNFJVwjwtBl7lMQ10nQa4uKrcYM06lUOPLGe5bn6Vt3IH3rDiiiItHt/+YCAMpS03Dig08sZRJXmodM8bu9N2Iend6iMW08lwuFowRPD4iAt4sMCXlleOiXY8hSmW99U7pIEaCojU8oEODFwW0R5C6HwWhCenElFm5PsCQoAeCLvebbpufeFQlfVxmKKvTYdSEfH+1MaNFYmrN5TzIUrjI88WBXKD0ckZBSjBkvbbHMOq30dIS/j7PVMs5ODhhyZxje/eLmmlhl84FUuLtI8eR9naD0kCMhTYVH396F7IIKAIC3uxz+3rWThVRqDXjw9e14/bFe+PPjkVCpddh8MBUfLztpKaP0kGPDZ6Mtz2eMa48Z49rjn7O5mPKK/c8fr1fXjuHY/tvrlucL35gGAPhl9V+YOffb1qpWk/pNHIQqfRXWffk7NGWVCIoOwSPzZ0PqWNvGVAUlENTpZa/X6rH2y9UoLSyFg8QB3kFK3PfiA+jUv6ulTGmhCr/O/xmV6go4uTkjKDoEj3/6LNx9rIezuVKa9FRk1Dkfza85H3XtdRv8pz0MQ2mp+bzqKihuvxMCiRTFO7eiYO3vEEgkkPoHWl3otSVnxVJoEmuPHakLzGM7hr+9ABJPLzhFtYP/9Bko2rkVRTu2QiiRQB4WgaAnnoGwmTu1mrM5qQAKqRhPdAuB0lGChOIKzNhyDtk1vfWUjhL41xmSYlKMHxxEQrx1RyTeuqP2QuIfF3Px0l5zDI4OIrx5RyR8nSTQGoxIVlXi+T0XG0ws09JaIja6NkIBk7G3MoHpevpaE93iRmw/0NpVaDES4a3b9B1Et2ZsVdW32MwMdeiNt25slYZbMzY73XV9U5LcoscQAAhzvv5bym9GmzffumNjORzIaO0qtBiTa8v2zG1NWae2tnYVWsSKfdNauwot5qdLzs0X+peKT7p1v9duVYmP3dnaVbgh9uduau0q3BB3+I5o7Sq0Ct5STURERERERERERHbDhCO1uvfffx/Ozs42H8OGDWvt6hERERERERER0VXgGI7U6mbNmoWJEyfafE8ul9/g2hARERERERFRS7uVh+ghJhzpJuDh4QEPj2sb1JmIiIiIiIiIiG4uvKWaiIiIiIiIiIiI7IYJRyIiIiIiIiIiIrIbJhyJiIiIiIiIiIjIbjiGIxERERERERER3VCcNObWxh6OREREREREREREZDdMOBIREREREREREZHdMOFIREREREREREREdsMxHImIiIiIiIiI6IZiD7hbG7cvERERERERERER2Q0TjkRERERERERERGQ3TDgSERERERERERGR3TDhSERERERERERERHbDSWOIiIiIiIiIiOiGEghauwbUktjDkYiIiIiIiIiIiOyGCUciIiIiIiIiIiKyGyYciYiIiIiIiIiIyG44hiMREREREREREd1QHMLx1sYejkRERERERERERGQ3TDgSERERERERERGR3TDhSERERERERERERHbDhCMRERERERERERHZDSeNISIiIiIiIiKiG0rAWWNuaezhSERERERERERERHbDhCMRERERERERERHZDW+pJmqCRGhq7Sq0GHXVrXu9QVdxa243kejWvefAS25s7Sq0mJTMWzO2yspbs50BQFSkqLWr0GK2rFK3dhVaROpn7Vq7Ci2mvEre2lVoMb2W3brnIis+n9baVWgRk+/8ubWr0GK6fPpEa1ehxex5QNXaVWgRKv2te25MdCtgwpGIiIiIiIiIiG6oW/eyEwHcvkRERERERERERGRHTDgSERERERERERGR3TDhSERERERERERERHbDhCMRERERERERERHZDSeNISIiIiIiIiKiG0ogMLV2FagFsYcjERERERERERER2Q0TjkRERERERERERGQ3TDgSERERERERERGR3XAMRyIiIiIiIiIiuqEErV0BalHs4UhERERERERERER2w4QjERERERERERER2Q0TjkRERERERERERGQ3TDgSERERERERERGR3XDSGCIiIiIiIiIiuqEEnDXmlsYejkRERERERERERGQ3TDgSERERERERERGR3TDhSERERERERERERHbDMRyJiIiIiIiIiOiG4hCOtzb2cCQiIiIiIiIiIiK7YcKRiIiIiIiIiIjoX6SkpARTp06Fm5sb3NzcMHXqVKhUqiaXmT59OgQCgdWjd+/eVmV0Oh3mzJkDLy8vODk5YfTo0cjMzLzq+jHhSERERERERERE9C8yefJknDp1Clu3bsXWrVtx6tQpTJ06tdnlhg4dipycHMtj8+bNVu8/88wz+PPPP7Fy5UocOHAA5eXlGDlyJKqrq6+qfhzDkYiIiIiIiIiI6F/i/Pnz2Lp1Kw4fPoxevXoBAL777jv06dMHFy9eRFRUVKPLSqVS+Pr62nyvtLQUP/zwA3755RfcddddAIBly5YhKCgIO3fuxJAhQ664juzhSEREREREREREN5RQ8N946HQ6qNVqq4dOp7uuv93ff/8NNzc3S7IRAHr37g03NzccOnSoyWX37t0LpVKJtm3bYsaMGcjPz7e8d/z4cVRVVWHw4MGW1/z9/dG+fftm11sfE45EREREREREREQtYP78+ZZxFi8/5s+ff13rzM3NhVKpbPC6UqlEbm5uo8sNGzYMy5cvx+7du7Fo0SIcPXoUAwcOtCRAc3NzIZFI4O7ubrWcj49Pk+u1hbdUExERERERERERtYB58+bhueees3pNKpXaLPvmm2/irbfeanJ9R48eBQAIBIIG75lMJpuvX3bfffdZ/t2+fXt0794dISEh2LRpE8aNG9focs2t1xYmHImIiIiIiIiIiFqAVCptNMFY35NPPolJkyY1WSY0NBRnzpxBXl5eg/cKCgrg4+NzxXXz8/NDSEgIEhMTAQC+vr7Q6/UoKSmx6uWYn5+P22677YrXCzDheNOaPn06VCoV1q5d29pVaVX9+/dH586d8emnn7Z2VYiIiIiIiIjITq6uv9x/g5eXF7y8vJot16dPH5SWluLIkSPo2bMnAOCff/5BaWnpVSUGi4qKkJGRAT8/PwBAt27d4ODggB07dmDixIkAgJycHJw7dw4LFy68qliYcCS6BiaTCQWb10N1cB+qKyshDw2D78QpkPkHNLmc+uRx5G9ci6rCAjh4eUM5aixcO3e1KlO8bw+Kdm6DoVQFqZ8/fO6dBKc2bS3vG9SlyFu7BhUX4lBdqYFjm0j4TpwMqbL2KoahtBR5f65G+YV4GHVaSH184TV4OFy7dr/qWEcH+2JiWAA8pRKkllfi6/MpOFuibrR8Rw9XzI4OQ6izIwp1eqxKzsLGjNqxHvr6eGByRBACHGUQCQTIqtRgdUo2dmYXWMrIRSI81DYYfX08oJA44JK6Al+dT8HF0vKrrn9Txob64v42gfCUSZBaVonPzibjTHHjsXX2dMWc9uEIdXFEkVaP5ZcysS7VehyLCeH+GBvmCx+5FCq9AXuzC7E4PhV6o8kcm1iEGdHBuNPPE+5SBySUVuCzs8m4oLJvbGNCfDEpIgAeUnNsX8anNBlbJw9XPBETZont16QsrE+3js1ZLMKj0SG409cTzg5i5FZq8dX5VPyTX9JgfVMiAjCzXShWJ2fjy/gUu8ZmMpmQv2k9Suq0P//7mm9/pSePI3/DWugLCyDx8obPaOv2V5GYgMIdW6HJSIOhtBTBM5+Aa+cuVuswqEuRu3YNys+b259TZCT86rW/ljQp2g8PdwiCt1yCS6oKLPgnCcfzbG/Xu0I8MSnaH9EeTpCIhLikqsRXJ9NwMKvh9rrRHmjvj8e6BkLpKEVCcQXe3p+EozmlNssOCffCA+39EeNtjiOxuBKfHknFvnTrOB7uFIAp7f0R4CJFsaYKW5IKsfDvZOiqTS0Wx8ggX0wIDYSHVIK08kp8eyEZ51SNt7MO7q54LCocIc6OKNLpsTolE5sya9vZsEAf3OWvRIizEwDgkrocPyamNjj2eUoleKRtKHp4uUMiEiKrQoOP4xJxSV3RMoECeKBvKGYObAOlqwwJuWV454+zOJpc3Oxy3cI8sHLO7UjIKcOID/faLDOySwC+mN4d28/k4LEfjti55s0zmUz48stfsWrVNqjV5ejUqS1ef30WIiNDGl2mqsqAxYtXY+3a3cjLK0JYWACef3467ryzm6XM0aPn8MMPf+DcuSQUFBTjq69exl139bkRIVmYTCb87+uN+OP3/ShTV6J9hzC89Or9iGjj3+gyM6cvwvFjCQ1ev/2O9vj8mzkAgMVfbcD/vtlo9b6npyu2//WhfQO4CpOi/fBQ+zrHxyNJONHE8fG+KH9EezpBIjQfH78+mYaD2a1/fATM223nsq04svlvaMo1CIoOxpgn7oVPqF+jy5w7cBp7Vu5EUXYBqg1GeAV44Y7xA9D1rh6WMjt+2YJdy7ZZLefs7oJXV77TYrFci9t7RuPZWSPRtUM4/HzcMfHRRdiw/VhrV+uqjAv3xeRI8zlmiroSn51Jxuki2/ujp8wBczqEIUrhjCBnOVYnZeOzM/Y9d7Ink8mEnxdvx6Y//kFZWSXatQ/GU/83DqERtme8vay8TIMfvtyCA3vOokytgZ+/B2Y9Nwq9+ra7QTVvnslkwm/fb8eOdYdRUVaJyJgQPPrCOASHNx7b7o1H8NW7qxq8/utfCyCROrRkdek/rl27dhg6dChmzJiBxYsXAwBmzpyJkSNHWs1QHR0djfnz52Ps2LEoLy/Hm2++ifHjx8PPzw+pqal4+eWX4eXlhbFjxwIA3Nzc8Mgjj2Du3Lnw9PSEh4cHnn/+eXTo0MEya/WVYsKR/nOqq6shEAggFF77nElFO7aiePcO+E99CBKlLwq3bkT6lx8j4vX3IJLJbC5TmZyEzCWLoRw5Bi6duqDs9Elk/rAYoc+9BMewcABA6fEjyP19JfzumwLHiDYoObAP6V99hjavvQ0HD0+YTCZk/O8rCIQiBD32JIQyOYp2bUf654sQ8do7ENZ00876+XtUazQInvUkRM4uKD36DzKXLEaYtxLyoOArjrO/rxcebxeGz+OSca5EjZHBvpjfPQYP7z+BfK2+QXlfuRTvd4vB5sw8zD+dgPburngqNhyl+irszysCAJRVGbA8KQMZ5RpUmUzo4+2OFztEQqWvwrFCFQBgboc2CHN2xPzTiSjS6XGXvzcW9ojFI/tPolDX8HOvxUB/LzzVIRyLTifhbLEa94T64qM+sZi6+wTyNA1nDPNzlOLD3rHYkJaLt49fRAcPV8ztFAGVrgp/5ZhjuzvQG7NiQrHgZCLOFqsR5CzHK10jAQBfnDOfOP5f5zYId3HEOycSUKjVY0igEp/e1h4P7D6BQht/02sxwM8LT8aG4ZOz5u02KtgXH/SMwYN7G99uH/SMwcb0PLx3yrzdnu0QDpW+CvtyzbGJBQIs6h2LEl0VXj9+AQVaPZQyCSoN1Q3WF+3mjFEhvi2W/CjcsRVFu3cgYOpDkPr4omDLRqR+8TEi32i6/WX8sBg+I8fAtXMXqE+dRPr3ixE+t7b9GfU6yAKDoOhzOzK++6bBOkwmE9IWfwWBSITgx56ESC5H4a7tSP18ESLrtL+WMjTMG/N6ReDtvy/hZF4pJkb7YfHgDhj1xzHkVDTcZ7v7uuFQdgk+PZ6CMr0BYyN98fVdsZi04STOF7dcYqo5I9t44/U7IvDaX4k4lqPGlFg//DSqA+5ecRTZ5Q3j6OXvhgMZJfjwcArUOgMmtPPF9yPaY+zqk4grNCfi7mmrxEt9wvHC7os4kVOKMIUjPrrLfKL1zoGkFomjn68XZkWH48v4JMSp1BgR5It3u8VixsETKNA2jMNHLsW7XWOxJSsXH5y9iFiFK56MiUBpVRUO1BwfO7q7YU9OAeJVyagyGjEhNBDvd2uPmQdPoKjm2OcsFuHjXh1xprgUr56Ig0pXBT9HGSqqGrZFexnRxR+vje2A11efxrGUYky+LRQ/zuqDwfN3I7tE0+hyLjIxFj3QFYcSCuHlYrt9BLjL8fKYWBy5VNhS1W/Wd9+twY8/rsWCBc8gNDQA33yzCg899Dq2bv0Gzs6ONpf59NNlWL9+D959dw7CwwOxf/8JPPnk+1i5ciFiYiIAAJWVWkRFhWHcuLswZ871DQx/rZYu2YblP+/Em+8+iOBQH/yweDMen/Ep/tj4NpycbB8vP/xsFqqqDJbnpaoK3D/+Hdw1pJtVuYg2/vj6+2csz0XXcV51vYaGeeP/ekbgnb8v4WR+KSZG+WHx3R0w+s9Gjo8+bvg7uwSfnUiBWm/A2Da++OquWEzaeBIXWvH4eNlfv+3CgT/2YsLcyfAKVGL3iu34ft43eP6HlyF1tL3d5C6OGHD/3VAGKSESi3H+nzj8vuhXOCuc0bZ7bULHJ8QXjy543PJc0IrbrTFOjlKcjU/HL7/9hZX/e675BW4ygwK88HTHcHx0KglnitQYE+aLRbfHYsoO2+eYDkIhVDoDll7MxKQmLgbcLFYu3YPfl+/Di29OQmCIF5Z9vwsvzv4ffvrzRTg2clypqjLgxdmLofBwxhsLp8Fb6Yb8vFI4OrXsudPVWvvLHmz49S88+dok+Ad74/cfd+Ltpxbji1UvQd5IbADg6CTD57+9ZPUak410IyxfvhxPPfWUZUbp0aNH48svv7Qqc/HiRZSWmi/si0QinD17Fj///DNUKhX8/PwwYMAArFq1Ci4uLpZlPvnkE4jFYkycOBEajQaDBg3CTz/9BJFIdFX1u/m+Yf4l+vfvjyeffBJPPvkkFAoFPD098eqrr8JkMvekWLZsGbp37w4XFxf4+vpi8uTJVlONA0BcXBxGjBgBV1dXuLi44I477kBSku0fRsePH4dSqcR7773XZL0uXrwIgUCACxcuWL3+8ccfIzQ01FK/xuzduxcCgQDbtm1Dly5dIJfLMXDgQOTn52PLli1o164dXF1dcf/996OystKynMlkwsKFCxEeHg65XI5OnTrh999/v+71AoDBYGj07wwAer0eL774IgICAuDk5IRevXph7969lvd/+uknKBQKbNy4ETExMZBKpUhLS2vy79AUk8mE4j074TVkBFw7d4PMPwD+Ux+GUa+H+ug/jS5XvGcHnKJj4DVkOKS+fvAaMhxOUdEo3rPTUqZo1w649+kL99vvhNTXH773ToKDuzuK95vj0efnQZOSDN9JD0AeEgapjy/8Jj0Ao16H0mO1n12ZnAyPfoMgDw2HxMsb3sNGQuToCG3G1cV9b5g/tmTmYXNmHtIrNPj6fArytTqMCrZ9hX1UsC/ytTp8fT4F6RUabM7Mw9bMfEwMqz15Ol2sxsG8YqRXaJBTqcUfaTlILqtAe3dXAIBEKMSdPp7438VUnC1RI7tSi58vZSBXo8Wo4KavnF6NSW0CsDEtDxvT85BWrsHn51KQr9FhTKjtzxgT6oc8jQ6fn0tBWrkGG9PzsCktD/e3qe1V197dBWeL1diRVYBcjQ5HC1TYmVmIaIWzJbZ+fl74Oj4Vp4vUyKrQYsnFdORUajG2kc+9FhPD/bE5PQ+bMsyxfRmfggKNDvc00jPinhBf5Gt0+DLeHNumjDxszsjHpIja7TY8yAcuDmK8cuwCzpWUIU+jw9mSMiSVWbdXuUiIV7u0xYdnLqGszg9WezGZTCjavRPeQ0fArYu5/QVMM7e/0ibaX+HuHXCOjoH3UHP78x46HM7R0Siq0/5cYjvAZ/RYuHXpZnMdl9uf/6QH4Bhqbn/+kx6AUaeD6ljjn20v09sHYE1CLtYk5CK5VIMF/yQjp0KHSdG2t+uCf5Kx5GwmzhWWI02txafHU5Gm1qB/sGeL17Upj3YOxG/xuVgVn4ukkkq8fSAJOeVaPNDB9o+stw8kYfHJDJzJL0NqqQYfHk5BqkqDQWG1cXT1dcWxnFKsT8hHZpkO+zNKsD4hHx2ULjbXaQ/jQgKwLTMPW7PykFGhwbcXUlCg1WFkkO22PDLID/laHb69kIKMCg22ZuVhe1YexofWHkM+OJuAjRm5SC6rQEaFBp/GJUIgALp4KixlJoYFolCrw6JzibhYWo48rQ6nikuRo9G2WKyP9m+D3w6nYdXhdCTlleOdP88hp0SDKbeHNrnce/d1wvrjmTiRarsnpFAAfDKtGz7dcgHpRZU2y7Q0k8mEn39ej1mzJmLw4NvQtm0IPvjgWWi1Omzc+Fejy61btwezZk1Ev37dERTki8mTh6Nv3y5YsmStpUy/ft3x7LNTMXjw1Y13ZC8mkwkrftmFh2cOw8C7u6JNZADeen86tFo9tm5qvCepm5sTvLzcLI9//o6HTCbB3YOtj40ikdCqnLtHy7W35jwYG4A1iblYk1hzfDxiPj7e19jx8UgylpwzHx/T1Vp8dsJ8fBwQ1LrHR8C83Q6u3YcBk+5G+76d4Bvqh4nPT0GVTo9Te443ulxEp0i0v70jlMG+8PT3Qt+x/eAb7o/UOOueckKREC4erpaHc805ys1k+97TeOuj37Bu69HWrso1mRQZgA2pediQmoe0Mg0+O5OC/EodxjbSSy63UodPzyRja3o+ylvw4pE9mEwm/LFiPyY/Mgh3DOqAsDZ+eOntSdBq9di15WSjy21ddwRqtQZvL3oI7TuHwcffAx26hCGi7c2TYDWZTNi4ah/GT78LvQd0RHCEH+a8fj90Wj32b288NgCAAHD3dLV6EN0IHh4eWLZsGdRqNdRqNZYtWwaFQmFVxmQyYfr06QAAuVyObdu2IT8/H3q9Hmlpafjpp58QFBRktYxMJsMXX3yBoqIiVFZWYsOGDQ3KXAkmHK/D0qVLIRaL8c8//+Dzzz/HJ598gu+//x6AOQn2zjvv4PTp01i7di1SUlIsGxkAsrKycOedd0Imk2H37t04fvw4Hn74YRgMDX+g7927F4MGDcJbb72FV155pck6RUVFoVu3bli+fLnV6ytWrMDkyZOveFahN998E19++SUOHTqEjIwMTJw4EZ9++ilWrFiBTZs2YceOHfjiiy8s5V999VX8+OOP+OabbxAXF4dnn30WDzzwAP7666/rWm9zf2cAeOihh3Dw4EGsXLkSZ86cwYQJEzB06FDLoKcAUFlZifnz5+P7779HXFyczenjr1RVUSEM6lI4tYu1vCZ0cIBjmyhUplxqdLnKlGQ4t4uxes05JhaaZPMyJoMB2ow0q/UCgHO7WGiSkyxlLn/eZQKhEAKRGJVJtZ/tGNEG6hNHUV1RDpPRiNJjR2CsMsApMgpXSiwQoK2rs6XX4WXHC1WIdbf9oyJG4YLj9cofLSxBWzdniBrZ97p4uiHQSY6zxTVXXQQCiIQC6I1Gq3L6aqMlKXm9xAIB2ro542hBvbrmq9Dew/ZnxLq74Gi+dfkjBSpEK2pjO1OsRpTCGe1qTt79HaXo7eOOv/PMt2iJhAKIhQLoq61j01Ub0dHTzQ6R1YmtwXZQoX0j2y3W3aVh+YISRNXZbrf7uiOupAzPtg/Hn3f3wI93dsYDbQIbfIk80z4Cf+eX4Hih7dtjr9fl9udcr/05RUahMrnx9qex1f7axTa5TH2X25+gmfbXEhyEAsR4ujS43e9QVgk6K6+sXQgAODmIUKqzfyL4SjkIBWivdMH+DOsE1P6MEnTzvYo4JCKotFWW147llKKD0gWdahKMQa4yDAjxwJ7UIrvVvS6xQIBIV2ccL1JZvX68SIUYhe042rm5NCh/rFCFtq6NHx+lIhHEAgHKqmpj7a30REJpOV7pFI1V/Xviqz6dMSyw5W7pdxAJ0D7IDfsvFli9vv9iPrqFeTS63L29ghHs5YTPtl5stMxTQ6NQXK7Hb4fT7Vbfq5WZmYeCghL07Vs7fIJE4oAePdrj5MkLjS5XVVUFicS694pMJsWJE/EtVterlZVZiKJCNXrfVnvsk0gc0K17W5w+deU9f9f+cRCDh3WH3NG6J1J6ej6GDHgRo4a8jHnPf4fMjIJG1tCyLh8fD9UbLuJQ9jUcH/Wtd3y8rDi3CGXFakR2i7a8JpaIEdahDdLiU69oHSaTCZdOJqAgIx9h7SOs3ivMKsR797+OD6a9jRXvL0VRTuv1Lr4ViQUCRCmccaT+OWO+Ch0aOcf8N8nJKkZxYRm69679TSGRiNGpWwTizqQ2utyhv+IR0yEEny/4A+PvehOPTPgQy3/Yhep658StKS+7GKqiMnTqVTuUlYNEjNguEbh4NrXJZbUaPR4b8y5mjHob78/9HskXM1u4tkT/Dryl+joEBQXhk08+gUAgQFRUFM6ePYtPPvkEM2bMwMMPP2wpFx4ejs8//xw9e/ZEeXk5nJ2d8dVXX8HNzQ0rV66EQ82P17Zt2zb4jHXr1mHq1KlYvHgx7r///iuq15QpU/Dll1/inXfM47EkJCTg+PHj+Pnnn684tnfffRe33347AOCRRx7BvHnzkJSUhPBw862H9957L/bs2YOXXnoJFRUV+Pjjj7F792706dPHEvOBAwewePFi9OvX75rWe1lTf+ekpCT8+uuvyMzMhL+/+QrZ888/j61bt+LHH3/E+++/D8D8w+Drr79Gp06dGo1Zp9NBp7O+zaFar4dIIrF6zaA2J1LELtYnDWJXV1QVN/7j1qAuhdjFOqkkdnGDocw8nouhvBwwGiF2tV6vyMXV8plSX184eHgif90f8Js8FUKJFEW7t8OgLrWUAYDARx5D5g+LcfHFZwChCEKJBEEzH4fE+8oTrW4SB4iEApToqqxeL9FVwaPe3+QyD6kEJTpVg/JioRBuEjGKa9blJBZh1YAecBAKYDQBn8Un4XiRuf6a6mrElajxQEQQ0ss1KNHpMdDfG9EKF2RV2KcHj5vUAWKhAMX1bi8u1unhKVPYXMZTJmkwVmGxVg+xUAiFRIwiXRV2ZRVCIXHA13d0hACAWCjEnyk5WJZoPunQGKpxtliN6VHBSC2/iBKtHncFeiPG3QWZFY3flnhVsUlqYrO13aRXvt2K6203P0cZunjKsDOrAC8diUegkxzPtA+HSCDA0sQMAObb1Nu6OeGxA6ftEosthtJG2p/LFbQ/13rtz9UNBnXj4+3Vd7n95a37AwGTp0IgkaJoV037K22ZBOtlipp9tkhjvV2LNHp4Obo3spS1h9oHQi4WYWtK6yQFAMBdbo6joNI6joLKKng52t4/65vRJRCODiJsulQbx4bEAnjIHbB6fGcIADiIhPjlbBa+OZFhz+pbuNYcH1V662OISqeHu5fC5jLuUglUhdbHEJXefAxxcxCjWF/VYJmH24agSKfHiTqJSj+5DCOD/PBHWhZWJmcgys0Fs6PDUWU0YWd2foN1XC93JynEIiEK1dbH38IyHbxdbN9eFurthJdGtcPEzw6g2mj7zopuYR6Y2DsEIxbutXeVr0pBgXmbeNbpRQoAXl4KZDfx9+zbtwt++mktevRoj+BgX/z992ns2nX4pvrxXFRoPr551utp4+Hpgpzs5sffBIBzZ1OQlJiN19+eZvV6+45hePv9hxAc4oPiIjV+WLwZDz+wEL+tewOKG9xjznJ81No4Psqv7Pg4/SY4Pl5WXlwGAHCpd5HQxd0FJflNbzdthQbvT34DhioDhEIh7plzLyK71SaGgqNDMPGFKfAO9EZZSRl2/7od3zz7GZ793//BydXJ/sH8BymaOMf0aOQc89+kpMi8f7p7Wrdzdw9n5OU0PgZqTlYRTh69hEHDumL+548iM6MAny/4E9XV1Zg2c3CL1vlKqWrG2FTU663t5uGCgtzG215gqA+efHUSQtr4obJCi02r9uOVmV9i0S9z4R/s3aJ1vhVcYX8o+pdiwvE69O7d26rHYJ8+fbBo0SJUV1fjzJkzePPNN3Hq1CkUFxfDWNNbKz09HTExMTh16hTuuOMOS7LRln/++QcbN27E6tWrLQN4XolJkybhhRdewOHDh9G7d28sX74cnTt3RkxMTPML1+jYsaPl3z4+PnB0dLQkBS+/duSI+Xac+Ph4aLVa3H333Vbr0Ov16NLFesKFq1nvZU39nU+cOAGTydQgWavT6eDpWXtbjEQisfpsW+bPn4+33nrL6rWoqdPhHx2D7F9/sbwW/PhT5n/UPzg2c7v6lS/ToJDlSCwQiRE4Yzayly3FxReeBoRCOEW1g3NMe6sl8jesRXVlJYLnzIXY2blmvMhvEfrsS5AFBDZfz2ZiMKHxWOu/dzmauqFWGqox8+ApyEUidPV0w+zoMORUanG6ZlKT+WcS8UKHNvhtYA9UG01IVJdjd3YBIt3s+yOmfhQCQdOb0Vb5uq938XTDtLZBWHQ6CfElZQh0luPp9mEobBuEpQnmxMc7xxMwr0sk1g3pCYPRhITScuzILEBbe/9AsxFHk9vNZHu7XSaEACp9FT46cwlGAAmlFfCSSjApIgBLEzPgLZNgTmwYnj8cZ5kgxx5URw5btb+Q2Y20P5iufpq7K2mzdQhEYgTPnI2sZUtx/nlz+3OObgfn2PbNL2wnDbZTM/vsZcPDvfF4lxDM2RWHYm3DxFZru9JNNzrSG8/0DMWMTeeskq+9A9zwZLcQvPZXIk7llSHUTYbX72iD/Ao9vjjWcr3n6v/tBQLYbHuW8lfx+oTQAAzw88YLR86iqk6bEgiAxNJy/JhoHiIjqawCIc6OGBHk2yIJx8bqKIDA5jFFKAA+ndYNn2y5iJQC22PhOUnF+GRqV8xbeQolFfYZu/ZKrV+/F2+88ZXl+eLFrwNAgztAzG2t8T3zlVdm4tVXv8CwYbMhEABBQX4YN+4u/PHHzkaXaWmbN/6D99+qvcPls6+fNP+jQWxX/gNv3R8HERHpj/Ydwqxev/2Ouse9AHTsFI57hr2Kjev+xgMPWp8P3ii2vseu6PgY5o3HO7fe8fHk7mP487PfLM+nvzPTZjmTyQRBM0dLiVyKp75+AXqtDpdOJmLT4rXw8PVERCfzeNJRPWp/C/iGASExoVg4/V2c2HEEd4wfYIdoqDH/1pzKzs0n8Ml7tcNkvf/5IwDQYF80oeFxtC6j0QR3D2c89+q9EImEaBsTiKICNX77eW+rJRz3bT2OxR/UxvbyokcB2IjDZGoytrbtQ9C2fe0kY9EdQ/HCg59gy+oDeGTulf+GJ7oVMeHYArRaLQYPHozBgwdj2bJl8Pb2Rnp6OoYMGQJ9TW8IuVze7HoiIiLg6emJJUuWYMSIEZA00qusvssDf65YsQK9e/fGr7/+iscee+yqYqibCBUIBA0SowKBwJJEvfz/TZs2ISDAepZYab1JFK5mvVfCaDRCJBLh+PHjDQYwdXauTeDI5fJmbyefN28ennvOemDqBw4cBYxGRITWnmgba26rNKjVcHBTWF43lJU16J1Yl7k3lXUvKEO52tJTS+zsDAiFDcpUl5VZ9eaSB4ci4uU3UK2phMlQDbGLC5IXvgd5SCgAQF+Qj5K/diP8lbcss/bKAoNQmZSIkn174Hf/1Cb/DpeV6qtQbTTBvd6Ax+4SB5TY6IkD1Fy9rdeLTiF1gMFohLrOeH4mANmV5t4ySWUVCHZ2xP3hgThdbL4VLadSi+f+OQeZSAhHsQjFuiq82jkKOZX26eFYqquCwWiCp8y6ru4SSYOegZcVafXwrBebu1QCg9FouQXr0XbB2JaRj43peQCA5LJKyERCvNipDX5OyLDEPefgWchEQjiJRSjSVeGt7lHIsVPvzVK9OTYPWb3tJnVo0Fv1MvNV9/qxOVjFVqTTw2A0oW7rTCuvhKdMYr59yM0ZHlIJ/ndHZ8v7YqEAnTxcMTbUD3dvPoRr6ffj0rGzVfszNdX+XK6y/ZWpm2yztsiDQ9GmXvtLWvge5MGhV7Weq6Wq2Wfr9wL0kElQpGk6YTM0zBvv9G2LZ3efx9/ZqhasZfNKNOY4vB2t908vRwcUVjYdx8g23vhgYBQe3xqPg5kqq/ee6xWGPy7mYVW8ecbni0UVkItFmD+gLb48lt5UDvCaqC3HR+vt4SaRNHp8LNHpG5RXSCQNjo8AcG9oACaFB+H/jp1DSrn12IbFOj3SKqxfy6ioRF+flhl7rqRCB0O1Ed6u1r0ZPV0kKCxrOPmBk0yMTsHuiA1ww1vjOwAAhAIBhEIBEj8ehWnf/A1VpR5Bnk74fkYvy3LCmu/oxI9HYdB7u1psTMeBA3uiU6fai5T6mu1VWFgCpbL2FvGiolJ4NdJbFQA8PNzw9devQqfTQ6Uqg1LpgY8+WorAFry9vTn9BnRCh461x0v95eN3YSm8vWt7eJcUl8HjCsYX02j02LblKGY9MbrZsnJHKdpEBiA9reWS3o2xHB/l9Y6PcgmKmpmMbWiYN97u2xbP7TmPwzmqFqxl42J6t0dQVG2yorrmeFBWUgbXOsOtlKvK4dzI0CiXCYVCeAWYe1T5RwQiPyMPe1fttCQc65PIpPAN9UNhVuv37LxVXN4fG55XSW7KC37Nua1fDNq1r/19dHlCqeKiMnh61x5HVMXlUHg2fvHc08sVYrEIIlHtYDzBYUoUF5ahqsoAB4cbn5bocUcsImNr297l2EqK1HD3qo2ttKS8Qa/HpgiFQrRpF4ScDA5XQMSE43U4fPhwg+eRkZG4cOECCgsLsWDBAsvAmseOHbMq27FjRyxduhRVVVWN9nL08vLCH3/8gf79++O+++7Db7/91mSPyLqmTJmCl156Cffffz+SkpIwadKka4jwylyeiCU9Pd3q9ml7aezvLBKJ0KVLF1RXVyM/Px933HHHdX2OVCptkCC9fDt13ZlvTSYTxK5uqLgQZ5nx2WQwoPLSRfjcc2+j63cMC0fF+Xh4Dqy9ild+Ph7y8DYAAIFYDFlQCCouxMO1c9faMhfi4dKxc4P1ieTmmTN1+XnQpqdCOWoMAMBYk9QWCOslWIXCZicNqstgMiFBXY5ungoczKu9jaCbl/XzuuJVZeijtB7Tq7uXAgml5ahu4rMFMM/QV5+22ghttRHOYhF6eCnwv4upV1z/phhM5p6FPbwV2JdTextud6UCB3Js35YbV1KG23ytY+vhrcAFVW1sMpGoQWLDaDJBIKjpaVHn9cuxuTiI0FPpjm/qDep+rS7H1t1Lgf11bv/o7qXAgUa2W1xJGW7zqReblwIX62y3c8VqDArwtooj0FmOQq0eBpMJxwtLMf0v6wG1/69TG6SXa7AiKeuako2Aue3Zan/l52vbn9FgQEXiRfiOabz9ycPCUX4hHl6DrNufY037u+p61Wl/mrRUKEeOuab1XKkqownxRWW4zd8du9Jq99Hb/BXYnd74reTDw73xbt+2eGHvBezLvLJbKFtSldGEc/ll6Bvkjm3JtfXuG+SOHSmNxzE60hsLB0XhqW3nsSetYRxyccPjm6XtXWEv0KthMJl7Xnf1VOBQfm29u3oq8He+7TjOl5ahl7d1O+vmqUCC2vr4eG9oACaHB+Hl43FIVJc3WE+8So0gJ+uLlgGOcuTbmPnUHqqqTTiXUYq+Ud7YfibH8nrfKCV2nM1pUL5ca8CQBbutXnugbxhui/TC4z8eRUZRJaqNpgZl5g5vByeZGG//cRY5KvsMMWGLs7Oj1czTJpMJ3t7uOHjwlGV2ab2+CkePnsPzzz/Y7PqkUgl8fDxRVWXA9u2HMGxY3xare3OcnGRWM0+bTCZ4ernin7/PI7qd+XhZVWXA8WMJeOrZcc2ub8e2Y6jSGzB8VK9my+r1VUhJyUHnbtd2TL0eVsfH9Ks4PtZcjHnhr9Y9PkodZVYzT5tMJrh4uOLSiYsIaGO+K8VQZUDK2UsY9sioq1u5yQRDExO4GfQG5GfkIbR9eKNl6OoYTCZcVJWjp1KBfdm1+18PpQL7GznHvJk5OsmsZp42mUzw8HLB8cMJiIw2d2yoqjLg9PEkzHhqRKPrie0Uit1bT8JoNEJYc86fmVYITy/XVkk2AoDcSWY187TJZILC0wVnjiQgPMrc9qqqDIg7mYSpT4y84vWaTCakJGYjJMJ+E0IS/Vsx4XgdMjIy8Nxzz+Gxxx7DiRMn8MUXX2DRokUIDg6GRCLBF198gVmzZuHcuXOW8RQve/LJJ/HFF19g0qRJmDdvHtzc3HD48GH07NkTUVG1Y60olUrs3r0bAwYMwP3334+VK1dCLG5+s40bNw6zZ8/G7NmzMWDAgAY9D+3JxcUFzz//PJ599lkYjUb07dsXarUahw4dgrOzMx58sPkT9qY09ncGzONeTpkyBdOmTcOiRYvQpUsXFBYWYvfu3ejQoQOGDx9ujxCtCAQCeAy4C4XbNkPi7QOJ0geF2zZBKJHAtUftSXnW0h8gVijgc894AIDHgLuQ+slCFG7fApeOnVF25hQqLpxH6HO141V6DrobWUt/gCw4FI7h4Sg5sA9VxcVw79vfUkZ94hhEzs5w8PCELisTub+vhEunLpZJNKS+vpB4K5Gz4hf4jJsAkZP5luqKC/EImjXnqmL9PSUb/9cpEgnqcsSXlGFEkC+UMik2pJt7ET3SNgReMgk+OGOeoGdDei7uCfbD7OhQbMrIQ4y7C4YF+uC9UwmWdd4fHoCE0nJkV2ohFgrRy9sddwd447O4ZEuZ7l4KCABkVGgQ4CjDzOhQ86yumfbrObHyUhZe69YWF1TlOFesxuhQX/jIpVibao7tsXYh8JZL8e4Jc93XpuZgXJgfnowNw4a0XLT3cMXIEB+8eax2QoSDucW4L8IfCaXmv1eAkxyPRofgQG6xJeHW01sBgQBIL9cgwEmOJ2JDkVGuwaZ0+8X2W3I2XukSiYul5YgrKcPIYF8o5VKsTzPHNiM6BN4yCd4/Zd5u69JyMTbUD0/EhGJjeh5i3V0wPNgHb5+o3W5r03IxLswfT8WGYU1qDgKd5HigTSDWpJgTDprqaqTUm7FaU23uIVn/9eshEAjgOfAuFGzbDKnS3P4Ktprbn1ud9pf5k7n9+Y4xtz+vAXch+ZOFKNi+Ba4dO0N95hTKL5xH+Nza9let1UJfULsd9EUF0GSkQ+TkBImHufdYaU37k3h4QpuViZzVK+HaqQtcYqwne2oJP53Lwgd3RiGusAyn8tWYEOUHP2cZVl0wb4Nnu4VC6STFvH3mfXJ4uDfm3xmF+YeTcLpADS+5+YKV1mBs1Vkwvz+ViY/vjsaZ/HKcyFVjcqwf/J1lWH4uGwDwYp8w+DhJMHenOY7Rkd5YdFc03tqfhJN5akvvSK3BiDK9OY5dqUV4pHMg4grLcTK3DKEKOZ7rFYadKUWw4x3+Vv5Iy8ILHdoiQV2O8yo1hgeaj4+bMszt7KHIEHhJpfjwnLkdbczIweggP8yMCsOWzFy0U7hiSKAPFpypPYZMCA3AtMgQfHDmIvI0WrjXTEqiqa6GtmZswD9Ss/FJr46YFBaIfXmFiHJzwfBAX3wa33ITF32/9xI+fqAbzqarcCK1GPffFgp/dzlWHEwFALwwsh183eSYu/wETCYgIafMavmiMh10VUar1+uXUdfcIl//9ZYmEAgwbdpoLF68GqGh/ggJ8cfixb9BJpNi5Mjai6gvvvgxfHw8MXeu+Zzm9OmLyMsrQrt24cjLK8IXX6yA0WjEo4/WJvIqKjRIT69NymZm5uH8+WS4uTnD3//aJ6+7mtgmTx2EJd9tQVCwEsEhSiz5bgtkMgmGjuhpKff6vB/hrVRgzrPWt/6t++Mg+g/sbHNMxk8+/B139u8IXz8PFBeX4YfFm1BRrsWoe/q0eFy2LI3LwoI7onCuqAynLx8fnWqPj890C4XSUYqX99ccH8O88f6dUVjwTxLO3ETHR8C83W4fcyf2rNwBzwBveAV4Y8+vO+AglaDzgNqZwlctXAY3LzcMfdichNyzcgcCI4Ph4e+J6qpqXDwajxM7j2LMnAmWZTb9bx3a9Y6FQumOclUZdq/YAV2lFt3u7tmgHq3JyVGKiNDaZE1okDc6xoSgRFWOjOybP2m3MjELr/doi/Ml5nPMe0J94eMoxdpk8/fDrNgQeMukeOd47XlWpJt5DE25WAiFxAGRbk6oMhqRWtZyF2CuhUAgwLjJd2DFkl0IDPZCQLAXVizZDZlMgkHDaofSWvDar/BSuuHROebfYqMn3Ia1qw7iqw/XYcykvshKL8CKJbswblLrXaSpTyAQYOR9d2LN0l3wC/KGX5AX1izdBalMgjsG18b2+Vsr4OHthgceNydYf/t+GyLbh8AvyBuaCi02/7YfqQlZmPF88xd26N873ABdGSYcr8O0adOg0WjQs2dPiEQizJkzBzNnzoRAIMBPP/2El19+GZ9//jm6du2Kjz76CKNH196S4unpid27d+OFF15Av379IBKJ0LlzZ8uEKnX5+vpi9+7d6N+/P6ZMmYIVK1Y0uH24PldXV4waNQqrV6/GkiVL7B57fe+88w6USiXmz5+P5ORkKBQKdO3aFS+//PJ1r7uxv/NlP/74I959913MnTsXWVlZ8PT0RJ8+fVok2XiZ591DYazSI3fVclRXVkAeGo7gJ5+z6olVVVJkNUiSY3gbBD40E/kb1yJ/41pIvLwR+MhMOIbVXlV269YT1RUVKNyyAQZ1KaR+/gh+/GlI6oxHWVWqQu6aVTCUqeHg6ga3XrfBe1jtVTeBSIygx59G/ro1SP/2Cxh1Oki8lfCf+jBc2jc9jmV9e3ML4SoRY2pEEDxkEqSWVWLesXjka809aTylDlDKanuF5mp0ePl4PB6PDsPoED8UafX4Mj4F+/NqTw5lIhGeio2At0wCXbURGRUazD+diL25tbcdOIlFeDQqBF4yKcr0BuzPK8KShLQme0lerd3ZhXCTiDE9KgieUglSyirxwuE45NX0EvKUSeAjr40tp1KHFw7HYU77cIwL80OhVo9PzybjrzpXq5cmpMMEkzmhJ5dApavCwbxi/C8+zVLG2UGMx2LMJ5rqKgP+yi7E/87bN7Y9OebYpkXWxvbSkfja2KQOUMqtt9tLR+LxZGwYxoT4oUinx+fnUrAvtza2Aq0ezx+OwxOxYVhypy8KtTqsScnBiks3fhY+r7uHwqjXI3tlbfsLnWPd/vQlRebB5Go4RrRB0MMzkbdhLfI3mNtfUL32p0lPReqnH1me564xj6ml6H0bAqeZJwIzlKqQ8/sqVJepIXZzg6Je+2tJW1MKoJCKMbtzCLwdJUgsqcBj288hu8K8Xb0cJfBzqt2uE6P84CAU4vXbIvH6bbW30/2ZmItX9ic0WP+NsvFSARQyBzzdIwTeThIkFFXgoY1nkVVze67SUYKAOpORTG7vDweREO/2j8S7/Wvj+P18Lp7fZU4efHE0DSYTMLdXGHydJSjSVGFXShE+OmyfnsO2/JVbCBcHMaZEBMFDKkFaWSVePRFnOT56SCXwrtPO8jQ6vHoiDo9Fh2NUsB+KtXp8cz4ZB+ocH0cG+0EiFOK1zu2sPuuXS+lYlmQeizJBXY63T53HQ5GhmBIRjFyNFt9eTMaenJa7JXLTyWy4O0nw1JAoeLtJkZBThocXH0ZWifmHsNJVBn/35oeKuVnNmDEeOp0eb731DUpLy9GpU1ssWfK2VU/InJwCCOscU3Q6PT79dBkyMnLh6ChDv37dsXDhc3B1rU3OnTt3CdOm1Z4HzZ//AwBg7NiBWLDg2RsQGfDgw0Og01ZhwbsrUKauRPuOYfjqf09b9YTMzSlucFdEWmoeTp24hK/+97TN9ebnleDlF7+HqqQc7h4u6NAxDD+teAl+/i1za39zLMfHTrXHx1k7ziGn5vjoLbc+Pk6oOT6+1icSr/WpPa6sTczFKwda7/h4Wb+Jg1Clr8K6L3+HpqwSQdEheGT+bKuekKqCEqvtptfqsfbL1SgtLIWDxAHeQUrc9+ID6NS/9q6Z0kIVfp3/MyrVFXByc0ZQdAge//RZuNe7y6G1de0Yju2/vW55vvAN86RFv6z+CzPnftta1bpiu7IK4SYV4+HoIHjKJEhWV+L5g3HIrXuOWW/W96WDahNa7dxdMCRYiZwKLcZvs75L7mYw6cEB0Gur8NmCP1Cm1qBd+2B88PUMq56Q+bnW+6fSV4EPvpqBbxatx4z7FsFL6YZx99+BSdNvrrFDx0wdAL2uCv/7cA0qyjSIjA3G65/NtOoJWZirshqqq6Jci28X/A5VkRqOznKEtfXHO98+gcjY4NYIgeimIjBdzT2WZNG/f3907twZn376aWtXhVrQ2J37W7sKLUZd1fAW5luFTn9rHtZEolv3GqCX/OaZ2dXezqfdmvtjZeWtGRcAREU2fVHv3yxh883fO+hapHzWrvlC/1LlVdmtXYUW02vZrXsu8u4A25Mm/dtNvvPn1q5Ci+ny6ROtXYUW89uQxmeQ/jdT6W/dc+P27jfmgnZrO6/a2NpVuCHaKf4b27O+W/dbnoiIiIiIiIiIiG44Jhz/hWJjY+Hs7GzzsXz58iaXnTVrVqPLzpo16wZFQEREREREREREtyqO4XiN9u7d22qfvXnzZlRVVdl8z8fHp8ll3377bTz//PM233N1db3uuhERERERERERNefWvSmeACYc/5VCQkKueVmlUgmlsuVnRiQiIiIiIiIiov8m3lJNREREREREREREdsOEIxEREREREREREdkNb6kmIiIiIiIiIqIbSshBHG9p7OFIREREREREREREdsOEIxEREREREREREdkNE45ERERERERERERkN0w4EhERERERERERkd1w0hgiIiIiIiIiIrqhOGfMrY09HImIiIiIiIiIiMhumHAkIiIiIiIiIiIiu2HCkYiIiIiIiIiIiOyGYzgSEREREREREdENJRCYWrsK1ILYw5GIiIiIiIiIiIjshglHIiIiIiIiIiIishsmHImIiIiIiIiIiMhumHAkIiIiIiIiIiIiu+GkMUREREREREREdEMJWrsC1KLYw5GIiIiIiIiIiIjshglHIiIiIiIiIiIishsmHImIiIiIiIiIiMhuOIYjERERERERERHdUAIO4nhLYw9HIiIiIiIiIiIishsmHImIiIiIiIiIiMhumHAkIiIiIiIiIiIiuxGYTCZTa1eC6GY1duf+1q5Ciyk33LrXG7T6W/OwJhLduoOceMqMrV2FFpOY3do1aBmayluznQFAm7Bb9/goEd66242IWl6B+tY9Fzn5zFetXYUWExRwZ2tXoUUYq/StXYUWc+nY061dhRsiuWxDa1fhhgh3GdXaVWgVnDSGiIiIiIiIiIhuqFv3Ei8B3L5ERERERERERERkR0w4EhERERERERERkd0w4UhERERERERERER2wzEciYiIiIiIiIjohhLcuvNQEdjDkYiIiIiIiIiIiOyICUciIiIiIiIiIiKyGyYciYiIiIiIiIiIyG6YcCQiIiIiIiIiIiK74aQxRERERERERER0Q3HOmFsbezgSERERERERERGR3TDhSERERERERERERHbDhCMRERERERERERHZDcdwJCIiIiIiIiKiG0rAQRxvaezhSERERERERERERHbDhCMRERERERERERHZDROOREREREREREREZDdMOBIREREREREREZHdcNIYIiIiIiIiIiK6oThnzK2NPRyJiIiIiIiIiIjIbphwJCIiIiIiIiIiIrthwpGIiIiIiIiIiIjshmM4EhERERERERHRDSXkII63NPZwJCIiIiIiIiIiIrthwpGIiIiIiIiIiIjshglHIiIiIiIiIiIishsmHImIiIiIiIiIiMhumHAkm/bu3QuBQACVStXaVUFqaioEAgFOnTrV2lUhIiIiIiIiIjsQ/Ece/1WcpZroGphMJhRsXg/VwX2orqyEPDQMvhOnQOYf0ORy6pPHkb9xLaoKC+Dg5Q3lqLFw7dzVqkzxvj0o2rkNhlIVpH7+8Ll3EpzatLW8b9RqkbduDcrOnEJ1RTkcPDzh0X8QPO4cYCmTveJnVFw8D0OpCkKpFPKwNvAZMx5SX7+rjnVUkC8mhAXAUypBanklvrmQgnMl6kbLd3R3xWPRYQh1dkSRTo/fUrKwMSPX8n5fHw/cHx4Ef0cZRAIBsis1+D01GzuzCyxlRgb5YlSwL3zkUgBAWnklll3KwNFC1VXXvyljQn1xf0QgPGUSpJZV4vNzyThT3HhsnT1d8WRsOEJdHFGk1WPFpUysS6uN7fPbOqCLl1uD5f7OK8aL/8RbnnvJJJgdE4peSndIhUJkVGiw4FQiEkor7BbbPSG+mBRu3m4p5ZX4Mi4FZ5vYbp08XPF4TBjCnB1RqNNjZVIW1qfXxjY0UIn/6xTZYLnBWw5BbzQBAKZHBmF622Cr94u1eozbddROUZmZTCbkb1qPkjrtz/++5ttf6cnjyN+wFvrCAki8vOEz2rr9VSQmoHDHVmgy0mAoLUXwzCfg2rlLg/Voc7KRt3YNKhITAJMRUr8ABD36GCQennaN8762fpgeGwgvuQRJqgosPJaME/m2t6GX3AHPdwtHjIczgl3lWHEhGwuPJVuV+eHuDujhq2iw7L7MYjy5J86udW/O5Bg/PNopCEpHCRJLKvDeoSQcy7Ud2+AwT0yO8Uc7TydIREIkllTi82NpOJBZYlVmVpdghLjKIRYKkFaqwQ9nMrEuMb9F4xgR5It7QwPhIZEgraISiy8kI07VeDvr4O6KGVHhCHEyHx9/T83E5sw67SzAB4P8lQhxdgIAXFKX46fEVCSoyy1lJoYF4nalJwKd5NAbjYhXlWFJQiqyKjV2j0+Xm42CtWtQWbOvS/wCEPDIY3C4jn1dl52Fgk3roE1Pg6G4CMrx98Fj4N1WZUzV1SjcvB7qo//AoC6F2NUNbr1vh+fQERAIm79WXq3VonDjWpSdOoHq8jLIAoOhnDAJ8pCwZpetTEpE+qcfQuoXgLCX37jmOC/LW/0rKpMSoc/JhsTHz+Y6y+PPoXDTeuhzsiBwcIC8TVsox06AxMv7umOrSLiAjM8+avB62GvvXNM5QUvG1hSjVov8dWtQXufcx73/ILjXOfe5Fjdif6xMTEDRzq3Q1Xy3BMx8Ai6dGn632Fz2Jt8fr9e4cF9MjjSfh6WoK/HZmWScLrJ9DPWUOWBOhzBEKZwR5CzH6qRsfHYmxe51akm394zGs7NGomuHcPj5uGPio4uwYfux1q5WkyaPi8UjUzpD6emIxJQSvP/pQRw7nWOz7IJXB2DciOgGrycmF2PElFUAgMH9wvDYg10REugGsViItIxSLPn1NNZtTWjROGyZcm9HPDq1K5ReTkhMLsK7i/bh2Klsm2U/eONujB8V0+D1xKQiDLtvGQBg+eLx6NUtsEGZPQdSMOOZ9fatPNG/BBOOdEPp9XpIJJLWrsZ1K9qxFcW7d8B/6kOQKH1RuHUj0r/8GBGvvweRTGZzmcrkJGQuWQzlyDFw6dQFZadPIvOHxQh97iU4hoUDAEqPH0Hu7yvhd98UOEa0QcmBfUj/6jO0ee1tyw+83DWrUJFwAQEPPgIHTy9UnI9DzqrlcHBTWE5g5cEhcOvRGw4eHqiuqEDB5vVI+/ITRL694IpOji/r5+uF2e3C8EV8MuJK1BgR5Iv3u8XgkQMnUKDVNyjvK5fi3W4x2JKZhw/OJCDW3RVzYsKh0lfhQF4RAEBdZcCKpAxkVGhQZTSht9Idz7ePhEpfhWM1CcVCrQ4/XEyz/IAeHKDEW13bYfahU0grt8+P6oH+XniqfTg+PpOEs8VqjA7xxYe9YzF1zwnka3QNyvs5SrGwVyw2pOXinRMX0cHDFc91jIBKX4W/csyxvXL0PByEtdewXCUO+LFfF+zJLrS85uwgwtd9O+JkYSleOByHEl0VApxkKK+qtktcADDAzwtPxoTh03PJOFuixuhgXyzsGYMH/zqB/Ea224IeMdiUkYf3TiWgg7srnmlv3m77coss5cqrDJj21wmrZS8nGy9LKavA3H9qk1fVJuv37aFwx1YU7d6BgKkPQerji4ItG5H6xceIfKPp9pfxw2L4jBwD185doD51EunfL0b43Nr2Z9TrIAsMgqLP7cj47hub69EV5CPl4w/g3qcvlCPvgUguhy4nB0IHB7vGOCTECy92D8d7Ry7hZL4aE9r64euB7TFm/XHkVjbcPyVCIUq0VfjuXAYeaGc78frsX9b7p0LqgNUju2J7WoHN8i1leIQ3XrktAm8euIQTuaWYFOOH74d3wLDfjiGnvGFsPfzccDCzBIuOpECtM2B8tC8WD43FhD9PIr7InKRXaQ345kQ6klWVqDKaMCDYAwv6R6FIU2WVmLSnO3288FhUOL46n4R4lRrDA33xTtdYPHboBAq0DePwkUvxdtdYbM3MxYdnLyJG4Yon2kWgVF+Fg/nmdtbRww17cwtwXpUMfbURE8IC8V639ph16ASKdOa228HdDRsycpBQWg6RQIAHI0PwXjfz5+qqjXaLT1+Qj7SPP4CiT194jbgHQrkc+twcCK5zXzdW6SHx9IZrl+7IW7PKZpmiHVug2v8X/KY9DImfP7Rpqchd9iOEcjk8BtzV7GfkLv8Juuxs+D/4KMRubig9ehgZn3+MsNfehoPCvdHlqjWVyPl5CZyi2sGgbjxxfFVMJij69IUmNQW6rMwGb+sLC5C1+Et4DBwM/+mPwqjRIG/NKmR99zXC5jVMBl1rbOGvvwuhTG55LnJxuelia0remlWoTLgAv5pzn8rzcchdtRziOuc+1+JG7I91v1uyGvluseXfsD9ej0EBXni6Yzg+OpWEM0VqjAnzxaLbYzFlxwnk2TgPcxAKodIZsPRiJia18bdrXW4UJ0cpzsan45ff/sLK/z3X2tVp1vBBEXj5mdvx1of7ceJMDu4bG4vvPh6B4ZNXIievvEH5dz85iI++Pmx5LhIJsf6Xidi6O8nymkqtw7dLTyA5tQR6gxEDbg/B/FcGoKhEgwP/ZNyQuABg+N2ReGXunXhzwR4cP52NSeM64IfP78HQCcuQk1fWoPw7H/2FD788aHkuFgmxYcVkbNmVaHnt8Rc2wsFBZHnu7ibDhhVTsGVnIoj+q3hL9U2mf//+mDNnDp555hm4u7vDx8cH//vf/1BRUYGHHnoILi4uiIiIwJYtWyzLxMfHY/jw4XB2doaPjw+mTp2KwsLC61rnZQcPHkSnTp0gk8nQq1cvnD171ur9Q4cO4c4774RcLkdQUBCeeuopVFTU9tIKDQ3Fu+++i+nTp8PNzQ0zZsxo9m9w5MgRdOnSBTKZDN27d8fJkycblGkq5sWLFyMgIABGo/UPr9GjR+PBBx9s9vObYzKZULxnJ7yGjIBr526Q+QfAf+rDMOr1UB/9p9HlivfsgFN0DLyGDIfU1w9eQ4bDKSoaxXt2WsoU7doB9z594X77nZD6+sP33klwcHdH8f69ljKalCQoet8Gp7bRkHh6wb1vP8gCAqFJT7OUce/bD06RbSHx9II8OATKUWNgKClGVVEhrsb4UH9szczDlsw8pFdo8M2FFBRodRgVbLtXxMggXxRodfjmQgrSKzTYkpmHbZn5mBBWe2J4pliNg/nFSK/QIEejxZ9pOUguq0CswtVS5nBBCY4UliCrUousSi1+TEyHxlCNdm52+IFU476IAGxKz8PG9DyklWvwRVwK8jU6jA31tVn+nhA/5Gl0+CIuBWnlGmxMz8Om9DxMiqhN7pRVGVCsq7I8engroKuutko4TmkTiHyNDvNPJeK8qhy5Gh2OF5Yiu1Jrt9gmhPljc0YeNmXkIb1cgy/jU5Cv1eGeENvbbXSIL/K1OnwZn4L0cg02ZeRhS0Y+7gtveEJfN75iXVWD96uNJqv3S/UGu8UFmNtf0e6d8B46Am5dzO0vYJq5/ZU20f4Kd++Ac3QMvIea25/30OFwjo5GUZ325xLbAT6jx8KtS7dG15O//k84x3aA77gJkAcFQ+LlDZcOHSF2cW10mWsxLSYAf17Kwx+X8pCi1mDhsWTkVuowMcr2Nsyu0OGDY8nYkJyP8kb+5mq9AUXaKsujj58CWkM1dqRf3XHhej3cIQC/X8jF6gu5SFJp8N6hZOSW6zA5xnZs7x1KxnenM3G2oBxpai0+PpKKtFINBobU9rI7klOKHalFSFJpkK7WYum5bFwsKkd3X/tul7rGhgZge1YetmXlIaNCg8UXzcfHEYG2jyEjAv2Qr9Fh8cUUZFRosC0rD9uz8jA+tPYYsvBsAjZl5CK5rAKZlRp8FpcIoQDo7KGwlHntRBx2ZucjvaISKeUV+ORcAnzkMkS6Ots1voINf8I5pgOUYydAVrOvO7e33terNZXIWfEzEl96Fglzn0T6Zx9Bm9n0D0Z5SBiU4ybAtXtPCMS2r3trUpLh3LEznNt3hMTTC65du8OxXSy0aanN1tuo16Ps1Akox94Lx8i2kCh94D3iHjh4ekG1f2+Ty+b++gtcu/eCrOYiRH2qvw8g+e1XcfHpWUh++1WU7NvTbH18Jk6Ge7+BcPDysvm+Nj0NJqMJXqPGQOKthCw4BB53DYYuKxOmauu2fD2xiVxcIXZzszzqX3xs7diao0lJgludcx9F336QBgRCW+fc52bcHwHAObYDvEeNhUvnxr9bbLnZ98frNSkyABtS87AhNQ9pZRp8diYF+ZU6jA23fQzNrdTh0zPJ2Jqeb9eLtDfS9r2n8dZHv2HdVvve+dFSHrq/E37fcAGrN5xHUpoK7396ELn55Zg8LtZm+fIKPQqLNZZHh3becHORYs2mC5YyR05mY8dfKUhKUyEjS42ffzuLi0lF6NbJ9nZvKQ9P6YrV6+Lw27o4JKWW4L2P9yEnrxxT7u1gs3x5hR6FRZWWR/t2Sri5yvD7+to7mErVOqsyt/cKhlZbxYQj/acx4XgTWrp0Kby8vHDkyBHMmTMHs2fPxoQJE3DbbbfhxIkTGDJkCKZOnYrKykrk5OSgX79+6Ny5M44dO4atW7ciLy8PEydOvOZ11vXCCy/go48+wtGjR6FUKjF69GhUVZmTDGfPnsWQIUMwbtw4nDlzBqtWrcKBAwfw5JNPWq3jww8/RPv27XH8+HG89tprTcZeUVGBkSNHIioqCsePH8ebb76J559/3qpMczFPmDABhYWF2LOn9sSrpKQE27Ztw5QpU65uY9hQVVQIg7oUTu1qv2yFDg5wbBOFypRLjS5XmZIM53bWXfGdY2KhSTYvYzIYoM1Is1ovADi3i4UmufbKoGNEJMrOnEaVqgQmkwkVCRegz8+DczvbX/5GnQ6qvw/CwdMLDu4eVxynWCBAW1dnHK93G/PxQhViFbYTf+0ULg3KHyssQVtXZ4gEtkev6OLhhkAnOc6WlNp8Xwigv68XZGIR4lUNrzheC7FAgLZuzjiSb13XowUqtHe3naCI9XDB0QLr8kfyVYhWNB7biGAf7MoqhLZOr6O+vp64qCrH292jsX5IT/zQrzNGBftcVzx1iQUCRLk5N6jr0QIVYt1tb7dYhY3YCkoQ5WYdm1wkwsoB3bB6YHfM794ObVydGqwrwEmO3wf1wK8DuuH1Lm3hV3NbvL1cbn/O9dqfU2QUKpMbb38aW+2vXWyTy9RnMhpRdu4MpEofpH7xCc6/+CySFr4H9amGF0Wuh1goQDsPFxzKse6Z93d2CTp72y+BNraNL7amFUBjsF+vuOY4CAWI9XZp0OvwQGYJuvpcWWwCAE4OIqh0jf/47ROgQJjCEUdzbB9XrpdYIECkizNOFKmsXj9RpEKMwnYc0QoXm+Ujmzg+SkUiiAQClFU1TO5f5liTJCmrsl8ywGQ0ouLcGUh8fJDx5SdIfOlZpC58D2Wna/d1k8mEzK8/R7W6FIGPP43Ql16DLCgYGZ8vQnVFw54vV8Mxog0qLp6HPs98u7k2MwOapEQ4t7f9Q7B+3WE0QiC27okpkDigMqnxH32qvw+gqqAAXsNH2X7/4D4UbvgT3qPHIuy1d+A9eiwKNq5F6eGDNstfKVlIKARCAUoPH4TJaES1phLqfw7DKToGApF1AuxaYwOA1AVvI3HeXKR/9hEqEi5YvXczxNYcx4hIlNc796nKz7OcM92s++O1+jfsj9dDLBAgStHwPOxIvgodPFruQhFdOQexELFR3jh4xDppf+CfDHTpcGXJwXtHtcOho5nIzm28DfbpHoCwYAWOnrR9m3ZLcBAL0T5aiQOH061eP3A4DV07XtlQExPvicWhI+nIzm38t8mEe2KxcXsCNFr7JutvNQKB6T/x+K/iLdU3oU6dOuHVV18FAMybNw8LFiyAl5eXpXfg66+/jm+++QZnzpzB5s2b0bVrV7z//vuW5ZcsWYKgoCAkJCSgbdu2V73O3r17W9b1xhtv4O67zWPZLF26FIGBgfjzzz8xceJEfPjhh5g8eTKeeeYZAEBkZCQ+//xz9OvXD9988w1kNbc2Dhw4sEHSsDHLly9HdXU1lixZAkdHR8TGxiIzMxOzZ8+2lPnmm2+ajXno0KFYsWIFBg0aBABYvXo1PDw8LM9t0el00Omsb+Go1ushqncLuEFt/gFbv0eT2NUVVcVFaIxBXQqxi/X4fmIXNxjKzLfJGMrLAaMRYlfr9YpcXC2fCQC+E+5H9oqlSHzlBUAogkAogN/kB+HYxnp8veJ9e5D35+8w6XWQ+PgiZM5zjV69t8VN4gCRUIASvfUP3RJ9Fdyltm+L95BKcEyvalBeLBTCTSK29IhzFIuwsn8POAgFMJqAz+OTcKLIOjEQ6uyIz3t3hEQohKa6Gm+duID0CvvcTu0mcYBYKECJzvr24hKdHh4yhc1lPKUSHNGVNCgvFgqhkIhRVK+3XzuFMyJcnfDBKesfgX6OMtwT6offkrLwS0IG2rm74OkO4dAbTdiWef3jzTW63XRV8Ghiu5XoVNbl62239PJKLDiTiGR1BRzFYtwb5ocvb+uAR/adQlZN78x4VRnmn05ERoUGHhIHTI0Mwle3dcT0fSehtlMyxFDaSPtzuYL251qv/bm6XdVtaoayMhh1OhRs3wKfUWPgM2Y8yuPPIf27rxH29PNwaht1FZE0zl1q3j+L6t3+XqStgpfMPrdut/d0RqS7E974+8aOmeQuM8dWqLHePws1eng5Nn47aF2PdAqE3EGEzUnWt4I7S0Q48EBvSGqOK28eSMTBLJW9qm7F9XI7q3cMUen1cJcqbC7jLpFApbd9DHF1EDdoswDwUGQIinR6nCxWNVqXmVFhOFdSirTyykbLXK3qmn29aPsWeI8aA+97xqPi/Dlkffc1gp9+Ho6RUahMuABddhbaLPjYMqSActxElJ0+ibKTx6Ho2++aP9/j7mGo1miQ/M5rgEAImIzwHjUWrt17NbusSCaDPCwChVs3QOLrB7GrK9TH/oE2NQUSb6XNZfT5eShYtwYhz74EgUhks0zhlo1Qjpto6aUm8fKGLicHqgP74Nb79muOVeLphaAnn0PWD98g99dfAKMR8rAIBD7+tF1iE7sp4Dt5GmRBITAZDCg98jcyPl+E4KdfgGNk25smtub4TLgfOSuWIqnOuY9vnXOfm3V/vBb/lv3xeihqvueK633PFTdxHkY3lrtCBrFYiMJi6++WohINvDwcm13e29MRd/YOxtw3dzZ4z9lJgv3rp0EiEcJYbcKbH+3HoaMNb/FvKe4Kue3YijXw8mp4Mb0+b09H3HlbKJ57dWujZTrG+iCqjRfmvdMwfqL/EiYcb0IdO3a0/FskEsHT0xMdOtReRfXxMfeGys/Px/Hjx7Fnzx44Oze8lSopKcmScLyaddbVp08fy789PDwQFRWF8+fPAwCOHz+OS5cuYfny5ZYyJpMJRqMRKSkpaNeuHQCge/fuVxz7+fPn0alTJzg61n6R1a3D5c9tLuYpU6Zg5syZ+PrrryGVSrF8+XJMmjQJokZO3ABg/vz5eOutt6xei5o6Hf7RMcj+9RfLa8GPP2X+R/0OKVcyVt0VLdOgEFCn90vR3l3QpCQjaNaTcPDwRGViInJXLYPYzQ3O0bU9uNx69IJTdAwMpaUo2rUNmT98i9C58656rLn6NRTAvJ0bL2/93uWa111EY6jGrEOnIBeJ0MXTDbOiw5Cj0VpN2JJZocGsQ6fgLBajr68nXugYibn/nLVb0tFcVxuvNbEZ6793ebPYWmREsA+S1BU4r7K+qisUABdU5fjfBfNtYInqCoS5OGJMqK9dEo5N1/Xqt9tl8apyxNeJ5VyJGt/17YRxoX74It48aPuROr0kUwDEqcqwon83DAlUYnWK7UG4m6M6ctiq/YXMbqT9wXT1U8Bd7fiSNeVdO3aG16DBAAB5UDAqk5NQfOAvuyUcG6ueAE1twaszto0vEksqcK7o+nr+XCtb+9uVbI6REd6Y0y0Es7fFoVhrnaCr0Fdj9O/H4eQgQp8ABeb1iUC6WosjLdTLEWjk+Hg15ZvYZ+8NDUB/P2+8ePQsqoy21/p4dDjCXJzw/JEzV1DbxpUeOWxOLtQIqvmec+nYGR4Dzfu6LCgYmuQklOz/C46RUdCmp8Go0yLxxWes1mWq0kNfWICq4iIkv/O65XXPIcPhNXTEFdWn7PhRqI8chv/0GZD4+UOXmYG8NSshdnO7omSK34OPIGfZT0h65XlAKIQsKBiu3XtCm5HeoKzJaET2j9/Ba8Q9kPjY7rVjKCuDoaQYOcuWImf5z7VvGKshlJvHRcz46lNUXjJfYHLw8ET4a29fUayG0lLkrFgKt163wbV7Lxi1WhRsWous779B0JznIKi3k1xNbAAg9fGFtE5c8vAIVJUUo3jXNjhGtr2pYruswf74xNPQpKZAm5KMgJpzH01iIvJqzn2comNu6v3xavzb9kd7+y/P5Hqzsv3d3PwX9rgRUSgr12HnXw0n9qmo1OOeB3+Dk9wBfboHYt5TtyEjS40jJ6/tXPGa2TjRauo3zmXjR8VAXa7Djr1JjZaZcE8sLl4qxJm4vOutJdG/GhOONyGHegkhgUBg9drlL3uj0Qij0YhRo0bhgw8+aLAeP7/aLuFXs87m1C372GOP4amnnmpQJji4dqZaJ6fmrxRddiUH+SuJedSoUTAajdi0aRN69OiB/fv34+OPP25yvfPmzcNzz1kP4PzAgaOA0YiI0NrZH40Gc08tg1oNBzeF5XVDWVmD3ol1mXtTWf/wNZSrLT21xM7OgFDYoEx1WZmljFGvR/76PxA08wm4tDcnkWUBQdBmpaNo5zarhKNI7giR3BFSpQ8cw8Jx4YWnUHb6BNyu8Ip8qb4K1UYTPCTW+45C4gCVjZ44QM2V6Xo9QhUSBxiMRqsebibAMmZhUlkFgp0ccX94IM4U146DYjCZLGUS1OWIcnXG2FB/fBbX+Jf7lSrVV8FgNDXo8eculaDExriEAFCk08NDVj82CQxGY4NxCqUiIQYFeOOHCw1/ABZp9Ugrs76imlZeiX5+9pnh2LLdpA23m60xF4Ga7Sa1vd0aG4PRBOBCaTkCneQ23wcAbbURyWWVCHSyPZHLlXDp2Nmq/Zmaan9NjKNos/2VqZtss/WJnJ0BoQhSP+uxLaW+fs3ezng1SnTm/dNLbr1NPGQOKNI2fmvtlZKJhBga6o2vT6c1X9jOSrTm2LzrxeYpl6BI03BCo7qGR3jj/X5t8dTO8zhko+eiCUC62nzMOF9UgQiFI2Z1CWqRhKPa0s6s43CTSKBqpJ2V6PVwb3B8lDQ4PgLA+JAA3BcWhJePn0NqIz0XZ0eHo7fSEy8cPYNCXdN/u+Y4d+yMsDrtTOTiAghFkPha7+sSXz9oLu/rJhPEbgoEP93wDgaho/n7J2xebYJHdBXnAvl/robn4GFw7d4TACALCERVcRGKtm+5ogSPxFuJkGdfhFGng1GrgdhNgawfvoWDZ8Nx64xaLbTpqdBmpiPvtxWW2GAy4cKcmQh68llLm/edPA3yOn8nc7Dm0Yl8pzwIk968Ha7m1tOSfXsgksmgHDvB8pr/g48i6dUXoU1Nhjws4ppja4w8LBzqIzUTO5iMN01sl9XfH8UKd6R/vgiBM5+Ac71zn+Kd2+AUHXNT749X49+2P14rVc33XP3zKneppMHFJGodJSotDAYjvD2tezN6ustRWNz8xf/xI6OxdmsCqmwM22IyAemZ5k4G5xOLEBHqjsemdblhCccSlQYGgxFentbHAU93OYqKmr9b4N7RsVi3+YLN2ABAJhVj5OC2+PTbwzbfJ/ovYcLxX65r165Ys2YNQkNDIb6K22Wv1OHDhy3Jw5KSEiQkJCA6Otry2XFxcWjTpo3dPi8mJga//PILNBoN5DVXaQ8ftj5YX0nMcrkc48aNw/Lly3Hp0iW0bdsW3bo1PVi3VCqFVGo93tzl26nrznxrMpkgdnVDxYU4yIPMfxuTwYDKSxfhc8+9ja7fMSwcFefj4VnTWwQAys/HQx5u/vsJxGLIgkJQcSEerp271pa5EA+Xjp3Nn1NdDVRXN+wWIxA23z3IBJiu4rZWg8mEBHU5unopcDC/2PJ6Vy8FDtV5Xtd5VRl6K63HiezmpUCCurzp2YoF5tkHmyIQABKhfa59G0wmJJSWo4e3AvvrzMLcw1uBA7m2b8uNKy7D7b7WsfVUKnBB1TC2gf5ecBAKsd1Gj8WzxWoEOVsn6YKc5Mi1MSPjtTCYTLhYWo7u3gocyKvdTt29FDiYZ3u7xanKcFu97dbDW4GLpU1vtzauTkgua/zEzEEoQIiz3Krn6tUSyWQ221/5+dr2ZzQYUJF4Eb5jGm9/8rBwlF+It/RMBMztzzH8yo9fQrEY8pBQ6GrG8bpMl59nmUXeHgxGE84Xl6GPnwK7M2r3x95+7tiT2fht41dqcIgXJCIhNibbr0ftlaoymhBXUIbbA92xI7U2ltsDFdiZ2nhsIyO8Mb9/Wzy76wL2ptvej+sTCASQiFpmqGqDyYTEsnJ08VTgUH5tvbt6KvB3vu04LqjK0Mvbup119VQgsd7xcXxoAO4PC8KrJ+KQqLbdA3V2dDhuU3ripWNnbc7merXqtzMAkIeEWsasu0xfZ1+XBQWbk/giESSNJLskymsbn9ZYpW/wPScQCq/oomRdQqkUQqkU1ZUVqDgfB6WNY4RQJkPYK9Z3N5Ts24PKhAsIeHQ2HDy9IJRKIVa4o6qoAG49ezdYB4AmZ4huilGvM3+H13F5Qpem4r2S2Bqjy8iAuOaCjdjV7aaLrf7+WK3R2Dz3EQhq94l/w/54Jf6t++O5iw80AADhOElEQVTVMphMuKgqR0+lAvuy65yHKRXYn3P933N0/aoMRsRdLMBtPQKxo04vxdt7BmLX/tQml+3ZxR+hQQr8vmHblX2YAJBIGr8Lzd6qDEacu5CPvr2CrXop9u0VjJ1/JTe5bK9uAQgNVuC3dXGNlhl+dyQkDiKs23Kh0TJE/xWcNOZf7oknnkBxcTHuv/9+HDlyBMnJydi+fTsefvhhVFdf/wxub7/9Nnbt2oVz585h+vTp8PLywpgxYwAAL730Ev7++2888cQTOHXqFBITE7F+/XrMmTPnmj9v8uTJEAqFeOSRRxAfH4/Nmzfjo48+sipzpTFPmTIFmzZtwpIlS/DAAw9cc53qEwgE8BhwFwq3bYb61Alos7OQ9csSCCUSuPao7T2YtfQH5K1bY3nuMeAulF+IR+H2LdDl5qBw+xZUXDgPjwF3Wcp4DrobJYf2o+TQAehys5H7+0pUFRfDvW9/AIBILodjZFvk/7naPFlMYQFUfx9E6ZG/4dKpCwBAX1iAwm2boUlPRVVxESqTk5D5w7cQShyueoDzNanZGBbogyEBSgQ7yTErOgxKmRQb080/Qh9uG4IXO9SOHbkxIxdKmRSPRYci2EmOIQFKDA30sbqddlJ4ALp6usFXLkWQkxzjQ/1xt783dmXXjsf2cGQw2ru7wkcuRaizIx6KDEZHDzerMtdrVVIWRob4YHiQD0Kc5ZgTGwalXIq1qebYHmsXgle6tLWUX5eWAx+5FE/GhiHEWY7hQT4YEeyDlUlZDdY9ItgHB3KLbI5b+FtyNmLdXTA1MhABTjLcFeCNUSG++DPFfoNlr07JxoggHwwLVCLYWY4n2oXBRy7F+prtNiMqBPM61W639Wm58JFL8Xi7UAQ7yzEsUInhQT5YlVy73R6MDEIPLwX85FK0cXXCix3boI2rE9an1SYkZrcLRScPV/jKpWincMZbXaPhKBZhW5b9ElsCgQCeA+9CQd3297O5/bnVaX+ZP/2A3LW17c9rwF0oPx+Pgpr2V7B9C8ovnIdnnfZXrdVCk5EOTc2tifqiAmgy0qGvMzak991DoD5+FMUH9kGXn4eivbtRdvY0PO4cYLcYAeDn+CyMa+OLMRE+CHOV44Xu4fBzkmJ1gnk/eapLKN67ra3VMlHuTohyd4KjgwjuMgdEuTsh3K3hOEvj2vhid0aR3WcQv1JLzmZhQrQv7o3yQYRCjpf7hMPPWYZf482xze0ZioUDam9PHxnhjYUDojD/72ScylPDS+4AL7kDnOv8OHmscxBuD1AgyEWGcIUcD3UIwJhIJdYltlxS9c/ULAwJ8MFgfx8EOckxMyoM3jIpNmea28T0NiGY2752G23KzIFSLsWMtmEIcpJjsL8PBgf4YE1q7THk3tAAPNgmBJ/EJSJPo4W7xAHuEgfI6iROn2gXgYF+Siw8exEaQ7WljKSZizZXy+OuIVCfOArVwX3Q5+ehZO9ulJ89DcUd5n3dMToG8rAIZC3+CuXx56AvKkRl8iUUbPgTmiZm7zVPkJZuvgW42gCDSgVtRjr0+bW3nTm374SibZtRfu4M9EWFKDt1AsW7t1u+55pTHn8O5XHnoC8sQMX5OKR/+hEkSl+49TH3RstftwbZS38AYE6mSP0DrB4iFxcIxA6Q+gdAWHMh0mv4KBRt24LiPTuhz8uFNisTqr8PoHjX9ibros/PgzYjHdVqNUxVekvsl3trO7fvCG16Kgo3bzCXTU9Dzi8/QuzhCVlgcIP1XU1sAFC8ewfKTp+EPj8Puuws5K9bg7JTx+Her/aYdbPE1hiRXA55M+c+N/P+aNRqaz8DQFVRAbQZ6ZZxh//N++P1WJmYhVGhPhgR4oMQFzme6hAGH0cp1iabj6GzYkPwWjfr77lINydEujlBLhZCIXFApJsTQl0av9PiZuPkKEXHmBB0jAkBAIQGeaNjTAiC/O130dKefvz1NCaMbofxI6MREaLAvKdvg5+PC37905xsmzu7Fxa+PrDBchNGRePUuTwkJje8QPjYtC64rUcggvxdEB6iwEOTOmLMsLZYv/XGzuS8ZPkJTBgTi3tHxyAi1B2vPHcn/HxdsGLNWQDA80/chg/fGtxguQn3xOLU2RwkJjWeGJ9wTyx2/JUEVam2xep/KxH8Rx7/Vezh+C/n7++PgwcP4qWXXsKQIUOg0+kQEhKCoUOHQmiHHx8LFizA008/jcTERHTq1Anr16+HpKbXX8eOHfHXX3/hlVdewR133AGTyYSIiAjcd9991/x5zs7O2LBhA2bNmoUuXbogJiYGH3zwAcaPH3/VMQ8cOBAeHh64ePEiJk+efO1/BBs87x4KY5UeuauWo7qyAvLQcAQ/+ZzVFfmqkiKrK+KO4W0Q+NBM5G9ci/yNayHx8kbgIzPhGBZuKePWrSeqKypQuGUDDOpSSP38Efz405B41p6IBD70GPLWr0HWT9+jurICDh6eUI4aC/c7+gMABGIHVF5KQNGeHaiurITYxRWObdoidO68Jm85teWv3EK4OojxQJsgeEglSC2rxCvH45GvNfeo8ZQ6QFlnFuJcjQ6vHo/HrOgwjA72Q5FWj6/Pp+BAXu2XskwkwlMxEfCSSaCrNiKjQoMFZxLxV26hpYxCKsFLHSPhIZWgosqAlLJKvHwsrsHEMtdjd3YhXCViTI8KgqdUgpSySrx4OM7SW8hTKoFPndhyKnV48Z84zIkNx9hQPxRq9fjsbDL+qnclPshJhk6ebnj273M2P/eCqhyvHD2Pme1C8WDbYORUavHFuWTsyLJfMnVPjjm2ByPN2y2lvBIvHY2vE5uDVWy5Gh3+72g8nogJw5gQPxTp9PgiLgX76vT2dBaLMbdDhHmbGAxIVFfgqb/P4UJpbQ8sb5kEr3WJgptEDJW+CvElZXj80Bm79MCqy+vuoTDq9cheWdv+QudYtz99SZF5wMwajhFtEPTwTORtWIv8Deb2F1Sv/WnSU5H6ae0Fjtw1vwEAFL1vQ+C0hwEArp27wv/+qSjYthk5q3+F1McXwTNmw6nepE3Xa1taIRRSBzzWMRjecgkuqSrwxO5zyKkw/y295RL4Oln3yF49srZndKynC0aEKZFVrsWwP49aXg9xkaOrjxtm7jxr1/pejc1JBVBIxXiiWwiUjhIkFFdgxpZzyC43x6Z0lMDfuTa2STF+cBAJ8dYdkXjrjtq/8x8Xc/HSXvOkN44OIrx5RyR8nSTQGoxIVlXi+T0XG0wsY0/78grhIhFjckTN8bG8Eq+fjLMcHz2kEihltXHkaXR4/UQcZkaFY1SwuZ19eyEZB+v0iBwZ5AcHoRCvdm5n9VnLktKxPCndUgYAFvboaFVm0bkE7My2X4LVpXNX+E6aiqLtm5G3+ldIlL4IeHS2ZZIOgUCAwMefRuH6P5C77CcYyssgdnWDY5vIJocqqCpVIXVB7Xhyxbu2oXjXNsgj2yLkmRcBAD4TJ6Nw41rkrlyG6vIyiN0UUPTtB69htmfsrc+o0aBg/R8wqEogdHSCS+eu8B491nJrqaG01PwdfRUUt98JgUSK4p1bUbD2dwgkEkj9A60uGtqSs2IpNIm1kzNdjj387QWQeHrBKaod/KfPQNHOrSjasRVCiQTysAgEPfEMhPVuwb+W2EzVBuT/8RsMpSoIHBwg9QtA4OynLLcm30yxNSXgocdQsH4Ncuqc+3iPGgvF5XOfm3h/1KSnIuOz2u+W/JrvFtdet8F/2sP/6v3xeuzKKoSbVIyHo4PgKZMgWV2J5w/GWe748JRJ4ONo/T23dFBtkreduwuGBCuRU6HF+G3H7Fq3ltK1Yzi2/1Z7a//CN6YBAH5Z/Rdmzv22tarVqM27kqBwk+GJh7tB6emEhORizJi7yTLrtLenI/x8rMfUd3aSYPCAcLz3ie0Z0+UyB7z5wh3wVTpDqzMgOU2FF97chc27rn/IpKuxeUci3N3kePLRXlB6OSIhqQiPPr3OMuu0t5cT/H1drJZxdpJgyMA2ePejvxpdb2iwAj26BODBJ/5s0foT/VsITC1xPwDRLWLszv2tXYUWU264dTs4a/W35mFNJLp1r495ypofP/bfKvEGj4F+o2gqb812BgBtwm7d46NEeOtuNyJqeQXqW/dc5OQzX7V2FVpMUMCdrV2FFmGsur4xjG9ml47Zd3b4m1WeZn1rV+GG8JGPbu0qtIpb94yaiIiIiIiIiIiIbjgmHOmGev/99+Hs7GzzMWzYsNauHhERERERERHdAALBf+PxX8UxHOmGmjVrFiZOnGjzvcuzUhMRERERERER0b8XE450Q3l4eMDDw6O1q0FERERERERERC2Et1QTERERERERERGR3TDhSERERERERERERHbDW6qJiIiIiIiIiOiG+g/Pp/KfwB6OREREREREREREZDdMOBIREREREREREZHdMOFIREREREREREREdsOEIxEREREREREREdkNJ40hIiIiIiIiIqIbij3gbm3cvkRERERERERERGQ3TDgSERERERERERGR3TDhSERERERERERERHbDMRyJiIiIiIiIiOiGEghauwbUktjDkYiIiIiIiIiIiOyGCUciIiIiIiIiIiKyGyYciYiIiIiIiIiIyG6YcCQiIiIiIiIiIiK74aQxRERERERERER0g3HWmFsZezgSERERERERERGR3TDhSERERERERERERHbDhCMRERERERERERHZDcdwJCIiIiIiIiKiG0rAMRxvaezhSERERERERERERHbDhCMRERERERERERHZDROOREREREREREREZDccw5GoCcbWrkALchTfutE53rJHNlNrV6DFGG7d0BDm19o1aCm38pg7t+4OOS6ksrWr0CLeeS6ntavQYkxejq1dhRYz6jGv1q5Ci9l0+tY8GdnzgKq1q9BiBgbc2dpVaDEZWftauwotwkEsb+0qEFETbs1vQiIiIiIiIiIiumkJBLzp9lbGrUtERERERERERER2w4QjERERERERERER2Q0TjkRERERERERERGQ3HMORiIiIiIiIiIhusFt5EkJiD0ciIiIiIiIiIiKyGyYciYiIiIiIiIiIyG6YcCQiIiIiIiIiIiK7YcKRiIiIiIiIiIiI7IaTxhARERERERER0Q0l4KQxtzT2cCQiIiIiIiIiIiK7YcKRiIiIiIiIiIiI7IYJRyIiIiIiIiIiIrIbjuFIREREREREREQ3GMdwvJWxhyMRERERERERERHZDROOREREREREREREZDdMOBIREREREREREZHdMOFIREREREREREREdsNJY4iIiIiIiIiI6IYSCNgH7lbGrUtERERERERERER2w4QjERERERERERER2Q0TjkRERERERERERGQ3HMORiIiIiIiIiIhuMEFrV4BaEHs4EhERERERERERkd0w4UhERERERERERER2w4QjERERERERERER2Q0TjkRERERERERERGQ3TDjSdfvpp5+gUCha9DMEAgHWrl3bop9BRERERERERDeG4D/y338VZ6kmuka5K36G6uA+KMffB4+BdzdazlRtQNG2LSj95xAMqhJIfHzhfc+9cI5tf12fb6yqQu6vv0CXkQZdbg6c23dE4GNPWpXJ/nkJ1P8carCsxNcf4a+9DQAo2bcHqv17UVVcZH7Pzx9ew0bBObZDs3WoTEpE+qcfQuoXgLCX37iueAAgb/WvqExKhD4nGxIfvwbrLNi0DkWbNzRYTiCRIOqTr5stK3JxReSCj21+dkXCBWR89lGD18NeewdSX7+rDcWKPeNqrHxTsdV1o7cZAJTHn0PhpvXQ52RB4OAAeZu2UI6dAImX91V/XsGmdSg7fhRVJcUQiMSQBYfAe9RYyMPCrysOXXYWCjatgzY9DYbiIpvt+tJrL8FQ007qUtw5AL73TWn2M6q1WhRuXIuyUydQXV4GWWAwlBMmQR4S1uyyN3Nb+zcdQwDAZDKheNd2qA7ug6G4CCJnFyju6A+voSMaXe+17HeteewHgNIjh1G8cyv0+fkQyuVwjomFcuxE2PNas8lkwv4VW3Bq2yFoyzXwbxuCIbMnwDuk8WPmhUOncei37SjJKYTRUA13f2/0GjsAHQb2tFu9rtaU4VF4dFx7KN0dkZhegne/O4Jj8fmNlpeIhXjy/k64p38EvN3lyC2swNe/ncHvOy8BAO4bHIkxA9ugbYgCAHDuUhEW/XwCZxILb0Q4VqYMiMCMYVFQKuRIzCrFOytO4Vgj9egV5Y0V/zegwet3z9uC5NwyAECkvyueGdse7UPdEejlhHdWnMRPOxJbNIbGmEwmXFq7CRl7D6CqohKKiFDETJ0El0D/Rpcpy8xG4p8boE5Nh6awGNGT70XYkEFWZdJ2/YWM3ftRWWg+prkE+KHNPcPh3en62u6Vmhzjh0c7BUHpKEFiSQXeO5SEY7lqm2UHh3licow/2nk6QSISIrGkEp8fS8OBzBKrMrO6BCPEVQ6xUIC0Ug1+OJOJdYmN7+M3kslkws+Lt2PTH/+grKwS7doH46n/G4fQCN8mlysv0+CHL7fgwJ6zKFNr4OfvgVnPjUKvvu1uUM2tTR4Xi0emdIbS0xGJKSV4/9ODOHY6x2bZBa8OwLgR0Q1eT0wuxogpqwAAg/uF4bEHuyIk0A1isRBpGaVY8utprNua0KJxXKvbe0bj2Vkj0bVDOPx83DHx0UXYsP1Ya1erSY8+MABPzRgKX6UC5xOy8H/v/oq/jzZ+PJsxdSBmTh2I4EAvZGYX46OvNuLXP61/Z7m5yPH68+MxakhXKNyckJZRgFfeX4Xte8+2dDhENyUmHImuQdnpk9CkpkDspmi2bMGGtVAfOQzfydMg8fVDRfw5ZH33FULmzoMsKPjaK2E0QujgAPf+g1B28rjNIj4TJkF5z3jLc5OxGinz34JL126W18Tu7vC+Zzwk3koAQOk/h5C5+EuE/d/rkPoHNPrx1ZpK5Py8BE5R7WBQ2z4RvmomExR9+kKTmgJdVmaDtz0HDYF73/5Wr6V/vgiykFCbq5P4+SN4ztzaF4TN/9AOf/1dCGVyy3ORi8sVVb1Jdo4LuLbYWmOb6QsLkLX4S3gMHAz/6Y/CqNEgb80qZH33NcLmXX2CSaL0hc/EyXDw8oZJr0fxnh3I+PIThL/5PsTXsa2MVXpIPL3h2qU78tasslkm9MVXAaPR8lyXk4WMLz6GS5duNsvXl7v8J+iys+H/4KMQu7mh9OhhZHz+McJeexsOCvdGl7vZ29q/6RgCAPmrf0XFhXgox06A1D8ARo0G1RXlTa72Wva71jz2V15KRM7PP0A5/j44d+gEg0qF3JW/IGfFUuC9h679s+s5vGYnjqzdg5HPPgAPf28cXLUdv772FR779lVIHWU2l5E7O+L2iYPhGeQDkViExCNx2PjpCji5uSC8241PFAzvG4pXHu2JN789jOPx+Zg0NAo/vHk3hj6xFjkFFTaX+fyl/vBSyDHv84NIyymDp5sMIlFt74WeHXyxcV8yTpwvgK6qGjPGtcdPbw/GsCfWIq+48kaFhhE9g/Dq5M5445cTOJ5YiPv7R2DJc3dgyCvbkNNEPQb932aUawyW58VlOsu/ZVIRMgrKseVoBl65v3NLVr9ZyZu3I2XrLnScMQ1Ovkokrd+Cox9+jjsXvAmx3Pb+V63Xw9HbC749uuLCit9tlpF5uKPtxDFw8jFfFMs6cBjHP/sWt7/9cpPJTHsYHuGNV26LwJsHLuFEbikmxfjh++EdMOy3Y8gp1zUo38PPDQczS7DoSArUOgPGR/ti8dBYTPjzJOKLzPuvSmvANyfSkayqRJXRhAHBHljQPwpFmiqrxGRrWbl0D35fvg8vvjkJgSFeWPb9Lrw4+3/46c8X4ehkeztWVRnw4uzFUHg4442F0+CtdEN+XikcnaQ3uPZmwwdF4OVnbsdbH+7HiTM5uG9sLL77eASGT16JnLyG3y/vfnIQH3192PJcJBJi/S//z959hzV1fnEA/yaBsCHsIXuIoqLinqi1rlo3Dty7Wve2rbOO1tY6f3XUvbe2WsUNiogTBBciQxDZexOS+/sDDcQERAhck55PH5+H3NyEc5qbS3Lued93MHxuREi2ZWQVYvv+x4iMTkdRsRid29lh7Y+dkZqeD/97sbWS1+fQ0dZA6PMYHDzhh2M757AdzicN+KYFfvlpGOYsPYjAR68xzrsTTu+ZjZbdf8Lbd2ky+48f3gnL5g3EjB/24XFINJo1dsDmNWOQnpkLnxtPAADq6jz8fXAeklOzMPL7P/EuPh11rIyQk1NQ2+kR8sWggqOK6NSpExo2LLnyeujQIfB4PEyZMgU///wzOBwOOBwOzp49i379+kkeIxAIsHHjRowZMwbLly/HihUrZJ5379696NSpExwcZDtwPD094evrKzee8+fPY/ny5Xj27BmsrKwwevRo/Pjjj1BT+/QhFx4ejvHjx+P+/ftwdHTEpk2bZPaJi4vDnDlzcOXKFXC5XLRv3x6bNm2Cvb09Ll++jL59+yIhIUFqqPeMGTPw5MkT+Pn5fTKGiggz0pF44ghsvp+F2G2bP7l/1v27MO7+DXQbugMA+B07I/fFM6RdvwyrMRMBvO+4ueaDjNt+KM7KBN/MHMY9ekPfo3m5z8vV0IDFsJEAgLyI1xDny3554GlpA6W1M2Q/CYI4Lw+C1u0l2/QaNZF6jGmfAUi/7Yv86MgKiwUJRw9Cv3krgMtBzpNgmfsz7voj7aoPhKkpUDc2gWGnr2DYUbZzoizzwd4AgOKcv+UWC7iamuBqln74LHgbi6KEd7AYNkLu83G4PKgZGFT4Oz/G09MHT1u73Pu/hLyAquXGxmtWEPMGjJiBybf9wHlfFDXq2g1xO/4HRlQMDu/z/gwZtGglddtswBBkBvijMO4t1OqVFCtE+XlIOnsKOU+CwBQLoWlrD7OBQ6BpbVPu82rZOUg6DZP+Pi13n48LS6lXL0HdxBTaLq6fjFtcVITs4MewnjwN2i51AQCm3/RFzpNgZNz2hem3/ct97Jf+XlOmc0hhwjuk3/aDw08roGFecfdMWZU57j7G5rk/PzoS6sYmMOrcteR3m5hC0N4TaVd9Kp3zpzAMg/t/+6HdkG6o17YxAODbOcOxacRPeOb3CB4928l9nJ27i9Ttln07IfTGfcQ+j2Sl4DiuXwOcvBqOE1dKulpW77qPDh5WGN7TFb8feCyzf0ePOmjZ0AKdJ55CZk4RACAuSbqgMHf9banbP24NQM92dmjT2BLnbkagtozrVhcnb0XhxK0oAMCqo8Ho0NACw7s44fdT5XfbpGYVIjtfKPe+0Kh0hEaVFKnme7krPuhKYhgGby7fgFOfHrBo3hQA0GjiaNyYsRDvAh/AtnMHuY8TONpD4GgPAHh18pzcfcybSudVd1BfxNy4hYyIqBovOI5rVAenXibg5MsEAMDqgEh0sDaCt5sl1t+Pltl/dUCk1O0/7kejq50xutgZSwqO9+MzpfbZ//Qd+tc1R3MLfdYLjgzD4MyR2/Ae/xU6fFXSFb9w5VAM6roc1y8F4dtBbeQ+zufv+8jKysfmvdOhps4DAJhbGdVa3B8bO6wxTp1/iZPnXwAA1my8gw6tbOA9oAHWb7sns39ObhFyylzP6NrRHgZ6Gjj970vJtvtB76Qec+BEKPr3ckWzxhZfZMHxiu8TXPF9wnYYlTZtfHccOHkbB06UnK8X/XwUX3VogPHDO2PFb7KfA4f2a4u9R31x5t8HAIDo2GS0aOqE2d/1khQcR3p1gKGBDroOWoPiYhEAIPad7MgYQv5LaA5HFbJ//36oqanh3r172Lx5MzZs2IBdu3ZV6rHz5s1DfHy85N/vv/8ObW1tNG/eHDY2NlL3BQUFwdjYGB07dpT7XJcvX8aIESMwY8YMPH/+HDt27MC+ffuwevXqT8YhFosxYMAA8Hg8BAYGYvv27Vi4cKHUPnl5eejcuTN0dXVx69Yt+Pv7Q1dXFz169EBRURG6du0KgUCA06dL/1iIRCKcOHECw4d/ethjRRixGPH7d8Ooa/cKv0hL5VRcDI66utQ2jjofeRGvJbdTzp9F5t07MB86Ag4/rYRh568Rv38X8sLDqhXvxzICbkPbtT7UjY3l3s+Ixch6eB9MURG0HJzKf567/hAmJ8Ok17fy779zCynnz8K0T384LPkZpn36I/nCOWQG3lFIHpLfE3AbfDNzaDvXlXt/UXIiXv8wFxFLFyFuzw4UpSR/8jmjf1mJ8MVzEbPpd+S+eil135eSF/D5ubH1mmna2YPD5SAz8A4YsRii/Dxk3QuETj23zy42fowpLkbGnVvgamlBw9q6ZBvD4O2fmyHKyoT11JmwX7gEmja2iN28/pNdbJ/7u7PuB8KgTXtwOJ+el4URiwGxGBy1j84FfHXkRZQ/fEdZ3msffOnnkJzQJ+CbmCAn9Akili7C6yULEX9432cdG/KOO3nYPPdrOTqhOCMdOU9DwDAMirMykR30SFL8VISMxFTkpmfBoWnpsEA1dXXYNnRC3IuoSj0HwzCICg5D2tsk2DYs/3ipKepqXDR0Nob/R1/s/YPewaO+mdzHfNXKBqGvUzBpYCP47/PC1e39sWhcc2jweeX+Hi0NHtR4XGTK6VCrKeo8LhraG8L/WaLUdv9nCfBwkv8Z4IPzK77G3Q3f4uB8T7Su9/lTX9SG/OQUFGZmwaShm2QbT10dRq4uyAhXXFGXEYvxLvABiguLIHCu3tQdn6LO5aCBqZ5MEdD/bTo8zPUr9RwcADrqPGQUFpe7T5s6AjgItPHgo0IkG+Lj0pCWko3mrUsv3PH5amjczAnPQqLLfVyA33O4NbLD5l/OYGDX5Rjv9RsO774OkUhc7mNqiroaFw1cTXHnvnQR0P9eLJo2qtyFrUHf1kfAg7d4l1D+36I2zevAwVaAB0Hyh2mTylNX56FJQzvcuP1MavuN28/QysNZ7mP4fDUUfvS+yi8oQjN3B6iplZz/e3VtgvtBEVi/YgRe39+AwEsrMXfqN+By/7vz91UG23Mr0hyONYs6HFWIjY0NNmzYAA6HA1dXV4SGhmLDhg2YOHHiJx+rq6sLXV1dAEBgYCB++ukn7N+/X9I1aWFR8gezoKAA/fr1Q5s2bbB8+XK5z7V69WosWrQIo0ePBgA4Ojri559/xoIFC7BsWcVDKK9du4YXL14gOjoa1u+/yK1ZswY9e/aU7HPs2DFwuVzs2rVL8kV/7969EAgE8PX1Rbdu3TBkyBAcOXIE48ePBwBcv34d6enp8PLyKvd3FxYWorBQ+suAqKgIPD5fcjvtqg/A5cKw01cfP7xcuvUbIO36VWg714W6iSnywl4gJyQYYEo+FIkLC5F24ypsZ8yDlmPJFy6+iSnyI8OR4e9Xqe6pyijOzEDu86eSzpqyCuLe4s3va8EUC8HV0ECdiVOhYSn/Kn5RUiKS/z4Nu9kLweHJ/4KVcukCzAYMhl6TZpJ8CuPjkeF/Cwat5Xe9fC6xUIisB4Ew7tZT7v1a9o6wHDUefDNziLKzkOJzAW9+XwvHn1aC9/5YL0vNQAAL71HQtLEDU1yMzPt3Ebt5PWxnzpd0pH0JeVUlNzZfM76xCWymzUHc7m1IOHoQEIuh5eAE66kzq/ycOaFPELdnJxhhEdT0DWAzfQ7UdEu6D/NevUThuzg4//IHuO+LPWYDBiP7SRCygx5B0N6zyr+3rOwnQRDl51X6/w1PUxNaDk5I8TkPvoUl1PT1kfXwHgqioyRDkT+mLO81QHnOIcKUFAjTUpEd9AiWo8aBEYuRdPo44nZth+3MeRU+tqLjTh42z/3ajs6wHD0B7/bsgFhYDIhF0G3UBOaDhwEoqvLzlpWbXjIMXkcgXQjREegjM0l2OFpZBbn52DJ6CUTCYnC4XPSY4iVVuKwthvoaUONxkZKRL7U9NSMfJgItuY+xMddDczdzFApFmLr6Jgz1NbBiShsY6Gpg8Wb5BfH5o5shMTUPd4Jrr1BgqMcvyS1LeihfSmYhTBvKH6aalFmAH/Y+xNM3aeCr8dCvrR0Ozu8E719v4sGr2p9/siKFmSXHn4a+9HtQQ18f+anV7yjKjo3D3Z9/g1goBE9TAx4zJkOvTvXmc/4UQ011qHE5SPmouzQlvwgm2uVPu1HW+MbW0FLn4WKE9EVIXT4P/iNag8/lQMwAy/3DcScuQ1GhV1l6asncoIbG0p9dDI10kRhffvdlfFwqgh68xlc9PbB28wS8jU3G5l/OQiQSYdSkbjUa88cMBZpQU+Mi5aNpClLT82FiVP6ImQ9MjbXRsbUt5i6/JnOfrg4ft/8ZBT6fC7GIwfLfbyPggfzpQkjlGRvqQU2Nh6QU6aJ7UmoWzE3ljx66fvspRg3pgAtXHyP46Rs0bWSPkV7tweerwdhQF4nJmbC3MUXHNvVx4u9ADBq3EU725li/YgTUeFz8ukV2XmxC/guo4KhCWrduLdVp06ZNG6xfvx4ikajSzxETE4N+/fph3rx5GDx4sMz948ePR3Z2Nq5evQpuOXPGPXr0CA8ePJDqaBSJRCgoKEBeXh60Kxiu+uLFC9ja2kqKjR/y+Pj5X79+Db2PhjcWFBQgIqLkqvbw4cPRpk0bvHv3DlZWVjh8+DB69eoFQ8PyP7CtXbtWali5np4eLOvUkXQk2UydgbSb12C/aGmlOpo+MBs0DAlH9iNy5U8AhwO+iSkM2rRD5t2SLyaFCe/ACIWI2SK94AcjKoamdck8X5E/L5UsyKDt7AKb72dV+vd/kBkYAJ6WNvQaN5W5T8PcAg6Ll0KUn4/s4EeIP7gHtrMWyBQMGLEY7/b+BZNv+oJfznDE4uxsFKenIf7QfsQfPlB6h1gErlbJF7jY/21E3uuSri51I2PJAjafI+fJY4gLCmHQsq3c+z9esELLwQkRyxYj814AjL6S/TCqYW4hNcRSy9EJwvQ0pF2/DG2Xul9MXp+bG9uvWXFmJuKP7IdBq7bQb94K4oICJP97DnG7tsFm+pwK30uZ9wNLipTv2Xw/E9rOdaFdt17J8Zqbg4w7t/Fu9w7Yzf8Banr6KIh5A3FhAcIXzJL+/yAsQlFKMoRpqYj8ealku3H3XhUuFlJubHf9oePWEOplpm34FMvR4xF/aB8ifpwHcLnQtLGFfvOWKIiNkdmX7detrMock8pyDmEYBkxxMaxGjZP8fsvhYxD9688oTEyAhrlFlY47edg89xfGv0PSqaMw7vktdNwaoDgzE8lnTyLh6CHgR9m/7ZXx9OYDXPpf6fymg5dNBgDIvIUZRnbbRzS0NDB+80IICwoRHfwK13afg8DCRGa4da1hPrrN4chs+oDLLTmO5vx+Czl5JYWhNbvvY+uizli+PRCFRdKfuSYOaIjeHR0x/AcfFAkr/3lMUZiPEuFwZNP9ICohG1HvF4cBgKCIVFgaaWNCD1fWC45xAffxbN8Rye1mc6aW/PDRwcaAkXNQfj4dS3O0+/kHFOflI+FBEEL+2o9Wi+fUeNEReJ9DGRzIvo7y9HYyxfRmdphy+RnSCqSLlrlFIvQ59Qg66jy0qSPA4jZOiMkqkBluXdOuXXyMDatL585cs7mkMeDj7h8GqPDzgVjMwNBIF3N+GgQej4u6btZITc7CiQO+tV5w/ED+a/TpF27AN67IzinENT/ZzvDcvCL0HX0COlrqaNPcGotntEVsXJbMcGtSRR+fH8EBU86bbd2W8zA3NcD10z+Cw+EgKSULh0/fwezJvSB6P783l8tBcmoWZvywD2Ixg+Cnb2BhLsDMiT2o4Ej+s6jg+B/B4cieQIXCjz6M5OaiT58+aNOmDVaulP3ytmrVKvj4+OD+/fsyxb6yxGIxVqxYgQEDBsjcp6kp/6r6B/JO8h9/4BCLxWjWrBkOHz4ss6+pacnQn5YtW8LJyQnHjh3DlClTcPbsWezdu7fC37148WLMmVM6yXFubi5GX/EF732XVHbQI4hyshGxZEHZYJB05gTSbl6D88+/yn1eNT09WE+eBrFQCFFuDtQMBEj++zTUjU3eP0dJzjZTZ8gsQvNhOJ7N1JlgRCVt/JwyHZeVxTAMMu76Q79la3DkzKPJUVMD38wcAKBlZ4+CN9FIv3kNFt6jpPYTFxSgICYaBW9jkHjiyIcnBxgGL6dPgs202ZICg4X3KGjZfzT35/sitcXw0WCKSrpsqjqsNuPObeg2cq/0PIZcDQ1o1KmDoqTET+/8npaDI7Luv5/U+31X0peWF1Bxbmy/Zum3boKnqQmz/qXdxVajJyDipwUoiI6scNitrnsTOJSJR+39wipcDY33x6t5SbF1+Q/IDPCHcfdeAMNAzUAgt1uNq60NnpY2HBaXFhx5OjqVzuUDYWoqcl8+R52JUz/rcXxTM9jNXgBxYSHEBflQMxAgbvf20nNBGWy/bmVV5phUlnOImr4BwOVJFTv571ehL05LhYa5RdWOO3m/i8Vzf+rli9BydIbx1z1KNtSxAZevgZgNvyInrTt0jT5v/lcAcGnVCFau9pLbImFJXDnpWVLPl5uZLdP1+DEOlwsjq5K/1+aO1kh5m4CAk1drveCYnlWIYpEYJobS3YzGBppI/ajr8YOktHwkpuZJio0AEBGbCS6XAwtjbbyJLy3Yje/fAFO83DFqyWWERdfuXHnp2UUoFolhaiD9uctYXwMpmZVfwCA4IhV929gpOrzPZt7UHQIne8lt8fvjrzAzC5qC0uOvKCtbpuuxKrhqatAxL+k+N3CwQ2ZUNN5cuYGGY6s3NU9F0guEKBYzMNWSfq8ba/GRml9xZ3IvJ1Os8ayLGddeIEBO5yIDIOZ9t+uL1Fw4CbTxXVObWi84tvV0Q/2GpZ+1he9fx7TUbBiblp43MtJyIDCWHbHxgbGJPtTUeODxSpsfbB3MkJaSDaGwGOrqtfcVNz2jAMXFYpgaSzdUGBtqISVN/nmkrIG96+GczysIi2WHgzMMEPO2pJv3RXgqnOwNMXlUUyo4VlNqejaKi0Uw+6ib0dRYD0kp8hexKygU4vuFezHzxwMwM9FHQlIGxg7zRFZ2PlLTSobCJyRlQlgsglhc+n321et4WJgJoK7Og5CFi06EsI0KjiokMDBQ5raLiwt4PB5MTU0RH186lCc8PBx5eaWt/wzDYMSIERCLxTh48KBMke/06dNYuXIlLl26BCeniudZ8vDwQFhYGJyd5c+BURE3NzfExMRIOhMB4O7duzLPf/z4cZiZmUFfv/wvNd7e3jh8+DCsra3B5XLxzTcVdzFpaGhAQ6N0dTt9fX1o1SnttBS06wjdRo2lHhO7dQP0W7aGQZv2+BSuujq4AkMwomJkBz2CvkcLACWrDXPU1CBMSyt3CF15cy5WVl54GITJSRC0lT+JugyGgbhYdv4frqYmHH6UXlwo/dZN5L16iToTpkDd2ARcDQ2oCQwhTE2GQcvWcp++ohV5K6MoJRl54WGwnjyt0o8RC4UoSkiAtlPFc9CVVRgbKykEqOkbfJF5ARXnxvZrJi4qBDjS3dAfFo8p7yryBzxNTfA+cZHi/RNBXFzy5V/TxhbFWZkAjwe+nEIeAElhrKoyAv3B09Ov8nx4XA0NcDU0IMrLRe6LZzDrN0h2HyV+rwH4Ys8h2k7OSBWLUJScJBnK/qFQr25Ucp6tynFXETbO/WJhkeR99kHp+65KTwkNbU2placZhoGOoT6igsJg4VSyIJNIWIyYpxHoPKbP5z05U1rArE3CYjGevk5F+6ZWuBpY2mncvokVrt2T7TwGgEcvktCzvT20NdWQV1ASs0MdfYhEYiSkln6umtC/Ab4f0hhjl13F09e1v2iAUCTG0+h0tGtgjiuP4yTb27mZ41pw5YsVbrYCJGd+umhS09S0NKVWnmYYBhoG+kh9+gIGdiXHn7i4GGlh4XAdXP4iXNUh75ymSEIxg2fJ2WhnbYir0aXHTDtrAa5Fl38M9XYyxdpOdTH7+kv4xlQ8ncEHHA4HfJ78kUo1SVtHU2rlaYZhYGSih0eBr+BSr2RudKGwGE8eRWDijPI/tzdobI8bPkEQi8WSEVdv36TA2ES/VouNQMl55FlYMtq2sMbVMl2K7Vpa4/rt6Aof27KpFextBDh1/nLlfhkH4FcwXyypHKFQhOCnb9ClvRsuXCldHKxz+wb491pQhY8tLhbhXULJBaSBvVvh8s0nks+zgY/C4dWntVSjj7ODOeITM6jYSGpMeno6ZsyYgX/++QcA0KdPH2zZskVq8dyPlddBvm7dOsyfPx9AyaLEHy+2O2TIEBw7duyz4qOCowqJjY3FnDlzMHnyZDx+/BhbtmzB+vXrAQBdunTB1q1b0bp1a4jFYixcuBDqZSazX758Oa5du4YrV64gJycHOTklV2oMDAwQERGBUaNGYeHChWjQoAESEkpWzuPz+TAykl0RbunSpejduzdsbGzg5eUFLpeLkJAQhIaGYtWqVRXm0LVrV7i6umLUqFFYv349srKy8OOPP0rtM3z4cPz222/o27cvVq5cCWtra8TExODMmTOYP3++ZDj28OHDsWLFCqxevRqDBg36ZHflp/B0dWXnx+PxoKZvIDUU993+3VATCGDWdyAAID8qEsWZ6dCwtkVxRjpS/v0HYBgYve884WlqwqhrdySdPg4wYmg5uUBcUID8yNfgamhUOF9ZYfw7MMXFEOfllnQOvR+aqWljK7VfZoA/NO0d5S50k/z3Geg0aAg1QyOICwqQ/eg+8sLDJEP3kv4+jeKMDFiNHg8OlyvzHDw9PXDU1KW2m/T6Foknj4GrqQVdt4YQFxejICYa4rw8ucOZPyhKSoS4sBCirCwwwiJJPhrvv5hL8rl7B2r6BtD5aGhxWUlnTkC3UWOoGRpBlJ2NFJ8LEBfkw6BVW5m8ACDtxlWoG5tAw9KqZA7HB4HIDn6EOhOnfFF5fW5ubL9mug3dkX7zGlIunod+85YlQ6r/OQM1I2PJsNHKEhcWItXnX+i6N4aavgCi3Byk376J4ox06DctWdVXu54btBycELfjfzDtNxB8c4uS+UufhULXvSm07OzlPjdTXIzC+PdfwkXFKM7IQEFsTJmutvf7icXIvHsHBq3alDv/YHlynj8FGIBvbg5hchKSzp4C38wCBm1K3uNf0uv2QWWOSWU6h2i71oeGjS3iD+2D+aChACNGwvEj0K7nVu4Q78ocd8CXde7XbdgYCUcOIP3WTei4NURxZgaSTh2Hpp0D9Iw/v7tRHg6Hg5Z9PRFw8iqMrExhaGWKgJNXoa6hjgaezST7/bP+IPSMDSRFyIATV2DpYguBpQlEQhEiHj5D6I376DG1akO9q2vPuWf4fU4HhIanIOhlMob2qAtLUx0cuVSycM+8UR4wN9bG/A3+AIDzfpGYNqQxfp3ZHpuOBMFQXxMLxzbHqWuvJcOpJw5oiNkjmmL277fwNjFHMh9kXoFQUqSsldyuvMLvE1siNDodQa9TMNTTCVbG2jjyfqXseYMawUKghXm77gMAxnztgriUXIS/y4I6j4u+be3Qs4UNpmwtnZtSnceFs5W+5GcLQy3UtxEgr7AYbz5arbsmcTgc2HXvgogLPtA2N4OOhSkizvuAx+fDqnULyX5PduyDpqEAroP7ASgpGubExb//WYTC9AxkvYkFT1ND0tEYdvIcTN0bQNPICKKCAsTfe4jUF6/QYt70Gs9rT2gcfuvsiqfJ2QhKzMKQ+paw1NXE0eclMc9taQ9zHQ0suFlyfPZ2MsW6zq5YFRCB4MQsmGiVfLYvEImR8/54nNzEBk+TsxGTVQB1HgeeNkbo52KGZf6v5QdRizgcDgZ4d8CRPddhbWuCOrYmOLLnBjQ1+fiqZ+kUQL8sOQoTMwNMmF7SUd7Hqy3OHb+D//32N/oNbY+4mGQc2XMdA4Z+ugGgJuw9+gTrln2Fpy+TERyagMH93GBproejZ0sWJZk7pRXMTXWwYOUNqcd5fVsPwU8TER4pWyiePKopQl8kIzYuE+rqPHi2sUW/nnWxfN3tWsnpc+loa8DJvvTvqL2NKdzd7JCekfNFrtS8dfdl7Fw/EY9Do3H/cQTGDvOEtZUR9hz2BQAsmz8QVuaGmDyvZAFWZwdzNHN3wMMnkRDo62Da+G5wq1sH380rXaB19+GbmDyqK9YtHYYdB67Dyd4cc6d+g+37rrORohKhdYyrw9vbG2/fvoWPjw8AYNKkSRg5ciTOny9/GH/ZRjQAuHTpEsaPH4+BAwdKbZ84caLUyFctLfnzW1eECo4qZNSoUcjPz0fLli3B4/Ewffp0TJo0CQCwfv16jB07Fh07doSVlRU2bdqER48eSR7r5+eHnJwctG0rPUfXh2HIeXl5WLVqlVTB0NPTE76+vjJxdO/eHRcuXMDKlSuxbt06qKuro169epgwYcInc+ByuTh79izGjx+Pli1bwt7eHps3b0aPHj0k+2hra+PWrVtYuHAhBgwYgOzsbNSpUwdfffWVVMeji4sLWrRogQcPHmDjxo2V+n+oCML0VKn5g5hiIZLPn4MwJRlcDU3oNGgEy9ETwCszl6VJ737g6eoh9colFKUcAE9LG5o2tjDuXnFXZuyfm1CcVvpHPPqXkhNCvf+V/vET5echO/gxzL2Gyn2O4uwsvNu/G6KsTHA1taBRxxo238+CTv0GJfdnZpbk9BkE7TqCw9dA2jUfJJ87BQ6fDw0raxh17lrh4+KP7Ed++CuZfBxX/iLpVmPEYmQG3oFB67YyHTxlCTPS8W7vThTn5EBNVw+aDo6wm/eDpGPo47wYUTGSzpxAcWYGOOrq0LCsA+spM6S62L6EvKqSW2XUVG46rvVhNWYiUq/5IPWqD7h8PrQcnGDz/SxwP3d6AC4XhYnxyPwrAKLcHPB0dKBp6wDbOQslxSoOhwPrqTOR8s8ZJBzah+KcbKjpG0Db2QVqFXRECzMzJLEDQNr1y0i7fhlaLnVhN6t0GoW8sBcoTk+DoBJdzR8T5+cj+Z8zKM5IB1dbB3pNPGDap79kSPCX9LoBlT8mlekcwuFyYf3dDCSePIKYDb+Cw9eAboOGMBtQQbGrEscd8GWd+wVt2kFcWIB0v5tIOnMSPG0taNetB1M53bTV0XpgVwgLhfDZdhIFOXmwcrXD0JVTpTohs5LTwSmzQmdRYRF8/jyJ7NQMqPHVYWxthj5zR8Gto4dCY6usi/7RMNTXwLShTWBmpIVXb9IxYcU1vEvOBQCYGmnDyrT0YmNeQTFGL72CpZNa4eyGb5GRVYiL/lH441BpV8zwXvXAV+fhf4s7S/2uzUeCsflocK3kBQD/3o+FQIeP6X3cYGqgifC4TIzfcBvv3ndimhlowrLMMFC+GheLhzSGuaEWCopECH+XhfEbbsE3JEGyj5lAExdWlhb9J/ash4k96yHwZRKG/+pba7kBgGOvbhAXCfH8wFEI8/Jg4OiAFvOnS3VCFqSlSR1/BemZuLN0jeR21KVriLp0DUb1XNBqcclQ36KsbITs3IeCjCyoa2lCz6YOWsybDpOG9Ws8p4sRyRBoqOH7ZnYw0+bjVVouJl56infvVzg30+bDSrd0NM5QN0uo87hY0cEFKzqUTklwJiwBC31LzoXa6jws7+ACCx0+CorFiMzIw7ybYTILy7Bl6OjOKCoQYtMvZ5CdlY/6DW3x658TpTohkxKkzyNmFgL8+r+J2Lb+H0wcsh4mZgYYMKwDho7pLO9X1LiL1yMgMNDE9+OawcxYB68i0zBx7r+SVadNjbVhaS7dtKCrw0e3zo5YvUH+YlNamupYPr8DLMx0UVBYjMg3GZi//DouXlfcKuyK5OHuiCsnSqesWbesZEqVgyf9MGnudrbCKteZfx/AyFAXC6f3gYWpAZ6/isOgcRslxVELUwNYW5U21nC5XEyb0B0ujhYQFotw++5LdB20BjFxpX+L4+LT0X/0eqz9aSgCLq5EfEI6tu27hg3bL9Z6fuS/4cWLF/Dx8UFgYCBatWoFAPjrr7/Qpk0bhIWFwdVV/giaDwsCf/D333+jc+fOcHR0lNqura0ts+/n4jCfGtNGlEKnTp3QpEmTWi2s/Rf0vfZlXkUkhBBCqmKAXd6nd1JCP8+pvRWgaxtj8umVbpXVt5PlT32hCv59opp9HTdH1O68j7WpS1fVXQE6Nu4W2yHUCHW1z++4UhZZkXvYDqFW5Ah92Q6hVqiL26CwsFBq28dTun2uPXv2YM6cOcjIyJDaLhAIsGHDBowdO/aTz5GYmAhra2vs378f3t7eku2dOnXCs2fPwDAMzM3N0bNnTyxbtqzCtTzkof5VQgghhBBCCCGEEEJqwNq1a2FgYCD1b+3atdV6zoSEBJiZmclsNzMzk0yD9yn79++Hnp6ezIK/w4cPx9GjR+Hr64slS5bg9OnTchcF/hTVvPRGvliHDx/G5MmT5d5nZ2eHZ8+e1XJEhBBCCCGEEEIIqW3lLWCiahYvXow5c+ZIbSuvu3H58uVYsWKF3Ps+ePDgAQD5//8Yhqn0/9c9e/Zg+PDhMutdTJw4UfJzw4YN4eLigubNm+Px48fw8Kj8NDhUcFQR8uZS/BL16dNHMr/Ax8ouYkMIIYQQQgghhBCi7D5n+PS0adMwdKj89Rc+sLe3R0hICBITE2XuS05Ohrm5uZxHSbt9+zbCwsJw/PjxT+7r4eEBdXV1hIeHU8GRfLn09PQ+e9w/IYQQQgghhBBCiKozMTGBicmn5zhu06YNMjMzcf/+fbRs2RIAcO/ePWRmZsosBizP7t270axZMzRu3PiT+z579gxCoRCWlpafTqAMmsOREEIIIYQQQgghhBAlUb9+ffTo0QMTJ05EYGAgAgMDMXHiRPTu3Vtqhep69erh7NmzUo/NysrCyZMnMWHCBJnnjYiIwMqVK/Hw4UNER0fj4sWL8PLyQtOmTdGuXbvPipEKjoQQQgghhBBCCCGEKJHDhw+jUaNG6NatG7p16wZ3d3ccPHhQap+wsDBkZmZKbTt27BgYhsGwYcNknpPP5+P69evo3r07XF1dMWPGDHTr1g3Xrl0Dj8f7rPhoSDUhhBBCCCGEEEIIqWX/jUVjaoqRkREOHTpU4T4Mw8hsmzRpEiZNmiR3fxsbG/j5+SkkPupwJIQQQgghhBBCCCGEKAwVHAkhhBBCCCGEEEIIIQpDBUdCCCGEEEIIIYQQQojC0ByOhBBCCCGEEEIIIaRWcWgOR5VGHY6EEEIIIYQQQgghhBCFoYIjIYQQQgghhBBCCCFEYajgSAghhBBCCCGEEEIIURgqOBJCCCGEEEIIIYQQQhSGFo0hhBBCCCGEEEIIIbWMeuBUGb26hBBCCCGEEEIIIYQQhaGCIyGEEEIIIYQQQgghRGGo4EgIIYQQQgghhBBCCFEYmsOREEIIIYQQQgghhNQqDjhsh0BqEHU4EkIIIYQQQgghhBBCFIYKjoQQQgghhBBCCCGEEIWhgiMhhBBCCCGEEEIIIURhqOBICCGEEEIIIYQQQghRGFo0hhBCCCGEEEIIIYTUKg6HFo1RZdThSAghhBBCCCGEEEIIURgqOBJCCCGEEEIIIYQQQhSGCo6EEEIIIYQQQgghhBCFoTkcCalAsZjmlFBGecX0uikbbTWG7RBqzOsYMdsh1Ij8PNV9zVxc6OOR0hGp7vEIsQrnRpRORpHqfsYSC4vYDqHGqKtpsR1CjRAW57MdAqk21T2nEOpwJIQQQgghhBBCCCGEKBAVHAkhhBBCCCGEEEIIIQpDBUdCCCGEEEIIIYQQQojCUMGREEIIIYQQQgghhBCiMDQrOiGEEEIIIYQQQgipVRzqgVNp9OoSQgghhBBCCCGEEEIUhgqOhBBCCCGEEEIIIYQQhaGCIyGEEEIIIYQQQgghRGFoDkdCCCGEEEIIIYQQUss4bAdAahB1OBJCCCGEEEIIIYQQQhSGCo6EEEIIIYQQQgghhBCFoYIjIYQQQgghhBBCCCFEYajgSAghhBBCCCGEEEIIURhaNIYQQgghhBBCCCGE1CoOhxaNUWXU4UgIIYQQQgghhBBCCFEYKjgSQgghhBBCCCGEEEIUhgqOhBBCCCGEEEIIIYQQhaE5HAkhhBBCCCGEEEJILaM5HFUZdTgSQgghhBBCCCGEEEIUhgqOhBBCCCGEEEIIIYQQhaGCIyGEEEIIIYQQQgghRGGo4EgIIYQQQgghhBBCCFEYWjSGEEIIIYQQQgghhNQqDvXAqTR6dQkhhBBCCCGEEEIIIQpDBUdCCCGEEEIIIYQQQojCUMGREEIIIYQQQgghhBCiMDSHIyGEEEIIIYQQQgipZRy2AyA1iDoc/0M6deqEWbNmVfnxy5cvR5MmTSrcZ8yYMejXr1+Vf4evry84HA4yMjKq/ByEEEIIIYQQQgghhD3U4UhY06lTJzRp0gQbN26UbGvbti3i4+NhYGDAXmAK8o2NBQbYW8OIz0dMbh52vozEs4yscvdvaKiPia6OsNXRRlphEU5Fv8WltwmS+211tDHC2RbO+row19LEzpeR+DvmnUrm4e1ki+FOtlLb0guLMMLvvkJz62trgSGOdWCswUd0Th62Po9CaHr5uTU20sfU+g6w19VGSmERjkXG4XxMaW7d65hhUWMXmcd18wmAUMwAALyd6qCDuTFsdbVRKBLhWXo2doa9QWxu/hedW1mdLU2wtKkr/BNSseTxS8l2LgcY42KLrlamMNJQR2qhEJffJuHg61gwVcxD0ccfALQ1M8ZIZztYamsiPq8AB16/wd2kVMn9WjweRjjboq2ZMQz46ojMzsWOl5EIz8qReh4bHS2MdbFHQ0MDcDhATE4efgkJQ3JBYRWzleZd3xLj3W1gqsVHeEYu1tyNwKNE+bl/bW+MYfWtUN9IB3weF+Hpedj6+A3849Il+3i5WqCfizlcDLUBAM9ScvDHw2iEJmcrJN7PMbKRFSZ7WMNMRwPhablYcSsC999lyt23h5MJRjaygptpSW6vUvOw4V40bsWkS+03vkkdjGhkhTp6GkjLF+Li6xT8GhCJQlFVj75P62NrgcEOpe+zP19U/D5zN9LHlHql77PjkXG4EFv+++ynJq64k5iKpWXeZ9/aWqCPjQXMtTUAAG+y83DwdSzup2QoNLfKYBgGt49cQvDlABTk5MOqrh26T/GCqZ1luY95GfAEASeuID0+BeJiEQytTNGqf2c06tKyFiOXNvybepgwsCHMjLQQ/iYDq3bex8NnieXuz1fjYpp3E/Tt4gRTQy0kpOTiz2MhOHU1XGbfbzo6YNOiTrh69w2m/HyjJtOQa3gXZ0zs5QozAy2Ev8vEz4eD8PBVitx9W9UzxZHFXWS2f73oIiLjS84TQzwd0b+dPepal3xOexqdht9PhSIkMq3mkigHwzB4fe5fxPr6Q5ibB4GTPdxGDoWetVW5j8l++w7hZ88jKzoG+SlpqOc9CA7dv5La5811P8TeuI28lJK/C3p1LOHctxdMGzes0Xw+8HazxITGNjDT5iM8PRerAyLwMEH+eaWbgzG83axQ37j03L/54Rv4v02Xu/83TqbY2LU+rkalYOqV5zWZRqUxDIMTu67g6t+ByM3Og4ubHSbMHwBbR4tyH3Pjwn38b9Vxme1H/X4BX0O9JsMt1/BB7pgw0gNmJjoIj0zFqvW38DBY/uf0X5d9jYHfuslsD49IRc8hhwAAh3cMRKtm1jL73PSPwsRZ/yg2+ApMGNEZMyb2gIWZAC9exWHRqqO4+0D2XPfBxJFdMGlkF9ham+DtuzT8/r8LOHo2QGofAz0tLJ03EN9294DAQAdvYpPx45rjuOIbWtPpVEm7lvUw+7ve8GjkCEtzQwyesB7nrzxkOyxClAIVHMkXhc/nw8Ki/A8YyqKDuQkmujrizxcReJGRhR7WFljh0QBTAh7LLUaYa2lghUcD+LxNwO+hYagv0MfU+k7ILBIi4H0hRIPHRUJ+AfwTUzDR1VHl84jOycVPD59KbosYxRYNOlua4Hs3B2x8Gomn6Vn41tYCv7Zww5hbj5FUUCSzv4WWBtY2d8O/sYlYHfwKDQ31MauhIzKLhLiVUFqsyhEWY5TfY6nHfig2AkBjIwOce5OAsMxs8DgcjHe1w7qWbhh7KwgFIvEXnRsAmGtqYEo9ezxJky0ODXO0Rh9bC/zyJBxROXlwNdDFQncX5BYX43R0/GfnURPHXz0DPSxyr4eDEW9wNzEVbcyNscjdFQsehCAss6SgOKOBM+x0tfH701dIKyhCZyszrG7WEFMCHiO1sOj9/zNNrGvhjitxiTgUEYO84mLY6GijSKyY17CnoykWt3bCioDXeJyYiaH1LPFXj0b45tRDxOfK5t7CwgABcenY8CAKWUXFGFDXAtu6NcDgf4LwIjUXANDKUoB/I5LwODELRSIxJrjbYE+PRvjm9EMk5ckeFzXlWxdTLOvohJ98w/HwXRaGN7TE/j6N8NWhB3iXI5tbKysD3I5Jx68BUcgqLMZgNwvs+bYh+p4IwrPkktesn6sZFrZ1xPxrYXgUnwkHQ2380dUVALDydkSN5NHJwgRT6ztg87OS91lvWwusbe6GcbfLf5+taeaGi28TsfZJyftsRoOS99ntROn3mZmmBibXs0eInPdZSkEh/nr1Bu/eX6ToVscMK5vVx+Q7wXiTo9gLF58SePoa7p+7id6zR8DIyhR3jl/B0SX/w+TtP0FDW1PuY7R0tdFucDcY25iDp8ZD+P1nuLDxCHQM9ODYrH6txg8AvTo64MdJLbH8z7t49DwJQ3u6YvfKr9Hju7OIT86V+5jNizvDxFATizf64827bBgLNMHjyQ4asjLTweIJLXD/qfyick37pqUNfhreBMsOPMajV8kY1tkZe+Z2RPfFPohPyyv3cV8t+Bc5BcWS22lZpe/LVvXMcD4wBo9fp6BQKMKkXvWwf54nevzog8T02j3+Ii9eQZTPdbhPHAUdCzNE/HMJD37bjI6/LIealvzjT1RUBG1TE1i08MDLI6fk7qNpZIi6g/tBx9wUABDnH4hHm7aj3cofKixmKkIvJ1P82NYJy/1f43FCJoa6WWJXr0boeeIh4uWcH1tYGuDO23Ssv19yfhxYzwI7ejSA19kgPE+VPn6tdDWwqLUjHsTLv7jDlnMHb+L8UT9MWzIUVramOLX3GlbO2IEtxxdCS0f+6wgA2jqa2HxiodQ2toqNvb52wY9zO2L5Lzfx6Mk7DB3QCLs390UPr0OIT5S9qPfz7374besdyW01Hhfnj3jj0vXSQt7U+Regrs6T3DY00MT5I8Nx6Vr5xT5FG/BNC/zy0zDMWXoQgY9eY5x3J5zeMxstu/+Et+9kLzKMH94Jy+YNxIwf9uFxSDSaNXbA5jVjkJ6ZC58bTwAA6uo8/H1wHpJTszDy+z/xLj4ddayMkJNTUGt5fS4dbQ2EPo/BwRN+OLZzDtvhEKJUaEj1f4xYLMaCBQtgZGQECwsLLF++XHJfTEwM+vbtC11dXejr62Pw4MFITCz/Cr9IJMKcOXMgEAhgbGyMBQsWgKlkUWjMmDHw8/PDpk2bwOFwwOFwEB0dLTOket++fRAIBLhw4QJcXV2hra2NQYMGITc3F/v374e9vT0MDQ0xffp0iEQiyfMXFRVhwYIFqFOnDnR0dNCqVSv4+vpW5X9ZlfS3r4MrcYm4EpeI2Nx8/BUWhZSCQvSyll9M7WVtieT8QvwVFoXY3HxciUvE1bhEDLCvI9knPCsHe15F41ZCCoQKKmp8yXmIxQzSi4SSf1nC4nL3rQovBytcjE3ExbeJiMnNx/9eRCGpoBB9yunM6WNrgaSCQvzvRRRicvNx8W0iLr1NwmAH2S8fZeNOLxJK3bfwwXNcjktCdE4+IrLz8GtIOCy0NFFXX/eLz40L4McmdbEvPAbxebIfDBsY6uFOYhoCk9ORmF+IWwmpeJiSjroGVcutJo6/vnZWCEpLx8mot3ibl4+TUW/xJC0TfW1L9uFzuWhnZoK9r6LxLD0L8fkFOBIRg8T8AvSyKf29o5zt8DAlHXvDoxGZnYuE/EI8SElH5kevd1WNbVgHp18l4FRYAiIz8rEmMBIJuYUYVl/+a7gmMBK7Qt4iNCUHb7IKsOFhNN5k5aOLrbFkn3m+L3HkRTxepuUiMjMfP/m/ApcDtLESKCTmyprQ1BrHnyXg2LMEvE7Pw4rbEXiXU4CR7vK/yK+4HYHtj2MRkpSN6Mx8rLsbheiMfHR1KM3Nw0Ifj+Iz8ferJLzNLsTtmHT8/SoJ7mZ6NZbHIAcrXHpb+j778/377Ftb+a/Rt+/fZ3+WeZ/5lPM++6FxXewv5312Nykd95PT8TavAG/zCrAnPAb5xSK4CWouV3kYhsH9v/3Qbkg31GvbGGb2Vvh2znAIC4V45veo3MfZubvAtW1jmNhYwNDSFC37doKZgxVin0fWYvSlxvVvgJNXwnHicjgiYjOxeud9xCfnYvg39eTu37FZHbRsZI7xS68iIDgecUk5CHmVgqAXSVL7cbkc/DHfE5sOBSE2vva7iAFgXA9XnLwVhRN+kYiIz8aqI0GIT8vH8K+cKnxcanYhUjILJP/EZT7bzdkRiMM3XuNFTAYi47Pxw56H4HA5aOtmXtPpSGEYBm8u34BTnx6waN4UetZ10GjiaIiKivAu8EG5jxM42qPe0IGwat0CXHX5fRfmTd1h1rghdCzMoWNhjrqD+kJNUwMZEVE1lY7EuEZ1cOplAk6+TEBERj5WB0QiIacQ3m7yzyurAyLx15O3CE0uOff/cT8abzLz0cXOWGo/LgdY36UeNj18g9is2i0MV4RhGFw4fgsDx3RF687usHWyxPSlw1BYUITbV4IqfjAHMDTWl/rHlnHDPXDy72c48fczRESnY/UftxCfmIPhgxrJ3T8ntwgpqXmSfw3rm8FAXxOn/intOs3MKpTap10rWxQUCGu14DhtfHccOHkbB07cxquIeCz6+Sji4tMwfnhnufsP7dcWe4/64sy/DxAdm4zTF+7j4MnbmP1dL8k+I706wNBAB8Mmb8W9R68R+y4VgQ/D8fRlbG2l9dmu+D7Bit9P4G+f8s8thBD5qOD4H7N//37o6Ojg3r17WLduHVauXImrV6+CYRj069cPaWlp8PPzw9WrVxEREYEhQ4aU+1zr16/Hnj17sHv3bvj7+yMtLQ1nz56tVBybNm1CmzZtMHHiRMTHxyM+Ph42NjZy983Ly8PmzZtx7Ngx+Pj4wNfXFwMGDMDFixdx8eJFHDx4EDt37sSpU6VXqseOHYs7d+7g2LFjCAkJgZeXF3r06IHw8Jr/I63G4cBZTxdBqRlS2x+nZqC+QP6HoXoCPTyWs7+Lvi54HHYm0mU7DysdLRzo2AK7OzTHgkausNDS+KzHV0SNw0FdfV08/GgI4sPkDDQs50u7m6EeHiZL7/8gOR2uBtK5afF4ONq5GU50bo41zevDWV+nwlh01Eq+8CiqoFqTuY1ysUFGkRAX3yZBntC0LHgYG8D6fUeCk542Ghrq416S/KFdn8qjJo6/egZ6CPro/83jlHTUf///hsfhgMflyHQqForFcBOUDCHkAGhhaoi4vHys9GiAw51a4o9WjdHa1Oiz85RHnctBAxM9mSFxd96mo6l55b5QcQDoqPOQUVj+caWlxoMal4PMCvZRNHUuB43M9HArRroz4nZMOppZfkZufB4yCkqLuw/eZaKhmR4am5e8jrb6muhsb4Qb0anlPEv1lPc+e5SSgQaG5bzPBHp49NH+D94X5Mu+z0Y62yCzSIhL5bzPyuKipKNZU42H5xm1W9TKSExFbnoWHJqWFubU1NVh29AJcS8qV5hhGAZRwWFIe5sE24YVF8FqgroaFw2djeH/OE5qu3/QO3jUN5P7mK9a2SA0PBWTBjWC/4HBuPrXACwa3wIafJ7UftOHNUZaZgFOXqm94kBZ6jwuGtobwv+j7kr/pwnwcDap8LHnV3bD3U19cHBBJ7SuJ///wwdaGjyo8zjIkNN9V5Pyk1NQmJkFk4alw1J56uowcnVBRrjiupoZsRjvAh+guLAIAueaHV2izuWggansud//bTo8qnnun9bMDmkFQpwKY6fbtjyJ79KQkZqNxq3qSrap89XQoKkTwkKjK3xsQX4RJvdbhYnfrsSaubsQGfa2hqOVT12Ni4b1zOAfGCO13T/wDTzcy59eoqzBfRsg4H4M3iWUfx736tsAF668Qn5B7fzNVlfnoUlDO9y4/Uxq+43bz9DKw1nuY/h8NRR+dOzlFxShmbsD1NRKzpG9ujbB/aAIrF8xAq/vb0DgpZWYO/UbcLm0cMh/Fec/8t9/FQ2p/o9xd3fHsmXLAAAuLi7YunUrrl+/DgAICQlBVFSUpPB38OBBNGjQAA8ePECLFi1knmvjxo1YvHgxBg4cCADYvn07Ll++XKk4DAwMwOfzoa2t/ckh1EKhENu2bYOTU8mXkUGDBuHgwYNITEyErq4u3Nzc0LlzZ9y8eRNDhgxBREQEjh49irdv38LKqqRzZN68efDx8cHevXuxZs0aub+nsLAQhYXSH5hFRUXg8fmVyukDfb46eFwOMgqlh9RlFBXBUEMg9zGGfD4yiqQ/YGYUFkGNy4W+uppMl1xtYDOPsMxsrA99hbi8fBjy1THE0Ra/t2yMKQGPka2AwpzB+9zSC6XjSS8SwlBD/uttpMFHelGG9P6FQqhxuTDgqyGtUIiY3Dz8EhKOqOxcaKupYaC9Jba0aYQJt4MRJ6dTCQCm1ndASFomonPKH972JeTW0FAPvazNMcE/uNzffTQyDjrqatjf0QNihgGXw8HuV29wI17+fGEVqanjz1CDL3Mclv1/ky8S4UVGFoY62iI2NwwZhUXwtDSFq4Ee3uWVdIUI+OrQVlODl4M1Doa/wb7waDQzNsSPTepj8cNQPK1gDr/KMNRUhxqXg9R86ThT8otgqmVYqecY18gaWmo8XIpMLnefuS0ckJhbhIB3n18QriojrZLcUvKkc0vOE8JUu3Ln2kke1tBW4+FCeGlu58OTYayljtODmoCDkmLLgZA4/PmoZjomyn2fFQphVM7fDCMNPtILM2T2L/s+ayDQQ08bc0yq4H0GAA662tjSxh18Lhf5IhGWPX5Z68Opc98f5zofXQDQEegjM6ni+fwKcvOxZfQSiITF4HC56DHFS6pwWVsM9TWgxuMiJUP6/Jyang8TQy25j7Gx0EPzBmYoFIowddUNGOprYsX3rWGgx8fijSVDJD3czODVvS6+nfZ3jedQHkM9fklumdK5pWQWwNRA/jDVpIwC/LDnAZ5Gp4OvxkW/dvY4uLATvH+5iQdh8s8l873ckZiejzvPyx8RUxMKM0uOPw196QK/hr4+8lOrf6EhOzYOd3/+DWKhEDxNDXjMmAy9OpUrHlXVh3N/ipxzv4l25c794xtbQ0udh4sRpa+Xh7k+vFwt0Od0+Z3HbMlILXkdBUbSr6OBkR6SE8o/j1jbm2PaT0Nh52yJvNwC/Hv8Nn6ctBXrD86Fla1pjcb8MUOBFtTUuEj5aJqC1LR8mJhUfNEZAEyNtdGxrT3m/ORT7j7uDczh6myCxT9fq3a8lWVsqAc1NR6SUqSH4CelZsHcVP5c+9dvP8WoIR1w4epjBD99g6aN7DHSqz34fDUYG+oiMTkT9jam6NimPk78HYhB4zbCyd4c61eMgBqPi1+3nK+N1AghtYgKjv8x7u7uUrctLS2RlJSEFy9ewMbGRqrL0M3NDQKBAC9evJApOGZmZiI+Ph5t2rSRbFNTU0Pz5s0rPay6srS1tSXFRgAwNzeHvb09dHV1pbYlJZV0gzx+/BgMw6Bu3bpSz1NYWAhjY+khJmWtXbsWK1askNrmPGIs6o4cV6W4P/6/wJGzraL9v5QLIWzk8SiltADyBsCLzGfY3b45vrIyw7k3ilsoR34e5WfHfHTfh6akD4f8i4wcvMgoXVjkaXoWdrZvjAH2ltjyXLbjZ2YDRzjpaWN6oOInyVZkblo8Hn5oXBe/P31dYSdmZ0sTfG1lilXBrxCdkwdnPR187+aA1IIiXI4rv/BVkZo5/hiZXcqetn4PfYVZDVxw0LMlRGIGr7Nz4BefDKf3w9457//nBCal4tz7BY8is3NRX6CHXtaW1S44lkYp+5pU5uz6jaMppnnYYerVZ0grkF/kn+BujW8cTTHqYgiKanBRlfLIfV0rEUafuqaY3coeEy48lSrItq5jgGkt7PCTbziCErJhb6CJ5Z7OSMotwuYHMRU8o4JxZF+3smRe0w/b37/PFjeuiz9CK36fAUBsbj4m3QmGrpoaOlgYY6G7C+bcC63RouPTmw9w6X+lizQMXjYZQOm5QoJhZLd9RENLA+M3L4SwoBDRwa9wbfc5CCxMYOcuu+hWrfj44OOg3M8yXC4HDAPMWeeHnPeF8zV/PcDWHzpj+Z+BUONxsH5eR/yw+Q7Ss2q3608emdQ45b/XohKyEVWmwyooIhWWRlqY0NNVbsFxUq96+La1Lbx/uYkiYc1O9RIXcB/P9h2R3G42Z2rJDx8dbAwYOQfl59OxNEe7n39AcV4+Eh4EIeSv/Wi1eE6NFx0B+eeJypwfezuZYnozO0y5XHru11Hn4fcu9fDjrVdIr6XOuIrc8nmEHb+Wjkj6Yf0EAKV/VyUYRnZbGXUb2qFuQzvJ7Xru9pg/egMunfTH+Ln9FRt0ZX3GeaSsgd+6ISunEFd9y+/M9erbAGGvUxBSwWJWNUYmLU65ea3bch7mpga4fvpHcDgcJKVk4fDpO5g9uRdE70eOcLkcJKdmYcYP+yAWMwh++gYW5gLMnNiDCo6EqCAqOP7HqKtLT6bM4XAgFovBlPOHvbzttUlezOXlAZTMU8nj8fDo0SPweNJDnMoWKT+2ePFizJkjPRHw4FufvwJZVpEQIjEj001mwOcjo1D+l//0oiIYftQVI+DzUSwWK3zuwsr6kvIoFIkRnZMLK235HSefK/N9bkYfTS5uyFeX6Vj6IK2wSKZzScBXrzA3BsDLjBzUkRP3dDcHtDUzwszAUKTIWWCiqmoiN3tdbVhqa2JNs9Khax9OC9d6tMWoW4/xLq8A39Wzx9HIt7j5vqMxKjsP5loa8Hay/uyCY00df+mF8vZRR0ZR6WuQkF+ARQ9DocHjQpvHQ3qREAvdXZGYXyCJrVgsRsxHxZ3Y3Hy4lTPc+3OkFwhRLGZgoiUdp7EmHyn5FR8rPR1NsbpjXcy8/gJ332XI3WdcI2tMbmyLsZdCEJYmf1GMmpKWX5Kbqbb08Wmirf7J3L51McVvX7liyqXn8I/NkLpvXmsHnHmZiGPPSoYLhqXmQludh1+61MWWBzFVXiW9PJmS41PO+6ycTu60wiIYfXQ8CzRk32er5LzPrnRvi9G3H0vmdCxmGLx7//OrrBy4GuhigJ0VNjyrmQVyAMClVSNYudpLbovev6dy0rOga1Ta7ZKbmS3T9fgxDpcLI6uSLiRzR2ukvE1AwMmrtV5wTM8qRLFILNPNaCzQQmqG/K70pLR8JKbmSYqNABARmwEulwMLEx1oa6rBxkIPO5d1ldzPff9Cvjw/Gt0mnkFMBcMmFSU9uwjFIjFMBdLdjMb6mkjJqvziDMERqejb1l5m+4SerpjSuz5GrfNFWGzNL0Ji3tQdAqfSOMTvj7/CzCxoCkqPv6KsbJmux6rgqqlBx7xkOLmBgx0yo6Lx5soNNBw7vNrPXZ4P537Tj8/9WnykfuL82MvJFGs862LGtRcIiMuQbLfV14SNviZ29ChdYfvDyNUXEzug+/EHiPmM46G6WnRoAJcGpYVC4Ye/zalZMDQpPW9kpufIdD1WhMvlwrm+DeJjP39ERXWlZ+SjuFgME2PpbkZjQy2kpn569MqgPg3w98WXEBbLL9praqihd7e62Lg9UCHxVlZqejaKi0Uw+6ib0dRYD0kp8i+sFhQK8f3CvZj54wGYmegjISkDY4d5Iis7H6lpJRfkE5IyISwWQVxmQcVXr+NhYSaAujoPQqFI7nMTQpQTFRwJgJJuxpiYGMTGxkq6HJ8/f47MzEzUry+7aqSBgQEsLS0RGBiIjh07AgCKi4vx6NEjeHh4VOp38vl8qYVeFKVp06YQiURISkpChw4dKv04DQ0NaGhIzxP4ucOpgZIvgq+zc9DUWIC7SaXDepoaCxCYJH+Yz8uMbLT8aP63psYChGflKHx15sr6kvJQ43Bgo6ONZwrqHCtmGLzKykFzEwH8E0uH7DQzEeBOOUMBn6dno42ZdG7NTQQIy6w4N2d9HURlS3/gnOHmiPYWRpgd+BQJ+YrtgKmJ3GJy8zD2lvTk7ePr2kJbjYctz6OQ9D4HDR4X4o/+V4hRtYsWNXX8vczMRhNjgaQzEQCamgjwQs78d4UiMQpFYuiq8eBhbIi9r6IksYVn5cBaR7pIYaWthaSC6n9xE4oZPEvJRrs6hrj2pjTXtnUEuP6m/KGC3ziaYk3Huphz8yX8YuW/1uMbWWNKU1uMvxSKpyk5cvepSUIxg9CkbHSwNcTlyNJcOtga4kpk+bn1qWuK37u6YprPC9yIls1NS50r03Ehet9pV1FHV1V9eJ81Mxbgzsfvs8Ry3mcZ8t9nr8q8z8bfln6fjatrCy0eD/97EYXkCs4VHJTM/1aTNLQ1pVaeZhgGOob6iAoKg4VTyecGkbAYMU8j0HlMn897cqa0gFmbhMViPH2divZNrXD1bmknbPumVrgWKL8z9tHzRPRsbw9tTTXkve8Yc6hjAJFIjISUXDAM0HOK9HzWc0Z5QEdLHT/vuIf4lNop8gtFYjyNTke7Bha48qh0jsp2DcxxLSiugkdKc7MzRHKG9MWViT1d8X0fN4z5/RZCo2tnSgY1LU2placZhoGGgT5Sn76AgV3J8ScuLkZaWDhcB9dMh5u4uGaPUaGYwbPkbLSzNsTVMvPPtrMW4FoF89H2djLF2k51Mfv6S/h+ND9uREYeep2Qvng+u4U9dPg8rLoTIXfl65qkpaMptfI0wzAQGOsh5P4rOLpaAygpQj4LisDI73tX+nkZhkFU+DvYOVU8TVNNEBaL8fRlEtq3spXqUmzfyhbX/CpeDKtVszqwtxXgxN/Pyt2n19cu4Kvz8PellwqLuTKEQhGCn75Bl/ZuuHDlsWR75/YN8O+1ihf0KS4W4V1CyblhYO9WuHzzieRvdOCjcHj1aQ0Op7RT0tnBHPGJGVRs/I9iu7mJ1CwqOBIAQNeuXeHu7o7hw4dj48aNKC4uxtSpU+Hp6YnmzZvLfczMmTPxyy+/wMXFBfXr18cff/whWV26Muzt7XHv3j1ER0dDV1cXRkaKWXChbt26GD58OEaNGoX169ejadOmSElJwY0bN9CoUSP06tXr009STWej4zC3UV2EZ+bgZWYWelhbwFRTAxfflnTfjHa2g7GmBv54+goAcPFtPHrbWmJCXQdcjktAPQN9dKtjjnUhYZLnVONwYKurLfnZWJMPRz0d5BeLEJ9fM1en2cpjfF173EtOQ3JBIQTv53DUVuPh2rtPL6JQWSej3mFxYxeEZebgWXo2ettawFxLA+fflOQ2wdUOphp8rA0pmfD/n5gE9LOzxNT69rgQk4gGhnroZWOOVcGvJM85ytkGLzKy8TY3XzKHo7O+DjY9K/3AOauBI76yMsVPj14gr1gEQ35Jh1RusUhmoZIvJTehmJGZYzLn/RevstvvJqVhhJM1kvILEZWTBxd9HXjZ18Glt1UbAlQTx98/b97h1xbuGGRfB4FJaWhtZoQmRgIseBAi2cfDWAAOgLd5+bDU0sL4uvaIy8vH1TLH3+noOCx0d8XT9EyEpGWimYkhWpkaYdFDxQyP3/s0Dus8XfE0JRtBSVkY4moJS11NHHsZDwCY09we5joaWOhXkts3jqb4tZMr1tyNwJOkLJholRxXBcVi5Lz/AD/B3Rozm9lj7s2XiMspkOyTJxQhr5zOipqwK+gtNnSrh5CkHDyOz4J3Q0tY6WriUGhJEXhhWwdY6PAx+2pJbn3qmmLD1/Ww/FYEghKyJN2RBcViZBeV5HYtKhUTmlrjaXIOghOzYW+ghXmtHXA1MlWmCK4op6LeYVFjF7zKysHz9Gx8Y2MBM00NnI8pOT7H17WDiSYfv75/n52PSUBfW0tMqWePf2MT4Waoh57W5lhd0ftMKPs+G1/XFveTM5BUUAhtHg+dLU3Q2NgAix+U/4W1JnA4HLTs64mAk1dhZGUKQytTBJy8CnUNdTTwbCbZ75/1B6FnbCApQgacuAJLF1sILE0gEooQ8fAZQm/cR4+pg2s1/g/2nH2G3+d2QGh4KoJeJmFoD1dYmurgyMWSL/fzxjSDubE25q+/DQA47xuJacOa4NfZ7bHpUBAMDTSxcHxznLoajsL3x2P4mwyp35GVUyR3e03b4xOG3ye3QmhUGoJep2BoZydYGWvjyI2Sosg8r0awMNTGvJ33AABjutVFXEouwuMyoa7GRd+2dujZwgZTNvtLnnNSr3qYNaAhZm8PxNuUXJi8nw8yr6AYebW4ABWHw4Fd9y6IuOADbXMz6FiYIuK8D3h8Pqxal04D9GTHPmgaCuA6uB+AkqJhTlz8+59FKEzPQNabWPA0NSQdjWEnz8HUvQE0jYwgKihA/L2HSH3xCi3mTa/xvPaExuG3zq54mpyNoMQsDKlfcu4/+rwk5rktS879C26WnB97O5liXWdXrAqIQHBimXO/SIycIhGKRAzC06XPK9lFJa/Tx9vZwOFw0HtIR5zefx2WNqawtDHB6f3XoaHJR4duTSX7bV5xBEamBhgx9RsAwIldl+HS0A6WNqbIzy3AxRO3Ef0qDhPnDWAljz2HH+P3ld0R+iIRQSHxGDqgESwt9HDkdMlngnnft4W5mS7mL7si9Tivvg0QHBqP8IjyC8pefRvgql8EMjJrrxP1g627L2Pn+ol4HBqN+48jMHaYJ6ytjLDnsC8AYNn8gbAyN8TkebsAlBQOm7k74OGTSAj0dTBtfDe41a2D797fDwC7D9/E5FFdsW7pMOw4cB1O9uaYO/UbbN93vdbzqywdbQ042ZcWs+1tTOHuZof0jBzEvquZxekIURVUcCQASv7gnzt3DtOnT0fHjh3B5XLRo0cPbNmypdzHzJ07F/Hx8RgzZgy4XC7GjRuH/v37IzOzckNr5s2bh9GjR8PNzQ35+fmIiqrcqpaVsXfvXqxatQpz585FXFwcjI2N0aZNm1opNgLA7cQU6PPVMMzJBkYafLzJycOyoGdILii5kmykwYepZmk3ZWJ+IZY9foaJro7obWuJ1MIi7HgZiYAynVxGGnxsaVP64WugvTUG2lsjJC0TixVU5PhS8jDW0MCCRq7Q56sjs0iIsMxszLn3RPJ7FeFmfAr01dUwyrkkt+icPCx68ByJ73+HsYY6zMqsjJ2QX4jFD59jan0H9H2f25bnUbiVUJqbrroa5jRyghGfj9ziYrzOysXMwKd4mVnaSdbXrmT+p42tG0nF88uTcFyOU0xBtSZyq4zNz6Iwrq4tZjZ0hCFfHSkFRTgfm4AD4VVbuKMmjr8Xmdn4NfQlRjrbYYSzHRLyCvBrSBjCyrxG2mpqGONiBxNNDWQLi3EnMQUHXr+R6mS9m5SK/z2PgJeDNSbXc0Rcbj7WPHmB5xmK6cK9FJkMQw01TG1qBzNtPl6l52LS5ad4974bxVSbD0vd0tyH1LeEOpeLZe1csKxd6bDUM68SsPhWSUFrWH0r8HlcbOnqJvW7tjx+g62P3ygk7so4H54MgaY6Zra0g5kOH69SczH6n1DEZZfkZqbNh5VeaQfM8IZWUOdxsbqzC1Z3Ls3t5PMEzL1W8qV78/03YBhgfhsHWOjykZovxLWoVPwWoLi/Kx/zTSg5Pkc62cBIk4/o7DwsfvgcSWXfZ5rS77MfHj3H1HoO6GNnidSCImx9HoXbiZ/3PjPk87HI3QVGmnzkCosRmZ2HxQ+e4VFqzQ9r/VjrgV0hLBTCZ9tJFOTkwcrVDkNXTpXqhMxKTgenTPdlUWERfP48iezUDKjx1WFsbYY+c0fBrWPlRkco2sVbUTDU08A078YwM9LGq+h0TFh2Fe+SSjoRTQ21YGVaOlQyr6AYo3+8jKVTWuHspj7IyC7ExdtR+OPA4/J+BWv+vR8Lga4GpvdtAFOBJsLjMjH+j9t4936Yp5mBFiyNtCX789W4WDy0McwNtVBQJEJ4XBbGr78F35B4yT7DuzhDQ52HP6e3k/pdm84+xeZztVv0duzVDeIiIZ4fOAphXh4MHB3QYv50qU7IgrQ0qeOvID0Td5aWLh4Ydekaoi5dg1E9F7RaXDKtTlFWNkJ27kNBRhbUtTShZ1MHLeZNh0lD2RE/inYxIhkCDTV83+z9uT8tFxMvlZ77zbT5sCpz7h/qZgl1HhcrOrhgRYcy5/6wBCz0fSXz/F+ifiM7o6hQiJ2/nUZudj5cGthi6aZJUp2QKQkZUl1QuTkF2P7LKWSkZkFbVwsOda3w8/bv4dLAlo0UcPFqOAwNtDBtQiuYmWjjVUQqJsz8W7LqtKmJDqwspIeI6+rw0b2LM1b97lfu89rbCtCiaR2M/v5sufvUpDP/PoCRoS4WTu8DC1MDPH8Vh0HjNkqKbBamBrC2Km0Y4XK5mDahO1wcLSAsFuH23ZfoOmgNYuJK/87Fxaej/+j1WPvTUARcXIn4hHRs23cNG7ZfrPX8KsvD3RFXTiyV3F63bBQA4OBJP0yau52tsAhRChxG0St8EKJCvrni/+mdyBcnr5ha85WNtprq/il6HVN73YO1KT9PdV8zFxfVvR47yrn2h9LXhp9nKm5BsS8NY6r96Z2U1LdTandF4dr07xPVPI+cHayYC2tfon5f19w8uGxLSnvCdgg1Qlhcc4ulsS0/5ijbIdQKERPy6Z1UAI/j/umdVBCX7QAIIYQQQgghhBBCCCGqQzUvvRHWxcTEwM3Nrdz7nz9/DltbdoY9EEIIIYQQQgghhG3UA6fKqOBIaoSVlRWCg4MrvJ8QQgghhBBCCCGEqB4qOJIaoaamBmdnZ7bDIIQQQgghhBBCCCG1jPpXCSGEEEIIIYQQQgghCkMdjoQQQgghhBBCCCGkVnHAYTsEUoOow5EQQgghhBBCCCGEEKIwVHAkhBBCCCGEEEIIIYQoDBUcCSGEEEIIIYQQQgghCkMFR0IIIYQQQgghhBBCiMLQojGEEEIIIYQQQgghpJbRojGqjDocCSGEEEIIIYQQQgghCkMFR0IIIYQQQgghhBBCiMJQwZEQQgghhBBCCCGEEKIwNIcjIYQQQgghhBBCCKlVHA7N4ajKqMOREEIIIYQQQgghhBCiMFRwJIQQQgghhBBCCCGEKAwVHAkhhBBCCCGEEEIIIQpDBUdCCCGEEEIIIYQQQojC0KIxhBBCCCGEEEIIIaSWUQ+cKqNXlxBCCCGEEEIIIYQQojBUcCSEEEIIIYQQQgghhCgMFRwJIYQQQgghhBBCCCEKQ3M4EkIIIYQQQgghhJBaxQGH7RBIDaIOR0IIIYQQQgghhBBCiMJQwZEQQgghhBBCCCGEEKIwVHAkhBBCCCGEEEIIIYQoDBUcCSGEEEIIIYQQQgghisMQQlhXUFDALFu2jCkoKGA7FIWj3JSTquamqnkxDOWmjFQ1L4ah3JSVquamqnkxDOWmjFQ1L4ah3Agh0jgMwzBsFz0J+a/LysqCgYEBMjMzoa+vz3Y4CkW5KSdVzU1V8wIoN2WkqnkBlJuyUtXcVDUvgHJTRqqaF0C5EUKk0ZBqQgghhBBCCCGEEEKIwlDBkRBCCCGEEEIIIYQQojBUcCSEEEIIIYQQQgghhCgMFRwJ+QJoaGhg2bJl0NDQYDsUhaPclJOq5qaqeQGUmzJS1bwAyk1ZqWpuqpoXQLkpI1XNC6DcCCHSaNEYQgghhBBCCCGEEEKIwlCHIyGEEEIIIYQQQgghRGGo4EgIIYQQQgghhBBCCFEYKjgSQgghhBBCCCGEEEIUhgqOhBBCCCGEEEIIIYQQhaGCIyGEEEIIIYQQQgghRGGo4EgIIYQQQgghhFUMw+DNmzfIz89nOxRCCCEKQAVHQgipBoZhIBaL2Q6jRuzbtw+ZmZlsh1EjRCIRgoODkZ6eznYo5D/owIEDKCwslNleVFSEAwcOsBCRYnTp0gUZGRky27OystClS5faD4j85/3444+4evUq8vLy2A6l2po2bQoPD49K/VNWDMPAxcUFb9++ZTuUGjF27Fhcv34dDMOwHQohhNQKDkNnPEK+OE+ePIGHhwdEIhHboXy2f//9F2fPnoWRkRHGjRuHevXqSe5LT0/HwIEDcePGDRYjrJri4mIsX74ct2/fRqdOnbBixQr89ttvWL58OYqLizF06FD89ddf4PP5bIeqMHw+H0+ePEH9+vXZDqXaZs2ahUaNGmH8+PEQiUTw9PREQEAAtLW1ceHCBXTq1IntECutadOm4HA4ldr38ePHNRxNzcnNzcUvv/yC69evIykpSaawHxkZyVJk1cfj8RAfHw8zMzOp7ampqTAzM1PKcz8AcLlcJCQkyOSVlJSEOnXqQCgUshSZYojFYrx+/Vru8dixY0eWoqqakJCQSu/r7u5eg5HUrB49eiAgIACFhYXw8PBAp06d4Onpifbt20NXV5ft8D7LihUrJD8XFBTgzz//hJubG9q0aQMACAwMxLNnzzB16lSsXbuWrTCrrUGDBti9ezdat27NdigK16dPH1y5cgXGxsYYOnQoRo4ciSZNmrAdVrV17twZI0aMwKBBg2BgYMB2OAoXERGBvXv3IiIiAps2bYKZmRl8fHxgY2ODBg0asB0eIV80NbYDIITIp4zXAo4cOYJRo0ahR48eCAsLw5YtW7Br1y4MHz4cQEn3jp+fH8tRVs2KFSskuZw6dQpJSUn4999/sXPnTojFYvzwww/YuHEjFixYwHaon83IyEju9uLiYrRp0wZcbkkzfFpaWm2GpVCnTp3CiBEjAADnz59HVFQUXr58iQMHDuDHH3/EnTt3WI6w8vr16yf5+VNfOpXZhAkT4Ofnh5EjR8LS0rLSRVZlwDCM3Hzevn2rlF/Wyhavnj9/joSEBMltkUgEHx8f1KlTh43QFCYwMBDe3t548+aNzN9nDoejdEXiJk2agMPhlHsslqVsuZXl4+MDkUiE+/fvw8/PD76+vvjzzz+Rn58PDw8PBAYGsh1ipS1btkzy84QJEzBjxgz8/PPPMvvExsbWdmgKtW7dOsyfPx/btm1Dw4YN2Q5Hof755x9kZGTgxIkTOHLkCDZu3AhXV1eMGDEC3t7esLe3ZzvEKmnUqBF++uknTJs2Db169cLIkSPRq1cvlbgI7+fnh549e6Jdu3a4desWVq9eDTMzM4SEhGDXrl04deoU2yES8kWjDkdCWDBgwIAK78/MzISvr6/Sfcj38PDA2LFjMX36dAAlRZ6xY8di48aNGD9+PBITE2FlZaV0eQGAk5MTNm3ahN69e+P169dwdXXFkSNHMGTIEADAyZMnsXLlSoSGhrIc6efT09ODp6cnvLy8JNsYhsGECROwcuVKSaFg9OjRbIVYbZqamnj9+jWsra0xadIkaGtrY+PGjYiKikLjxo2RlZXFdohVMmHCBFhaWpb7pXPPnj0sRVZ9AoEA//77L9q1a8d2KArzoTv1yZMnaNCgAdTUSq/7ikQiREVFoUePHjhx4gSLUX4+LpcrKVrJ+1ippaWFLVu2YNy4cbUdmsI0adIEdevWxYoVK+QWwJWtUPzmzRvJz0FBQZg3bx7mz58vuXBx9+5drF+/HuvWrZO6yKHMwsLC4Ovri2vXruHcuXMQCARITk5mO6wqMTAwwMOHD+Hi4iK1PTw8HM2bN1fq6VAMDQ2Rl5eH4uJi8Pl8aGlpSd2vzBc/P/b27VscPXoUe/bsQXh4OIqLi9kOqcrEYjGuXbuGI0eO4OzZs+DxeBg0aBCGDx8OT09PtsOrsjZt2sDLywtz5syBnp4enjx5AkdHRzx48AD9+vVDXFwc2yES8kWjDkdCWHD+/Hl8/fXXMDc3l3u/MhbkAODVq1fo3bu35PagQYNgYmKCPn36QCgUon///ixGVz3v3r1D48aNAQDOzs7g8/mS2wDQvHlzqS9wyiQoKAje3t64ceMG/ve//0mGmU2cOBH9+vWDm5sbyxFWn7m5OZ4/fw5LS0v4+Pjgzz//BADk5eWBx+OxHF3VnTx5Eg8fPpTZPmLECDRv3lypC46Ghobldt8qqw+Fm+DgYHTv3l1qSCefz4e9vT0GDhzIUnRVFxUVBYZh4OjoiPv378PU1FRyH5/Ph5mZmVK/z4CSQs6pU6fg7OzMdigKYWdnJ/nZy8sLmzdvRq9evSTb3N3dYWNjgyVLlih1wXHbtm3w8/ODn58fRCIROnToAE9PTyxZskSph4praWnB399fpuDo7+8PTU1NlqJSjI0bN7IdQq0QCoV4+PAh7t27h+jo6HK/EygLLpeLbt26oVu3bti+fTvOnz+P1atXY/fu3Ur7vQYAQkNDceTIEZntpqamSE1NZSEiQpQLFRwJYUH9+vUxcOBAjB8/Xu79wcHBuHDhQi1HVX36+vpITEyEg4ODZFunTp1w/vx59O7dW6knATcwMEBGRgZsbGwAlHRz6unpSe4vLCxU2iGfzs7OCAgIwI8//ogmTZpg//79KtVVBpRM1D548GBJZ9LXX38NALh3757UPKPKRpW/dP78889YunQp9u/fD21tbbbDUYgPQyLt7e0xZMgQpX+NPvhQvFLVBbQAoFWrVnj9+rXKFBzLCg0Nlfq7/YGDgwOeP3/OQkSK8/3338PU1BRz587Fd999B319fbZDUohZs2ZhypQpePTokWSuw8DAQOzZswdLly5lObrqUebRFJVx8+ZNHDlyBKdPn4ZIJMKAAQNw/vx5lVlYKyEhAceOHcOhQ4cQEhKCFi1asB1StQgEAsTHx8ucI4OCgpR+qhBCagMVHAlhQbNmzfD48eNyC44aGhqwtbWt5aiqr2XLlrh06ZLMRN+enp6SoqOycnNzw+PHj9GoUSMAkJnzLzQ0VKboo0zU1NTw66+/onv37vD29sbw4cOVtoAqz/Lly9GwYUPExsbCy8sLGhoaAEoW71i0aBHL0VWdKn/pXL9+PSIiImBubg57e3uoq6tL3a/MC+J8+EJdVFQkdwESZTz/f/Dq1Sv4+vrKzUuZj8np06dj7ty5SEhIQKNGjWSOR2Xulqtfvz5WrVqF3bt3S4rghYWFWLVqldIvGnbmzBncunULx44dw9KlS9G4cWN06tQJnTp1QocOHZRu4ZgPFi1aBEdHR2zatEnSfVW/fn3s27cPgwcPZjm66lPVRTqsra2RmpqK7t27Y8eOHfj2229V4sJTVlYWTp8+jSNHjsDX1xeOjo7w9vbGsWPHlP4ijbe3NxYuXIiTJ0+Cw+FALBbjzp07mDdvHkaNGsV2eIR88WgOR0JYUFhYCJFIpDJdOx/4+fkhICAAixcvlnu/r68v9u/fj71799ZyZNX36tUrqKury+0CAUoWzFFTU1OJD/qpqamYOHEibt68icDAQLi6urIdkkIVFBSoxAf8D06cOIFNmzbhxYsXAEq+dM6cOVPpj8WyK7LKU3YBBWUTHh6OcePGISAgQGr7hwU8lHX42V9//YUpU6bAxMQEFhYWUhctOByOUheJPyyeVVbZRVeU9TUDgPv37+Pbb7+FWCyWTBXy5MkTcDgcXLhwAS1btmQ5QsXIzMzE7du3cerUKRw5cgQcDgeFhYVsh0U+8vEiHS9evICjoyPWrVuH+/fvK/UiHTt37oSXlxcMDQ3ZDkWhtLS0YGhoiMGDB2P48OFK39VYllAoxJgxY3Ds2DEwDAM1NTWIRCJ4e3tj3759Sj9dCCE1jQqOhBBCVJ5IJMKaNWuwfft2JCYm4tWrV3B0dMSSJUtgb29fbrcxITWhXbt2UFNTw6JFi+QuQFJ2flhlYmdnh6lTp2LhwoVsh6Jwn5qjt+yciMooLy8Phw4dwsuXL8EwDNzc3ODt7Q0dHR22Q6u2tLQ0yQrVvr6+ePr0KYyNjeHp6YmTJ0+yHV6VfFi0wtjYWGp7RkYGPDw8EBkZyVJk1fdfWKTj9evXiIiIQMeOHaGlpVWp1eK/ZFeuXEHXrl3lXphRFREREQgKCoJYLEbTpk2VelQTIbWJCo6E1LLPWQ1XmeYaUtW8AMrtA2XLrayVK1di//79WLlyJSZOnIinT5/C0dERJ06cwIYNG3D37l22Q6wSVf7Sqcp0dHTw6NEjpZ4/VB59fX0EBwfD0dGR7VDIZ7h16xbatm0rtWo6ABQXFyMgIAAdO3ZkKbLqc3d3x/Pnz2FkZISOHTtKhlM3bNiQ7dCqhcvlIiEhAWZmZlLbExMTYWtrq9Sdm7q6upJ5RcsWHKOjo1GvXj0UFBSwHWKVpaamYvDgwbh58yY4HA7Cw8Ph6OiI8ePHQyAQYP369WyHWGXFxcXw9fVFREQEvL29oaenh3fv3kFfX19ppy4ghFQfzeFISC0TCASVvoqpTEO0VDUvgHL7QNlyK+vAgQPYuXMnvvrqK3z33XeS7e7u7nj58iWLkVVPdHS03NelsLBQ6btARCIRNmzYgBMnTiAmJgZFRUVS96elpbEUWfW5ubkhJSWF7TAUzsvLC1euXJF6j6ma58+fyz0e+/Tpw1JE1de5c2fEx8fLFK8yMzPRuXNnpT73T5o0SSUKjB/8888/kp8vX74MAwMDyW2RSITr16/D3t6ehcgUR5UX6Zg9ezbU1dURExMjNT/qkCFDMHv2bKUtOL558wY9evRATEwMCgsL8fXXX0NPTw/r1q1DQUEBtm/fznaIVcYwDE6dOoWbN2/KnZv4zJkzLEVGiHKggiMhtezmzZuSn6Ojo7Fo0SKMGTMGbdq0AQDcvXsX+/fvx9q1a9kKsUpUNS+AclPW3MqKi4uTO3G5WCyGUChkIaLq+S986VyxYgV27dqFOXPmYMmSJfjxxx8RHR2Nc+fOKfXiIwDw66+/YsGCBVizZo3cBUiUtZvY2dkZS5YsQWBgoNy8ZsyYwVJk1RcZGYn+/fsjNDRUMncjAMkFG2UuypU3nDM1NVXph1RPmzYNQMkCTVFRUXBycpLp5FQm/fr1A1By3H28mrO6ujrs7e2Vtmj1gSov0nHlyhVcvnwZ1tbWUttdXFw+OW3Dl2zmzJlo3rw5njx5IjXion///pgwYQKLkVXfzJkzsXPnTnTu3Bnm5uZKPfSdEFYwhBDWdOnShTly5IjM9sOHDzOenp61H5CCqGpeDEO5KatmzZoxBw8eZBiGYXR1dZmIiAiGYRhm+fLlTPv27dkMrUo4HA7D4XAYLpcr+fnDPz6fz9StW5c5f/4822FWi6OjI3PhwgWGYUpes9evXzMMwzCbNm1ihg0bxmZo1Vb29Sv778M2ZWVvb1/uPwcHB7bDq5bevXszffv2ZZKSkhhdXV3m+fPnzO3bt5mWLVsyt27dYju8Kunfvz/Tv39/hsvlMr169ZLc7t+/P9OnTx/G3t6e6d69O9thVkteXh4zbtw4hsfjMTweT3Lunz59OrN27VqWo6s6e3t7Jjk5me0wakRRURHj7e0tOSeqq6szXC6XGTFiBFNcXMx2eNWiq6vLvHr1SvLzh+Px/v37jJGREZuhVYuxsTHz8uVLhmGk84qKimK0tLTYDK3aDA0NmX///ZftMAhRWsp7iY8QFXD37l25wwyaN2+u1FcEVTUvgHJTVsuWLcPIkSMRFxcHsViMM2fOICwsDAcOHMCFCxfYDu+zfRjS4+DggAcPHsDExITliBQvISEBjRo1AlAyp1dmZiYAoHfv3liyZAmboVVb2c5iVRIVFcV2CDXm7t27uHHjBkxNTcHlcsHlctG+fXusXbsWM2bMQFBQENshfrYPndEMw0BPTw9aWlqS+/h8Plq3bo2JEyeyFZ5CLFq0CE+ePIGvry969Ogh2d61a1csW7YMixYtYjG6qpP3XsvIyIBAIKj9YBRMXV0dhw8fxsqVK1VukY6OHTviwIED+PnnnwFA0sH522+/oXPnzixHV3VisVhul/fbt2+hp6fHQkSKY2BgQPMSE1INVHAkhEU2NjbYvn27zPCXHTt2wMbGhqWoqk9V8wIoN2X17bff4vjx41izZg04HA6WLl0KDw8PnD9/Hl9//TXb4VWZKn/ptLa2Rnx8PGxtbeHs7IwrV67Aw8MDDx48gIaGBtvhVYunpyfbIZDPJBKJJAsfmJiY4N27d3B1dYWdnR3CwsJYjq5q9u7dCwCwt7fHvHnzlH74tDznzp3D8ePH0bp1a6mhkG5uboiIiGAxsur59ddfYW9vjyFDhgAomT/19OnTsLS0xMWLF5V2pfuynJycJIUeVRnG+ttvv6FTp054+PAhioqKsGDBAjx79gxpaWm4c+cO2+FV2ddff42NGzdi586dAEper5ycHCxbtgy9evViObrqWb58OVasWIE9e/ZIXZQhhFQOFRwJYdGGDRswcOBAXL58Ga1btwYABAYGIiIiAqdPn2Y5uqpT1bwAyk2Zde/eHd27d2c7DIVS5S+d/fv3x/Xr19GqVSvMnDkTw4YNw+7duxETE4PZs2ezHV613Lp1q8L7lXVV4HHjxlV4/549e2opEsVr2LAhQkJC4OjoiFatWmHdunXg8/nYuXOn0ne/LFiwQDInJVCyAMTZs2fh5uaGbt26sRhZ9SUnJ8sshgMAubm5Sl3E2rFjBw4dOgQAuHr1Kq5duwYfHx+cOHEC8+fPx5UrV1iOsHp2796NDRs2IDw8HEDJHIezZs1S+tEWbm5uCAkJwbZt28Dj8ZCbm4sBAwbg+++/h6WlJdvhVdmGDRvQuXNnuLm5oaCgAN7e3ggPD4eJiQmOHj3KdnjV4uXlhaNHj8LMzAz29vYycxM/fvyYpcgIUQ4cpuwnDEJIrXv79i22bduGFy9egGEYuLm54bvvvlP6jjJVzQug3MiXw9HREYcOHULbtm1x9epVDB48GMePH5es7KzsXzrLCgwMREBAAJydnZV6RWAA4HK5MtvKFj+UdQGS/v37S90WCoV4+vQpMjIy0KVLF6VezfPy5cuS4kBkZCR69+6Nly9fwtjYGMePH0eXLl3YDrHKunXrhgEDBuC7775DRkYGXF1dwefzkZKSgj/++ANTpkxhO8Qq8/T0xKBBgzB9+nTo6ekhJCQEDg4OmDZtGl6/fg0fHx+2Q6wSLS0tvHr1CjY2Npg5cyYKCgqwY8cOvHr1Cq1atUJ6ejrbIVbZkiVLsGHDBkyfPl1qAbutW7di5syZWLVqFcsREnny8/Nx9OhRPH78GGKxGB4eHhg+fLjSdwUOHjwYN2/exKBBg+QuGrNs2TKWIiNEOVDBkRAlMHXqVKxcuVLl5mlT1bwAyu1LYGhoWOkOlrS0tBqOpmao8pdOVfZhPsoPhEIhgoKCsGTJEqxevRpfffUVS5EpnlgsxtSpU+Ho6IgFCxawHY5CpaWlfdZ55ktlYmICPz8/NGjQALt27cKWLVsQFBSE06dPY+nSpXjx4gXbIVZZQEAAevTogeHDh2Pfvn2YPHkynj17hrt378LPzw/NmjVjO8QqsbKywqlTp9C2bVu4urpi1apV8PLyQlhYGFq0aIGsrCy2Q6wyExMTbNmyBcOGDZPafvToUUyfPh0pKSksRVY1ISEhld7X3d29BiMhVaGjo4PLly+jffv2bIdCiFKiIdWEKIFDhw5h3rx5X3yB53Opal4A5fYl2LhxI9sh1DhDQ0PExsbCxsYGPj4+ks4PhmGUtkuurIMHD2L79u2IiorC3bt3YWdnh40bN8LBwQF9+/ZlO7wq+7BYR1lff/01NDQ0MHv2bDx69IiFqGoGl8vF7Nmz0alTJ5UoOL5+/RoRERHo2LEjjIyMoArX7fPy8iQLO1y5cgUDBgwAl8tF69at8ebNG5ajq562bdvizp07+P333+Hk5CSZC/bu3buSRamU0YABA+Dt7Q0XFxekpqaiZ8+eAIDg4GA4OzuzHF31iEQiNG/eXGZ7s2bNUFxczEJE1dOkSRNwOBwwDCN1ceLDuUNZu9v/+eefSu+rzKMSbGxsoK+vz3YYhCgtKjgSogRU4QuNPKqaF0C5fQlGjx7Ndgg1TpW/dG7btg1Lly7FrFmzsHr1askXMYFAgI0bNyp1wbE8pqamSrsASUUiIiKUslBQVmpqqmRoHYfDQXh4OBwdHTFhwgQIBAKZxbaUibOzM86dO4f+/fvj8uXLkjlSk5KSlP6LdkhICNzd3bF//36Z+86dO4d+/frVflAKsGHDBtjb2yM2Nhbr1q2TLGgUHx+PqVOnshxd9YwYMQLbtm3DH3/8IbV9586dGD58OEtRVV3Zxd2CgoIwb948zJ8/X2q4+Pr167Fu3Tq2QqySj987H4qqH28DlKuQ+rH169djwYIF2L59O+zt7dkOhxClQwVHQgghKq9Lly7w9PSUmWsnPT0dAwcOxI0bN1iKrHpU+Uvnli1b8Ndff6Ffv3745ZdfJNubN2+OefPmsRhZ9X08xI5hGMTHx+OXX35R6oV+5syZI3X7Q17//vuv0l8AmD17NtTV1RETE4P69etLtg8ZMgSzZ89W6oLj0qVL4e3tjdmzZ+Orr76SFEKuXLmCpk2bshxd9XTv3h137tyRWdjn9OnTGDVqFHJzc1mKrHrU1dXlngdnzZoldfubb77Brl27vvgFScqeOzgcDnbt2oUrV65ILWAXGxuLUaNGsRVildnZ2Ul+9vLywubNm6VWbnZ3d4eNjQ2WLFmiVAVwsVgs+fnatWtYuHAh1qxZgzZt2oDD4SAgIAA//fQT1qxZw2KU1TdixAjk5eXByckJ2traMovGKOuUPITUFio4EkIIUXm+vr4IDQ1FUFAQDh8+DB0dHQBAUVER/Pz8WI6u6lTtS2dZUVFRcosdGhoaSlsk+KDsELuyWrdurdQrOQcFBUnd5nK5MDU1xfr16z+5gvWX7sqVK7h8+TKsra2ltru4uCj9sONBgwahffv2iI+Plyp4f/XVV1ILAb19+xZWVlZyFz36Uk2ZMgVfffUVAgICJOe/48ePY9y4cdi3bx+7wdWCW7duIT8/n+0wPunjc8eHuTUjIiIAlHR/m5qa4tmzZ7UemyKFhobCwcFBZruDgwOeP3/OQkSKMWvWLGzfvl1qnsPu3btDW1sbkyZNUup5YP8L0/MQUpOo4EgIIeQ/4dq1a5g8eTJat26N8+fP/6eGxijLl86yHBwcEBwcLNUdAgCXLl2Cm5sbS1EpRtkhdkBpYU5TU5OliBTj5s2bbIdQY3Jzc6GtrS2zPSUlBRoaGixEpFgWFhawsLCQ2tayZUup225ubggODpbpFvySLV26FKmpqejatStu374NHx8fTJgwAQcPHsTAgQPZDo+8p8rnjrLq16+PVatWYffu3ZLzfWFhIVatWiXVOa1sIiIi5M5NbGBggOjo6NoPSIGUvTufELZRwZEQQsh/gqWlJfz8/DBu3Di0aNECJ0+eVOoP+Kpu/vz5+P7771FQUACGYXD//n0cPXoUa9euxa5du9gOr1o+LqKqmuTkZISFhYHD4aBu3bowNTVlO6Rq69ixIw4cOICff/4ZQMmwT7FYjN9++w2dO3dmObraoSzz935s06ZNGDlyJFq3bo24uDgcPXpUJeeAJV++7du349tvv4WNjY2km/jJkyfgcDi4cOECy9FVXYsWLTBr1iwcOnRI0kmckJCAuXPnyly4UAZZWVmS+Ws/teK7ss9zS0hNo4IjIUpgxIgRKvkHTVXzAii3L82Hics1NDRw+PBhrFq1Cj169MDChQtZjoyUZ+zYsSguLsaCBQuQl5cHb29v1KlTB5s2bcLQoUPZDq/a/Pz88Pvvv+PFixfgcDioX78+5s+fjw4dOrAdWpXl5uZi+vTpOHDggGR+Lx6Ph1GjRmHLli1yOwSVxW+//YZOnTrh4cOHKCoqwoIFC/Ds2TOkpaXhzp07bIdHypC3em6/fv3g5+eHYcOGgcPhSPZR5tVzVVVBQQG2bNmCmzdvIikpSWquQAB4/PgxS5FVX8uWLREVFYVDhw7h5cuXYBgGQ4YMgbe3t2SqF2W0Z88e9O/fH3Z2drC1tQUAxMTEoG7dujh37hy7wVWBoaEh4uPjYWZmBoFAILWS+AcfVh1X5gVxCKkNHEZZL1cSogJ8fHygq6srmfPkf//7H/766y+4ubnhf//7HwwNDVmOsGpUNS+AclNWXC4XCQkJMDMzk2w7ffo0Ro8ejfz8fJX/wKinp4cnT54o1VDIslJSUiAWi6VeP2V26NAhjB07FgMGDEC7du3AMAwCAgJw9uxZ7Nu3D97e3myHWCWTJ0/GtWvXsHXrVrRr1w4A4O/vjxkzZuDrr7/Gtm3bWI6wehISErBt2zY8evQIYrEYHh4e+P7775VqbtTqUJbzSGXnmPwvFAuU5TUry9vbG1evXsWgQYNgbm4uU+z5ePE3VaSM8y4zDIOrV69KCqlubm7o2rWr3GLdl87Pzw/t2rWDmpraJ+f59vT0rKWoCFFOVHAkhEWNGjXCr7/+il69eiE0NBQtWrTAnDlzcOPGDdSvXx979+5lO8QqUdW8AMpNWb158wa2trYyH3yfPXuGhw8fqvwcPcr4pVOV1a9fH5MmTcLs2bOltv/xxx/466+/lHaCfRMTE5w6dQqdOnWS2n7z5k0MHjwYycnJ7ARGFILOI8pHGV8zAwMDXLx4UXLR4r9IGV+3ymjUqBEuXrwIGxsbtkOptJiYGNjY2Mh8fmQYBrGxsZKOTkKIfDSkmhAWRUVFSRY/OH36NHr37o01a9bg8ePH6NWrF8vRVZ2q5gVQbsrKz88PzZs3l1lsxMnJCY8ePWIpKlKR1NRULF26tNxhdWlpaSxFVn2RkZH49ttvZbb36dMHP/zwAwsRKUZeXh7Mzc1ltpuZmSEvL4+FiBSroKAAISEhco/H/8LQXGXsVJInIyMDAoGA7TBqxQ8//AAjIyO2w/gsderUgZ6eHtthkBoQHR0NoVDIdhifxcHBQTK8uqy0tDQ4ODiofJc0IdVFBUdCWMTn8yVfwq5du4ZRo0YBAIyMjD45SfGXTFXzAig3ZTVmzBjo6Ohg3759UiuTZmZmYuzYsZJcVZUyfukcMWIEIiIiMH78eLnD6pSZjY0Nrl+/DmdnZ6nt169fV6rOj4+1adMGy5Ytw4EDByQrsObn52PFihVo06YNy9FVj4+PD0aNGoWUlBSZ+/4LQ3MB5Vw05tdff4W9vT2GDBkCAPDy8sLp06dhaWmJixcvShbuUDZWVlbo1KkTOnXqBE9PT7i6usrdb/HixbUcWfWtX78eCxcuxPbt21V+gS3y5fswV+PHcnJyJH/nCCHlo4IjISxq37495syZg3bt2uH+/fs4fvw4AODVq1ewtrZmObqqU9W8AMpNma1YsQIjR45EaGgoli9fLtmujF+iyzp48CC2b9+OqKgo3L17F3Z2dti4cSMcHBwkK7Eq45dOf39/+Pv7K21BoCJz587FjBkzEBwcjLZt24LD4cDf3x/79u3Dpk2b2A6vyjZt2oQePXrA2toajRs3BofDQXBwMDQ1NXH58mW2w6uWadOmwcvLC0uXLpXbxakKXr9+jYiICHTs2BFaWloyX7SfP38OKysrFiP8fDt27MChQ4cAAFevXsW1a9fg4+ODEydOYP78+bhy5QrLEVbN+vXr4efnhz/++APfffcdzM3N4enpKSlA1q9fn+0Qq6x58+YoKCiAo6MjtLW1oa6uLnW/Mne3E+UxZ84cACUXlJYsWSK16JlIJMK9e/fQpEkTlqIjRHlQwZEQFm3duhVTp07FqVOnsG3bNtSpUwcAcOnSJfTo0YPl6KpOVfMCKDdlNmLECLRt2xb9+/fH06dPcfDgQQDKPUxw27ZtWLp0KWbNmoXVq1dLuqwEAgE2btwoKTgqo3r16iE/P5/tMGrElClTYGFhgfXr1+PEiRMASuZ1PH78uFK/Zg0bNkR4eLjUCqxDhw7F8OHDoaWlxXZ41ZKUlIQ5c+aoZLExNTUVQ4YMwY0bN8DhcBAeHg5HR0dMmDABAoEA69evBwCl7L6Nj4+XxH3hwgUMHjwY3bp1g729PVq1asVydFU3bNgwDBs2DACQmJiImzdv4sKFC5g+fTrEYrFSd9wOGzYMcXFxWLNmjcp1txPlERQUBKDkonRoaCj4fL7kPj6fj8aNG2PevHlshUeI0qBFYwghhKg8Ho8nmYMnJiYGffr0AYfDwfbt29G2bVul/XLm5uaGNWvWoF+/flKTzD99+hSdOnWSO/xTWTx48ACLFi3C0qVL0bBhQ5kuF319fZYiI/9F48aNQ7t27TB+/Hi2Q1G4UaNGISkpCbt27UL9+vUl55ErV65g9uzZePbsGdshVpmVlRVOnTqFtm3bwtXVFatWrYKXlxfCwsLQokULpZ4uJCcnB/7+/vDz84Ovry+CgoLg5uYGT09PbNiwge3wqkxbWxt3795Vye72ylLVRWOUMa+xY8di06ZNn/zM8fbtW1hZWYHL5dZSZIQoB+pwJIRlERER2Lt3LyIiIrBp0yaYmZnBx8cHNjY2aNCgAdvhVZmq5gVQbsqo7LU1W1tbBAQEYPjw4fj6669ZjKr6oqKi0LRpU5ntGhoayM3NZSEixREIBMjMzESXLl2ktn8Y5qmsRWKgpJgqFotlOqzu3bsHHo+H5s2bsxRZ9axduxbm5uYYN26c1PY9e/YgOTkZCxcuZCmy6tu6dSu8vLxw+/ZtNGrUSKYAPmPGDJYiq74rV67g8uXLMlNnuLi44M2bNyxFpRgDBgyAt7c3XFxckJqaip49ewIAgoODZeZQVSatWrVCSEgIGjZsiE6dOuGHH35Ahw4dVGIxHFXtbhcKhZg0aRKWLFnyyYKbMs67rKr27t1bqf3c3NwQHBysVMVUQmoDleAJYZGfnx8aNWqEe/fu4cyZM8jJyQEAhISEYNmyZSxHV3WqmhdAuSmrZcuWQVdXV3JbW1sbZ8+exezZs9GxY0cWI6seBwcHBAcHy2y/dOmSzIrcymb48OHg8/k4cuQIrl+/jhs3buDGjRu4efMmbty4wXZ41fL9998jNjZWZntcXBy+//57FiJSjB07dqBevXoy2xs0aIDt27ezEJHiHDlyBJcvX8bp06exZcsWbNiwQfJv48aNbIdXLbm5uVLzk32QkpICDQ0NFiJSnA0bNmDatGlwc3PD1atXJX8H4uPjMXXqVJajq7rw8HBoa2vD0dERjo6OcHZ2VoliIwD88ssvmDt3Lnx9fZGamoqsrCypf8pKXV0dZ8+erdS+ixcvVtrXs6CgoNz7duzYoZLTUgDKPx84ITWGIYSwpnXr1sz69esZhmEYXV1dJiIigmEYhrl//z5jZWXFZmjVoqp5MQzlRr4se/bsYerUqcMcO3aM0dHRYY4ePcqsWrVK8rMy09LSYl6+fMl2GDVCR0dH8v4qKzIyktHV1WUhIsXQ0NBgIiMjZbZHREQwGhoaLESkOObm5szq1asZkUjEdigK16tXL+ann35iGKbk3B8ZGcmIRCLGy8uLGThwIMvR1Y5evXox7969YzuMz/LkyRNm06ZNzIABAxhTU1PG3NycGTx4MLNt2za2Q6sWDofDcDgchsvlSv37sE2ZjRkzRvI5S5WIRCJm5cqVjJWVFcPj8SR/33766Sdm165dLEdXO8p+biaElKIh1YSwKDQ0FEeOHJHZbmpqitTUVBYiUgxVzQug3JTVgQMHyr2Pw+Fg5MiRtRiN4owdOxbFxcVYsGAB8vLy4O3tjTp16mDTpk0YOnQo2+FVS/PmzREbGwtXV1e2Q1E4DQ0NJCYmygy9io+Ph5qa8n40s7GxwZ07d+Dg4CC1/c6dO0q3uvHHioqKMGTIEJWcn+u3335Dp06d8PDhQxQVFWHBggV49uwZ0tLScOfOHbbDqxW3bt1SumG87u7ucHd3x4wZM/Do0SNs3boVhw4dwqlTp/Ddd9+xHV6V3bx5k+0QaoyzszN+/vlnBAQEoFmzZtDR0ZG6X1mnZli1ahX279+PdevWYeLEiZLtjRo1woYNG1Ry7ltCSOUo76daQlSAQCBAfHy8zJezoKAgyQrBykhV8wIoN2U1c+ZMqdtCoRB5eXng8/nQ1tZW2oIjAEycOBETJ05ESkoKxGIxzMzM2A5JIaZPn46ZM2di/vz5cufMc3d3Zymy6vv666+xePFi/P333zAwMAAAZGRk4IcfflDqeUUnTJiAWbNmQSgUSubevH79OhYsWIC5c+eyHF31jB49GsePH8cPP/zAdigK5+bmhpCQEGzbtg08Hg+5ubkYMGAAvv/+e1haWrIdHpEjKCgIvr6+8PX1xe3bt5GdnY3GjRtj5syZ6Ny5M9vhVYunpyfbIdSYXbt2QSAQ4NGjR3j06JHUfRwOR2kLjgcOHMDOnTvx1VdfSRW73d3d8fLlSxYjI4SwjQqOhLDI29sbCxcuxMmTJ8HhcCAWi3Hnzh3MmzcPo0aNYju8KlPVvADKTVmlp6fLbAsPD8eUKVMwf/58FiJSPBMTE7ZDUKghQ4YAgNQCJBwORyUWjVm/fj06duwIOzs7yaI/wcHBMDc3x8GDB1mOruoWLFiAtLQ0TJ06FUVFRQAATU1NLFy4EIsXL2Y5uuoRiURYt24dLl++DHd3d5kC+B9//MFSZIphYWGBFStWsB0GqaQWLVqgadOm8PT0xMSJE9GxY8dPrqKrTG7fvo0dO3YgMjISJ0+eRJ06dXDw4EE4ODigffv2bIdXZVFRUWyHUCPi4uLkLsIkFoshFApZiKj2cTgctkMg5IvEYRia4ZQQtgiFQowZMwbHjh0DwzBQU1ODSCSCt7c39u3bBx6Px3aIVaKqeQGUm6p5+PAhRowYobRX4FNTU7F06VLcvHkTSUlJEIvFUvenpaWxFFn1fWp1XDs7u1qKpGbk5ubi8OHDePLkCbS0tODu7o5hw4bJFLKUUU5ODl68eAEtLS24uLjILDzy9u1bWFlZKdXw5Iq6xjgcjtIvZFRQUICQkBC555E+ffqwFFXt0dPTw5MnT5RmhdmsrCyVKjCWdfr0aYwcORLDhw/HwYMH8fz5czg6OuLPP//EhQsXcPHiRbZDrLaioiJERUXByclJqafR+KB58+aYNWsWRowYIfVeWrFiBa5du4bbt2+zHWKNU7ZzCCG1hQqOhHwBIiMj8fjxY4jFYjRt2hQuLi5sh6QQqpoXQLmpiqCgIHh6eirtypc9e/ZEREQExo8fD3Nzc5kr7KNHj2YpstrzzTffYNeuXSo59FNVc9PX10dwcLBKfjFTxmKqj48PRo0ahZSUFJn7lL2buLKUsViQkZGBU6dOISIiAvPnz4eRkREeP34Mc3NzpZ4GpWnTppg9ezZGjRol9boEBwejR48eSEhIYDvEKsvLy8P06dOxf/9+AMCrV6/g6OiIGTNmwMrKCosWLWI5wqo5f/48Ro4cicWLF2PlypVYsWIFwsLCcODAAVy4cEGppwqprNjYWFhZWankxXlCqoMKjoQQQlTeP//8I3WbYRjEx8dj69atsLGxwaVLl1iKrHr09PTg7++Pxo0bsx0Ka5SxUFBZqpqbquYFKGcx1dnZGd27d8fSpUthbm7OdjisULZjMiQkBF999RUEAgGio6MRFhYGR0dHLFmyBG/evKlwobQvnba2Np4/fw57e3up1yUyMhJubm4oKChgO8QqmzlzJu7cuYONGzeiR48eCAkJgaOjI/755x8sW7YMQUFBbIdYZZcvX8aaNWvw6NEjiMVieHh4YOnSpejWrRvboX22AQMGVHrfM2fO1GAkhCg/5bn8SogKGjRoEH755ReZ7b/99hu8vLxYiEgxVDUvgHJTVv369ZP6N2DAACxfvhzu7u7Ys2cP2+FVWb169ZRuZVVCVJkyXsdPSkrCnDlzVK7YKBQKMXbsWERGRn5y3x9++AFGRka1EJVizJkzB2PHjkV4eDg0NTUl23v27Ilbt26xGFn1WVpa4vXr1zLb/f39laYgXJ5z585h69ataN++vdSIBDc3N0RERLAYWfV1794dfn5+yMnJQV5eHvz9/ZWy2AgABgYGkn/6+vq4fv06Hj58KLn/0aNHuH79umTRN0JI+ajgSAiL/Pz88M0338hs79Gjh1J/YFTVvADKTVmJxWKpfyKRCAkJCThy5IhSD1f9888/8eOPP8LPzw+pqanIysqS+kcIIZ8yaNAg+Pr6sh2Gwqmrq+Ps2bOV2nfx4sUQCAQ1G5ACPXjwAJMnT5bZXqdOHaUecgwAkydPxsyZM3Hv3j1wOBy8e/cOhw8fxrx58zB16lS2w6uW5ORkmJmZyWzPzc2lRUe+IHv37pX8Mzc3x+DBgxEVFYUzZ87gzJkziIyMxNChQ1VusT5CaoLyz1JLiBLLyckBn8+X2a6urq7UxQJVzQug3FTBhw4kVfhwLxAIkJmZiS5dukhtV4WVnAkhtWPr1q3w8vLC7du30ahRI5mFi2bMmMFSZNXXv39/nDt3DnPmzGE7FIXS1NSU+3c5LCwMpqamLESkOAsWLEBmZiY6d+6MgoICdOzYERoaGpg3bx6mTZvGdnjV0qJFC/z777+YPn06gNLPIX/99RfatGnDZmifzdDQsNKfo5R5Abs9e/bA399fam5GHo+HOXPmoG3btvjtt99YjI6QLx8VHAlhUcOGDXH8+HEsXbpUavuxY8fg5ubGUlTVp6p5AZSbMtu9ezc2bNiA8PBwAICLi8v/27v3qKrKfX3gz0TRlgYiitdM5aKBQqJQKIWiFOzcG0xUzAspMky3gmKh5vF+w7yAt7aUsI/QhWy31TijAlJATSHlIohiAiK49wZJ1OyADmSxfn/4cx2WoCFrwcucPp8xGsE75x/Pd4CTtb7rvWDx4sUIDAwUnKz5pk+fjg4dOuDLL79s9NAYoraIv6dty5dffonExESoVCqkpqbq/HwkSZJ1w9Ha2hobNmzA6dOnMWLECHTu3Fnnulxr8/Hxwfr16/H1118DePBzKi0txfLly+Hr6ys4nf42bdqE//qv/8LFixdRV1cHOzs7PP/886Jj6S0sLAxeXl64ePEiamtrsWvXLly4cAFpaWk4fvy46HhPZefOnaIjtIra2lrk5+dj8ODBOuP5+fmoq6sTlIpIPthwJBJo1apV8PX1RVFRkXaG0rFjxxAXF4d//OMfgtM1n1LrAlibXK1atQoREREICgrSziJIS0tDSEgIrl69io0bNwpO2Dx5eXnIzs5u8EKYqC2T4z6HTSXHZurKlSuxfv16LF++XFanazdFVFQUzMzMkJmZiczMTJ1rcm6mbt++HW+99RZ69OiBu3fvYvTo0SgvL8fIkSOxadMm0fEMolOnTnBychIdw6BGjRqFU6dOYfv27bCyskJSUhKGDx+OtLQ02Nvbi473VN59913REVrF7NmzERAQgMLCQri4uAAA0tPTsWXLFsyePVtwOqK2j6dUEwn23XffYfPmzTh37hxUKhUcHBywZs0ajB49WnQ0vSi1LoC1yVH37t2xZ88evPPOOzrjcXFxCAoKwo0bNwQl04+bmxtWr14NDw8P0VGECQsLw/z582W1/1pTybW2wsJCFBUVwc3NDSqVSrvE/6Fr166hT58+OkvUlEJupx0DgLm5Oc6ePQsrKyvRUegpJScnIysrS3sqsIeHR4N/b3Jz79497NmzBykpKaioqGgwiywrK0tQMnqcsWPHYvTo0VizZo3O+K1bt+Dr64vk5GRByfRXV1eH7du3Y9euXSgrKwPw4GCjRYsW4f3331fk3zEiQ2LDkYiIFK9r1644c+YMbGxsdMYvX76MV155Bbdv3xYTTE//+Mc/sHbtWoSGhja695qDg4OgZIbx2WefITIyEsXFxUhLS0P//v2xc+dODBw4ED4+PqLj6UWJtVVWVsLPzw/JycmQJAkFBQWwtLTEnDlzYGZmhh07doiOqDclNlNDQkJgYWGBFStWiI7SYmpqalBcXAwrKyu0by//BV5hYWH48MMPG4yr1WrMmDEDcXFxAlIZxrRp0/Djjz9i0qRJjW4V8mhTS27UajUOHz6M/Px8SJIEW1tb+Pj4yPr30sjICN26dYOrqyu++OIL7dYF169fR58+fRSzn/TDfVNNTU0FJyGSD/k+2YgU4vbt2/jmm29w5coVfPDBBzA3N0dWVhZ69uyJvn37io7XbEqtC2BtcjRjxgzs27cP4eHhOuOffvoppk+fLiiV/vz8/AAAAQEB2jFJkhRxaMy+ffuwevVqLF68GJs2bdLWYmZmhp07d8q2KQcot7aQkBC0b98epaWlsLW11Y77+fkhJCRE1g3HxzVTAwMDdZqp/fr1E5z06anVamzduhWJiYlwcHBo8MHFo89NOamurkZQUBBiYmIAPPiQydLSEsHBwejTpw+WL18uOGHz7Ny5E926dcPcuXO1Y2q1GlOnTkVeXp7AZPr77rvv8P3338PV1VV0FIPLy8uDj48PysvLtVuhXL58GRYWFoiPj5fdsur6jh49ivfeew8uLi74n//5HwwYMEB0JINjo5Ho6bHhSCRQbm4uPDw80KVLF1y9ehWBgYEwNzfH4cOHUVJSgtjYWNERm0WpdQGsTc6io6ORlJSkswfPtWvX4O/vr3OCqZzeXBcXF4uO0GL27NmD/fv3Y8KECdiyZYt23MnJCR988IHAZPpTam1JSUlITEzECy+8oDNuY2ODkpISQakMQ8nN1PPnz8PR0REAGjSr5Lw0FwA+/PBD5OTkIDU1FV5eXtpxDw8PrFmzRrYNx++//x4eHh4wMzPDlClTcP/+ffj5+eHSpUtISUkRHU8vffv2hYmJiegYLSIwMBBDhgxBRkYGunbtCuDBsuNZs2Zh7ty5SEtLE5yw+Xr37o3jx48jICAAzs7O+Mc//qHzrJQTR0fHJj/7uMSf6MnYcCQSaMmSJZg1axa2bt2q8+LqT3/6E6ZNmyYwmX6UWhfA2uQqLy8Pw4cPBwAUFRUBACwsLGBhYaHzBltub6779+8vOkKLKS4u1jZB6uvYsSOqqqoEJDIcpdZWVVWFTp06NRi/ceMGOnbsKCCR4Si5mSr3BtWTHDlyBAcPHoSLi4vO893Ozk77t0CORowYgcOHD8PHxwcdO3ZEdHQ0ioqKkJKSgp49e4qOp5cdO3Zg2bJliIyMVNzfuJycHJ1mI/Bgy5dNmzbB2dlZYDL9PPy31bFjR3zxxRfYuHEjvLy8sGzZMsHJmmfChAmiIxApBhuORAKdPXsWn3zySYPxvn37ory8XEAiw1BqXQBrk6umvqH+17/+hbq6ujZ9Umt8fDz+9Kc/wdjYGPHx8U+819vbu5VSGd7AgQNx7ty5Bm84f/jhB9jZ2QlKZRhKrc3NzQ2xsbHYsGEDgAdvQuvq6rBt2za4u7sLTqcfJTdTlezXX39Fjx49GoxXVVXJ7gOmR40ZMwafffYZfH19YWtri+PHj6N79+6iY+nNyckJ9+7dg6WlJTp16tRgif/NmzcFJdPf4MGDcf36dQwZMkRnvKKiAtbW1oJS6e/RIyFWrlwJW1tb2Z5kLfd9QonaEjYciQR67rnntBsQ1/fLL7/AwsJCQCLDUGpdAGtTOjs7O5w7d65NnzA7YcIElJeXo0ePHk/8FF7ueziGhoZiwYIFuHfvHjQaDc6cOYO4uDiEhYUhKipKdDy9KLW2bdu2YcyYMcjIyEBNTQ2WLl2KCxcu4ObNmzh16pToeHpRWjN14sSJOHDgAExNTTFx4sQn3nvo0KFWSmV4zs7O+O677xAUFATg/2Zi7d+/HyNHjhQZ7ak97udkYWEBMzMznf0c5fwze+edd/Dvf/8bmzdvbvTQGLmp/7pq8+bNCA4Oxtq1a3W2d1m/fj0++ugjURH1Vlxc3OB1oq+vL1566SVkZGQISmVYmZmZ2oN+7OzsGl2lQEQNseFIJJCPjw/Wr1+Pr7/+GsCDF8KlpaVYvnw5fH19BadrPqXWBbA2pXv0U/q2qK6urtGvlWb27Nmora3F0qVLUV1djWnTpqFv377YtWsXpk6dKjqeXpRam52dHXJzc7Fv3z60a9cOVVVVmDhxIhYsWIDevXuLjqcXpTVTu3Tpom3kmJqayr6p8zhhYWHw8vLCxYsXUVtbi127duHChQtIS0vD8ePHRcd7Kl26dGl03NPTs5WTtKzTp08jLS0NL7/8sugoBmFmZqbz70uj0WDKlCnasYevO/7yl7/I9kPC48ePw8nJqcEMfSsrK2RmZgpKZRgVFRWYOnUqUlNTYWZmBo1Gg99++w3u7u746quvnpkP5ImaS9LI4d0VkULduXMHb731Fi5cuIDff/8dffr0QXl5OUaOHInvv/8enTt3Fh2xWZRaF8DalM7ExAQ5OTlteoZjfbGxsfDz82uwpLOmpgZfffUV/P39BSUzrBs3bqCurq7RpZFyp+TalKa8vBz79u1DZmYm6urqMHz4cEU0U5Xu/Pnz2L59u87PbdmyZbI+Efju3buoq6vT/l2+evUqjhw5AltbW9k3IIcPH46//e1v2hmAcvc0je3Ro0e3YJKWY2RkhM6dO+PAgQM6H1Bfv34dffr0kW0jFXhwMFhRURE+++wz7SE4Fy9exLvvvgtra2vExcUJTkjUtrHhSNQGJCcnIysrS/tC2MPDQ3Qkg1BqXQBrUyq5NRzbtWuHsrKyBs2qyspK9OjRQ9Yv8kme7t27h9zcXFRUVDSYgSvnPUWVbOzYsTh06BDMzMx0xu/cuYMJEyYgOTlZTDB6rDfffBMTJ07EvHnzcPv2bbz00kswNjbGjRs3EB4ejvnz54uO2GxJSUlYt24dNm3aBHt7+wZ7OJqamgpKRo9jZGSE7du3Y+XKlVi6dCnWrl0L4EHDsXfv3rJejdGlSxccPXq0waE+Z86cwZtvvonbt2+LCUYkE2w4EhER/X9yazgaGRnh+vXrDZb05OTkwN3dXdab61dWVmL16tVISUlptHnF2tqehIQE+Pv748aNGw2uyX1PUUC5zVQjIyPtvrD1VVRUoG/fvrh//76gZIahVqtx+PBh7f5rtra28PHxQfv28t1Zqnv37jh+/DiGDBmCqKgo7NmzB9nZ2fjnP/+J1atXIz8/X3TEZnt4aNujy/w1Gg2fI23Uw2fIlStX8Pbbb8PV1RWfffYZ7ty5I/sZjiYmJjh58iSGDRumM56dnY3Ro0c3uvc5Ef0f+f6lJZKp3bt3Y+7cuXjuueewe/fuJ94bHBzcSqn0p9S6ANb2kNxqaw657GPm6OgISZIgSRLGjRun88ZZrVajuLgYXl5eAhPqb8aMGSgqKsKcOXMUcXBAfUqtbeHChZg8eTJWr16Nnj17io5jUEpspubm5mq/vnjxIsrLy7Xfq9VqJCQkoG/fviKiGUxeXh58fHxQXl6OwYMHAwAuX74MCwsLxMfHy3ZZdXV1NUxMTAA8mBE4ceJEGBkZwcXFBSUlJYLT6SclJUV0hBajxOcI8H+vnVxcXPDzzz/D29sbo0aNQmRkpOBk+hs7diwWLVqEuLg49OnTBwDw73//GyEhIRg3bpzgdERtH2c4ErWygQMHIiMjA926dcPAgQMfe58kSbhy5UorJtOPUusCWBsgz9qaQy4zHNetW6f9//vvv4/nn39ee61Dhw4YMGAAfH190aFDB1ER9WZiYoKffvpJMQcH1KfU2kxNTZGdnQ0rKyvRUQzO2toanp6eimqmGhkZNTi4oj6VSoU9e/YgICCgtaMZjIuLC3r06IGYmBh07doVAHDr1i3MmjULFRUVSEtLE5yweRwcHBAYGIi3334bQ4cORUJCAkaOHInMzEyMHz9ep3msVH/961+xfv16dO/eXXSUJlPicwRoOEu6uroa06dPx7Fjx1BVVSXbRioAXLt2DT4+PsjLy0O/fv0gSRJKSkrg4OCAI0eOoF+/fqIjErVpbDgStREP/ykqZabLQ0qtC2BtSnTt2jX06dMH7dq1Ex2lSWJiYuDn54fnnnvuiffFxcXB29tbVgf/ODs7Y8+ePYo5OKA+pdYWEBAAV1dXzJkzR3QUg1NiM7WkpAQajQaWlpY4c+aMztYMHTp0QI8ePWTzLHwclUqFjIwMDBkyRGc8Ly8Pzs7OuHv3rqBk+vnmm28wbdo0qNVqjBs3DklJSQAenMp94sQJ/PDDD4ITtjxTU1OcO3euzX9AWJ8SnyPAgw8/Q0ND0alTJ53xNWvW4MSJE4qYtXr06FHk5+dDo9HAzs7umdrfnEgfbDgSCRYdHY2IiAgUFBQAAGxsbLB48WIEBgYKTqYfpdYFsDY5unfvHvbs2fPYPfOysrIEJWsdcnxjdvbsWSxfvhyrV6/G0KFDFXVwgFJrq66uxuTJk2FhYdHoYQ9y3pZByc3Upho/fjyioqJkdSr3sGHDEB4ejrFjx+qMJycnY9GiRTh//rygZPorLy9HWVkZXn75Ze2+h2fOnIGpqSleeuklwelanlxWJNTH54g8HTt2DMeOHWv09ePf//53QamI5IF7OBIJtGrVKkRERCAoKAgjR44EAKSlpSEkJARXr17Fxo0bBSdsHqXWBbA2uQoICMCPP/6ISZMm4ZVXXnnmZm7K8bNFMzMz/Pbbbw0aBUo4OECptX355ZdITEyESqVCamqqzr8zSZJk3XDcu3cvJk+ejJMnTyqumdpUJ06ckMWMwPqHOGzevBnBwcFYu3atdkZxeno61q9fj48++khURIPo1asXevXqpTP2yiuvCEpDTaHU50hsbOxjr0mShJkzZ7ZiGsNat24d1q9fDycnJ/Tu3fuZe/1IpC/OcCQSqHv37tizZw/eeecdnfG4uDgEBQU1uqm0HCi1LoC1yVWXLl3w/fffw9XVVXQUIeQ4E+SVV15B+/btsWjRokYPVhk9erSgZPpTam29evVCcHAwli9frp1xpRRRUVGYN28eVCoVunXr1qCZyj1u2476e1MCDbcIqf+9XJv7JJ/fx/qU+hx5uD/qQ/fv30d1dTU6dOiATp064ebNm4KS6a93797YunWrrJumRCJxhiORQGq1Gk5OTg3GR4wYgdraWgGJDEOpdQGsTa769u2rPdGT5CEvLw/Z2dnak2WVRKm11dTUwM/PT3HNRgBYuXIl1q9fr8hmqtIoYb84UialPkdu3brVYKygoADz589HaGiogESGU1NTg1GjRomOQSRbynnSEcnQjBkzsG/fvgbjn376KaZPny4gkWEotS6AtcnVjh07sGzZMpSUlIiOQk3k5OSEa9euiY7RIpRa27vvvouDBw+KjtEilNxMVZrRo0c3+T+i1vQsPUdsbGywZcsWLFq0SHQUvQQGBuLLL78UHYNItjjDkUiw6OhoJCUl6ewtdO3aNfj7+2PJkiXa+8LDw0VFbBal1gWwNkB+tTk5OeHevXuwtLREp06dGuybJOflPkoVFBSERYsWITQ0tNG9rhwcHAQl059Sa1Or1di6dSsSExPh4ODQoC65PTfqe9hMXbFihego9JTu3buH3NzcRg988Pb2FpSK9DVjxgzZHbD1rD1H2rVrh//85z+iYzy1+q936+rq8Omnn+Lo0aOK+7tG1Bq4hyORQO7u7k26T5IkJCcnt3Aaw1FqXQBrA+RZm4eHB0pLSzFnzpxG98x79913BSVrHUOHDsUPP/yAfv36iY7SZI3NAJEkSfYHqwDKre1JzxA5PjfqCw4ORmxsLF5++eVn9k2nHPfMS0hIgL+/f6N7EMv535qSDRw4EDNmzMD06dMVd9q2Up8j8fHxOt9rNBqUlZVh79696NevH3744QdByZpHya+HiVobG45ERKR4nTp1QlpaGl5++WXRUaiJ/mj5e//+/VspieEpuTalUnIztanCwsIwf/58mJmZiY7SZNbW1vD09MTq1avRs2dP0XGoCcLDwxEXF4fMzEw4Ojpi5syZ8PPzQ+/evUVH05tSnyOPfogmSRIsLCwwduxY7NixQxE/OyJqHjYciYhI8YYPH46//e1v2qXicta1a9cGMzQfh0vFiagxj85IehI5Lzs2NTVFdnY2rKysREehp3T58mV88cUX+Oqrr3DlyhW4u7tjxowZ8Pf3Fx2NnuDhtgXPwj6VRPTH2HAkIiLFS0pKwrp167Bp06ZG98yT0z5QMTEx2q8rKyuxceNGeHp6YuTIkQCAtLQ0JCYmYtWqVQgJCREVs1ni4+Pxpz/9CcbGxn/YEJFbE0SptU2cOBEHDhyAqakpJk6c+MR7Dx061Eqp6I80NiOp/luC+h9qyHnZcUBAAFxdXTFnzhzRUUgP6enpmD9/PnJzc2X9+/hQYWEhioqK4ObmBpVKpd1OQ86io6MRERGBgoICAA8OjVm8eDECAwMFJyMikdhwJCIixXv45vrRF/Ry3zPP19cX7u7uWLhwoc743r17cfToURw5ckRMsGYyMjJCeXk5evTo8cTZEXL8mSm1ttmzZ2P37t0wMTHBrFmznvim+b//+79bMZn+npVm6tGjR7Fs2TJs3rwZI0eOhCRJOH36NFauXInNmzfjjTfeEB2x2aqrqzF58mRYWFg0+mFTcHCwoGTUFGfOnMGXX36JgwcP4rfffsNf/vIXHDx4UHSsZqusrMSUKVOQkpICSZJQUFAAS0tLzJkzB2ZmZtixY4foiM2yatUqREREICgoSOfDz71792LRokXYuHGj4IREJAobjkREpHjHjx9/4vXRo0e3UhLDev7553Hu3DlYW1vrjBcUFMDR0RH/+7//KygZkfwpuZla39ChQxEZGYnXXntNZ/zkyZOYO3cu8vPzBSXTX1RUFObNmweVSoVu3brp/AwlScKVK1cEpqPGPFxK/eWXX+Lq1atwd3fH9OnTMXHiRJiYmIiOpxd/f39UVFQgKioKtra22kOYkpKSEBISggsXLoiO2Czdu3fHnj178M477+iMx8XFISgoqNFDm4jo2dBedAAiIqKWJteG4h/p1q0bDh8+jNDQUJ3xI0eOoFu3boJSGUZsbCz8/PzQsWNHnfGamhp89dVXst7HS6m1jR07FocOHWpwqMidO3cwYcIE2R2IUL+JeODAAXFBWlhRURG6dOnSYLxLly64evVq6wcyoJUrV2L9+vVYvnw595STiZdeeglOTk5YsGABpk6dil69eomOZDBJSUlITEzECy+8oDNuY2Pzh4eJtWVqtRpOTk4NxkeMGIHa2loBiYioreAMRyIiUrwTJ0488bqbm1srJTGsAwcOYM6cOfDy8tIuY0pPT0dCQgKioqIwa9YssQH10K5dO5SVlaFHjx4645WVlejRo4eslh0/Sqm11V82Xl9FRQX69u2L+/fvC0qmP6U1U+tzc3ODsbExPv/8c+1psuXl5Zg5cyZqamr+cIZ4W2Zubo6zZ8/y0BgZuXz5MgYNGvSH98XFxcHb2xudO3duhVSGYWJigqysLNjY2MDExEQ7w/Hs2bPw8vJCZWWl6IjNEhQUBGNjY4SHh+uMf/DBB7h79y4+/vhjQcmISDTOcCQiIsUbM2ZMgzElHIowa9Ys2NraYvfu3Th06BA0Gg3s7Oxw6tQpvPrqq6Lj6eVxm+j/61//anQ2lpworbbc3Fzt1xcvXkR5ebn2e7VajYSEBPTt21dENINJTU1FTU1Ng/F79+7h5MmTAhIZzt///ne8/fbb6N+/P1588UUAQGlpKQYNGiS7fWAf9e677+LgwYNYsWKF6CjURE1pNgLAe++9h1dffRWWlpYtnMhw3NzcEBsbiw0bNgB48Dqkrq4O27Ztg7u7u+B0+omOjkZSUhJcXFwAPPjw89q1a/D398eSJUu09z3alCQiZWPDkYiIFO/WrVs639+/fx/Z2dlYtWoVNm3aJCiVYbz66qv44osvRMcwGEdHR0iSBEmSMG7cOLRv/38vVdRqNYqLi+Hl5SUwYfMptbZhw4Zp6xo7dmyD6yqVCnv27BGQTH/PQjPV2toaubm5+PHHH3Hp0iXtBxceHh6yPzlXrVZj69atSExMhIODQ4NDY9j8kC85LtLbtm0bxowZg4yMDNTU1GDp0qW4cOECbt68iVOnTomO12x5eXkYPnw4gAdbNACAhYUFLCwskJeXp71P7s8TInp6bDgSEZHiNTZr7I033kDHjh0REhKCzMxMAama586dO02+19TUtAWTtIwJEyYAAM6dOwdPT088//zz2msdOnTAgAED4OvrKyidfpRaW3FxMTQaDSwtLXHmzBlYWFhor3Xo0AE9evRAu3btBCZsPiU3U+uTJAlvvvkm3nzzTdFRDOr8+fNwdHQEAJ3GB8DmB7U+Ozs75OTkIDIyEu3atUNVVRUmTpyIBQsWaLczkKOUlBTREYiojeIejkRE9MzKz8+Hs7OzrE5zNjIy+sM3yg+X7Mp1qTgAxMTEwM/PD88999wT75PjPl5Krq0pxo8fj6ioKFm8wS4pKVFkM3X37t1Nvjc4OLgFkxA1T/09EOXk3r17yM3NRUVFBerq6nSueXt7C0pFRNQy2HAkIiLFq78sEnjQkCsrK8OWLVtw//59WS1lepoDHJR6Ond9pqamOHfunOzedDaFUmuTa6OgKeTSTB04cGCT7pMkCVeuXGnhNC2vsLAQRUVFcHNzg0qleuw+qiQfcnyOJCQkwN/fH5WVlQ2WhMv9Q0IiosZwSTURESnew2WRj77Ad3Fxwd///ndBqZrnWWgiPg0lf26q5NqU6sSJE7h7967oGH+ouLhYdIRWUVlZiSlTpiAlJQWSJKGgoACWlpYIDAyEmZkZduzYIToiPUMWLlyIyZMnY/Xq1ejZs6foOERELY4NRyIiUrxH31wbGRnBwsLiD5e0ysHt27cRHR2N/Px8SJIEOzs7BAQEyPK0YyIS62GTWymz/0JCQmBsbIzS0lLY2tpqx/38/BASEsKGo8zUn5nav3//BocAtXUVFRVYsmQJm41E9MwwEh2AiIiopfXv3x+FhYX45JNPsGHDBqxZswZ//etfERAQgICAANHxmi0jIwNWVlaIiIjAzZs3cePGDYSHh8PKygpZWVmi4xGRTMTGxsLe3h4qlQoqlQoODg747LPPRMfSW1JSEj766CO88MILOuM2NjYoKSkRlIqeJCwsrNFxtVqNadOmab/Py8tDv379WiuWQUyaNAmpqamiYxARtRrOcCQiIsVbt24d1q9fDycnJ/Tu3VtRs3e8vb2xf/9+tG//4E96bW0tAgMDsXjxYpw4cUJwQiJq68LDw7Fq1SosXLgQrq6u0Gg0OHXqFObNm4cbN24gJCREdMRmq6qqQqdOnRqM37hxAx07dhSQiP7Izp070a1bN8ydO1c7plarMXXq1AYnjcvN3r17MXnyZJw8eRL29vYNZmjygCYiUho2HImISPEiIyNx4MABzJw5U3QUg8rIyNBpNgJA+/btsXTpUjg5OQlMRkRysWfPHuzbtw/+/v7aMR8fHwwZMgRr166VdcPRzc0NsbGx2LBhA4AHS8Xr6uqwbds2uLu7C05Hjfn+++/h4eEBMzMzTJkyBffv34efnx8uXbqElJQU0fH08uWXXyIxMREqlQqpqak6H35KksSGIxEpDhuORESkeDU1NRg1apToGAZnamqK0tJSvPTSSzrj165dg4mJiaBUrUuO+3g1lVJrW7FiBczNzUXHoP+vrKys0efjqFGjUFZWJiCR4Wzbtg1jxoxBRkYGampqsHTpUly4cAE3b97EqVOnRMejRowYMQKHDx+Gj48POnbsiOjoaBQVFSElJUX2ex+uXLkS69evx/Lly2FkxJ3NiEj5JA2PQCQiIoVbtmwZnn/+eaxatUp0FIMKDg7G4cOHsX37dowaNQqSJOGnn35CaGgofH19sXPnTtERSeHi4+ObfK+3t3cLJmkbwsLCMH/+fJiZmYmO0mRDhw7FtGnTsGLFCp3xjRs34uDBgzh//rygZIZRVlaGyMhIZGZmoq6uDsOHD8eCBQvQu3dv0dHoCeLj4+Hr6wtbW1skJyeje/fuoiPpzdzcHGfPnoWVlZXoKERErYINRyIiUrxFixYhNjYWDg4OcHBwaDBrLDw8XFAy/dTU1CA0NBSRkZGora0FABgbG2P+/PnYsmWL7PYo69q1a5P317x582YLpzEspdb26CwdSZJQ/6Vl/ZrVanWr5TKEZ6WZ+s9//hN+fn7w8PCAq6ur9oOLY8eO4euvv8bbb78tOqJe7t27h9zcXFRUVKCurk7nmpx/bkoyceLERsfT09NhbW2t02w8dOhQa8UyuJCQEFhYWDRo7hMRKRWXVBMRkeLl5uZi2LBhANBg03k5HyDToUMH7Nq1C2FhYSgqKoJGo4G1tXWjhyTIQf0ZmZWVldi4cSM8PT0xcuRIAEBaWhoSExNlOVNVqbXVb+AcPXoUy5Ytw+bNmzFy5EhIkoTTp09j5cqV2Lx5s8CUzTNhwgSd75XUTK3P19cXP//8MyIiInDkyBFoNBrY2dnhzJkzcHR0FB1PLwkJCfD390dlZSUenWMhSZKsf25K0qVLl0bHPT09WzlJy1Kr1di6dSsSExMV9eEnEdHjcIYjERERtTm+vr5wd3fHwoULdcb37t2Lo0eP4siRI2KCGYBSaxs6dCgiIyPx2muv6YyfPHkSc+fORX5+vqBk+vujZuobb7whOiI1wtraGp6enli9erXs9/8j+XvSQUWSJCE5ObkV0xARtTw2HImIiGSqqqoKW7ZswbFjxxpdLnjlyhVByfT3/PPP49y5c7C2ttYZLygogKOjI/73f/9XUDL9KbU2lUqFM2fOwN7eXmc8NzcXr776Ku7evSsomf6U3EwFHsxULSwsbPQ54ubmJiiV/kxNTZGdnc0982SkuLgYtbW1sLGx0RkvKCiAsbExBgwYICYYERE9NS6pJiIikqnAwEAcP34cM2fORO/evWW9PPxR3bp1w+HDhxEaGqozfuTIEXTr1k1QKsNQam3Ozs5YvHgxPv/8c+2BHOXl5Xj//ffxyiuvCE6nn6KiokaXfXbp0gVXr15t/UAGlJ6ejmnTpqGkpERxy44nTZqE1NRUNhxlZNasWQgICGjQcPz5558RFRWF1NRUMcGIiOipcYYjERGRTJmZmeG7776Dq6ur6CgGd+DAAcyZMwdeXl7afQ7T09ORkJCAqKgozJo1S2xAPSi1tsLCQrz99tv45Zdf8OKLLwIASktLMWjQIBw5cqTBjE45cXNzg7GxcYNm6syZM1FTU4Pjx48LTth8w4YNw6BBg7Bu3bpGP7h43P56clBdXY3JkyfDwsIC9vb2DfbMCw4OFpSMHsfU1BRZWVkNnheFhYVwcnLC7du3xQQjIqKnxoYjERGRTA0cOBDff/89bG1tRUdpET///DN2796N/Px87UEWwcHBePXVV0VH05tSa9NoNPjxxx9x6dIlbV0eHh6yn32r5GZq586dkZOTI+saHicqKgrz5s2DSqVCt27ddH4PJUmS9bYTStWlSxekpqY2OLAoMzMTY8aMwe+//y4oGRERPS02HImIiGTq888/x7fffouYmBjZnkxNJBdKbaaOHTsWS5cuhZeXl+goBterVy8EBwdj+fLlMDIyEh2HmuDPf/4zOnXqhLi4OLRr1w7Ag9Od/fz8UFVVhR9++EFwQiIiaio2HImIiGTE0dFRp8FRWFgIjUaDAQMGNFgumJWV1drx9HLnzp0m32tqatqCSQxPqbXt3r27yfdy+WrbkZubq/26qKgIK1euRGhoaKPLjh0cHFo7nsGYm5vj7Nmz3MNRRi5evAg3NzeYmZnh9ddfB/DgcKY7d+4gOTkZQ4cOFZyQiIiaig1HIiIiGVm3bl2T712zZk0LJjE8IyOjP5wtptFoZHmQhVJrGzhwYJPuk+PyVSU3Ux/+Pj7ubcDDa3L7fXxUSEgILCwssGLFCtFR6Cn85z//wd69e5GTkwOVSgUHBwcsXLgQ5ubmoqMREdFTYMORiIhI4eLi4uDt7Y3OnTuLjvJET3PwxujRo1swieEpuTalUnIztaSkpMn39u/fvwWTtKzg4GDExsbi5ZdfhoODQ4PZm+Hh4YKSERERKR8bjkRERApnamqKc+fOwdLSUnQUekY8fHkp9/0N6f+MHz8eUVFR2lO65cDd3f2x1yRJQnJyciumoadRXV2N0tJS1NTU6IzLeYk/EdGzpr3oAERERNSy5PrZ4u3btxEdHY38/HxIkgQ7OzsEBASgS5cuoqPpTam1xcbGYtu2bSgoKAAADBo0CKGhoZg5c6bgZIbzrDZTT5w4gbt374qO8VRSUlJER6Cn9Ouvv2L27NmPPRxGzkv8iYieNTyujYiIiNqcjIwMWFlZISIiAjdv3sSNGzcQHh4OKysr2R2G8yil1hYeHo758+fjrbfewtdff42DBw/Cy8sL8+bNQ0REhOh4eouNjYW9vT1UKpV2X7nPPvtMdCwiRVm8eDFu3bqF9PR0qFQqJCQkICYmBjY2NoiPjxcdj4iIngKXVBMRESmciYkJcnJyZLWk+vXXX4e1tTX279+P9u0fLMiora1FYGAgrly5ghMnTghO2HxKrW3gwIFYt24d/P39dcZjYmKwdu1aFBcXC0qmv/DwcKxatQoLFy6Eq6srNBoNTp06hY8//hgbN25ESEiI6IgtTo7PEZKf3r1749tvv8Urr7wCU1NTZGRkYNCgQYiPj8fWrVvx008/iY5IRERNxIYjERGRwsmxUaBSqZCdnY2XXnpJZ/zixYtwcnJCdXW1oGT6U2ptzz33HPLy8mBtba0zXlBQAHt7e9y7d09QMv0puZnaVHJ8jpD8mJqaIjc3FwMGDMCAAQPwxRdfwNXVFcXFxRgyZIhsn49ERM8iLqkmIiKiNsfU1BSlpaUNxq9duwYTExMBiQxHqbVZW1vj66+/bjB+8OBB2NjYCEhkOGVlZRg1alSD8VGjRqGsrExAIiJlGjx4MH755RcAwLBhw/DJJ5/g3//+NyIjI2V1YBEREfHQGCIiIkXSaDTaQy369+8PY2NjwYmejp+fH+bMmYPt27dj1KhRkCQJP/30E0JDQ/HOO++IjqcXpda2bt06+Pn54cSJE3B1ddXWdezYsUYbkXLysJm6YsUKnXElNFOJ2pLFixdrm/hr1qyBp6cnPv/8c3To0AExMTGC0xER0dPgkmoiIiKZCgsLw4cffthgXK1WY8aMGYiLixOQyjBqamoQGhqKyMhI1NbWAgCMjY0xf/58bNmyBR07dhScsPmUXFtmZiYiIiKQn58PjUYDOzs7vP/++3B0dBQdTS///Oc/4efnBw8Pj0abqW+//bboiM1y//59zJ07F6tWrfrDpdJhYWGYP38+zMzMWiccPfM0Gg3u3r2LS5cu4cUXX0T37t1FRyIioqfAhiMREZFM9ezZExs2bMDcuXO1Y2q1GlOnTkVeXh7y8/MFpjOM6upqFBUVQaPRwNraGp06dRIdyWCUXJsSKbWZamZmhqysLO7NSG1GdHQ0IiIiUFBQAACwsbHB4sWLERgYKDgZERE9DTYciYiIZCozMxMeHh745JNPMGXKFNy/fx9+fn64dOkSkpOT0atXL9ER6RlTV1eHwsJCVFRUoK6uTueam5uboFT0JLNnz4a9vT2WLFkiOgoRVq1ahYiICAQFBWHkyJEAgLS0NOzduxeLFi3Cxo0bBSckIqKmYsORiIhIxlJTU+Hj44PY2FhER0ejqKgIycnJ6Nmzp+hoeqmqqsKWLVtw7NixRptXV65cEZRMf0qtLT09HdOmTUNJSQkefXkpSRLUarWgZIah1Gbqpk2bsH37dowbNw4jRoxA586dda4HBwcLSkbPou7du2PPnj0N9rONi4tDUFAQbty4ISgZERE9LTYciYiIZC4+Ph6+vr6wtbVFcnKyIva5euedd3D8+HHMnDkTvXv31h6A89CiRYsEJdOfUmsbNmwYBg0ahHXr1jVaV5cuXQQl05+Sm6kDBw587DVJkmTbACd56tq1K86cOdPgMKbLly/jlVdewe3bt8UEIyKip8aGIxERkYxMnDix0fH09HRYW1vrNBsPHTrUWrEMzszMDN999x1cXV1FRzE4pdbWuXNn5OTkwNraWnQUg1NyM5WoLQkKCoKxsTHCw8N1xj/44APcvXsXH3/8saBkRET0tNqLDkBERERN97jGhqenZysnaVldu3aFubm56BgtQqm1vfrqqygsLFRkw7GgoADffPONImt7qKamBsXFxbCyskL79nyLQOJER0cjKSkJLi4uAB58oHbt2jX4+/vr7DX6aFOSiIjaFs5wJCIiojbn888/x7fffouYmBjFnd6spNpyc3O1XxcVFWHlypUIDQ2Fvb09jI2Nde51cHBo7XgGM3bsWCxduhReXl6ioxhcdXU1goKCEBMTA+DB0lVLS0sEBwejT58+WL58ueCE9Cxxd3dv0n2SJCE5ObmF0xARkT7YcCQiIpKp4uJi1NbWNtjrqqCgAMbGxhgwYICYYM3k6Oios1S1sLAQGo0GAwYMaNC8ysrKau14elFqbUZGRpAkqcG+hg89vCbHfQ6flWbqokWLcOrUKezcuRNeXl7Izc2FpaUl4uPjsWbNGmRnZ4uOSERERDLE9RJEREQyNWvWLAQEBDRoOP7888+IiopCamqqmGDNNGHCBNERWoxSaysuLhYdocUMGzasQTM1ICBA+7Wcm6n1HTlyBAcPHoSLi4tOU9zOzg5FRUUCkxEREZGccYYjERGRTJmamiIrK6vBvnKFhYVwcnJ6Jk7zjIuLg7e3Nzp37iw6isEptbbx48cjKioKvXv3Fh3liUpKSpp8b//+/VswScvq1KkT8vLyYGlpCRMTE+Tk5MDS0hI5OTlwc3PDb7/9JjoiERERyZCR6ABERETUPJIk4ffff28w/ttvv8l6xtXTeO+993D9+nXRMVqEUms7ceIE7t69KzrGH+rfv3+T/3to/PjxKCsrE5j66Tk7O+O7777Tfv9wluP+/fsxcuRIUbGIiIhI5rikmoiISKZef/11hIWFIS4uDu3atQMAqNVqhIWF4bXXXhOcrnUoeaGGkmtTKrk0U+sLCwuDl5cXLl68iNraWuzatQsXLlxAWloajh8/LjoeERERyRQbjkRERDK1detWuLm5YfDgwXj99dcBACdPnsSdO3d4eicRNcmoUaNw6tQpbN++HVZWVkhKSsLw4cORlpYGe3t70fGIiIhIpthwJCIikik7Ozvk5uZi7969yMnJgUqlgr+/PxYuXAhzc3PR8YhIJuzt7RETEyM6BhERESkIG45EREQy1qdPH2zevFl0DCKSMbVajcOHDyM/Px+SJMHW1hY+Pj5o355vFYiIiKh5+CqCiIhI5qqrq1FaWoqamhqdcQcHB0GJiEgu8vLy4OPjg/LycgwePBgAcPnyZVhYWCA+Pp7LqomIiKhZeEo1ERGRTP3666/485//DBMTEwwZMgSOjo46/ylV/cNU+vfvD2NjY4FpDEuutd2/fx+zZ8/GlStX/vDeFStWcMl/GxIYGIghQ4bgX//6F7KyspCVlYVr167BwcEBc+fOFR2PiIiIZIoNRyIiIplavHgxbt26hfT0dKhUKiQkJCAmJgY2NjaIj48XHU8vYWFhjY6r1WpMmzZN+31eXh769evXWrEMQom1GRsb4/Dhw02698MPP4SZmVnLBjIgpTdTc3JyEBYWhq5du2rHunbtik2bNuHcuXPighEREZGsseFIREQkU8nJyYiIiICzszOMjIzQv39/zJgxA1u3bn1sU0sudu7ciU8//VRnTK1WY+rUqbJvgii1trfffhtHjhwRHcPglNxMBYDBgwfj+vXrDcYrKipgbW0tIBEREREpAfdwJCIikqmqqir06NEDAGBubo5ff/0VgwYNgr29PbKysgSn08/3338PDw8PmJmZYcqUKbh//z78/Pxw6dIlpKSkiI6nF6XWZm1tjQ0bNuD06dMYMWIEOnfurHM9ODhYUDL9PWymLlmyRHQUg7hz5472682bNyM4OBhr166Fi4sLACA9PR3r16/HRx99JCoiERERyZykqb9ZEBEREcmGs7MzNm7cCE9PT0yYMAGmpqYICwvD7t278c0336CoqEh0RL2kpqbCx8cHsbGxiI6ORlFREZKTk9GzZ0/R0fSmxNoGDhz42GuSJDVpSXJbtWnTJmzfvh3jxo1TRDPVyMgIkiRpv3/4duDhWP3v1Wp16wckIiIi2WPDkYiISKa++OIL3L9/H7NmzUJ2djY8PT1x48YNdOjQATExMfDz8xMdUW/x8fHw9fWFra0tkpOT0b17d9GRDEbJtSmN0pqpx48fb/K9o0ePbsEkREREpFRsOBIRESmARqPB3bt3cenSJbz44ouybF5NnDix0fH09HRYW1vr1HTo0KHWimUQSq7tUTU1NSguLoaVlRXat+fuPURERETPIr4KJCIikrHo6GhERESgoKAAAGBjY4PFixcjMDBQcLKn16VLl0bHPT09WzmJ4Sm5toeqq6sRFBSEmJgYAMDly5dhaWmJ4OBg9OnTB8uXLxecUH9Kbabeu3cPubm5qKioQF1dnc41b29vQamIiIhIzjjDkYiISKZWrVqFiIgIBAUFYeTIkQCAtLQ07N27F4sWLcLGjRsFJ6RnyaJFi3Dq1Cns3LkTXl5eyM3NhaWlJeLj47FmzRpkZ2eLjthsSm6mJiQkwN/fHzdu3GhwjXs4EhERUXMZiQ5AREREzbNv3z7s378fYWFh8Pb2hre3N8LCwvDpp58iMjJSdDy9FBcXa2dt1ldQUICrV6+2fiADUmptR44cwd69e/Haa6/pHEhiZ2cn+wOMPvzwQ+Tk5CA1NRXPPfecdtzDwwMHDx4UmEx/CxcuxOTJk1FWVoa6ujqd/9hsJCIiouZiw5GIiEim1Go1nJycGoyPGDECtbW1AhIZzqxZs3D69OkG4z///DNmzZrV+oEMSKm1/frrr+jRo0eD8aqqKp0GpBwpuZlaUVGBJUuWyPqEdCIiImp72HAkIiKSqRkzZmDfvn0Nxj/99FNMnz5dQCLDyc7Ohqura4NxFxcXnDt3rvUDGZBSa3N2dsZ3332n/f5hY27//v3aJf9ypeRm6qRJk5Camio6BhERESmMcna7JiIiegZFR0cjKSkJLi4uAB6cenzt2jX4+/tjyZIl2vvCw8NFRWwWSZLw+++/Nxj/7bffZL/MU6m1hYWFwcvLCxcvXkRtbS127dqFCxcuIC0tDcePHxcdTy8Pm6lBQUEAlNVM3bt3LyZPnoyTJ0/C3t4exsbGOteDg4MFJSMiIiI546ExREREMuXu7t6k+yRJQnJycgunMaw///nP6NSpE+Li4tCuXTsAD5aQ+/n5oaqqCj/88IPghM2n5NrOnz+P7du3IzMzE3V1dRg+fDiWLVsGe3t70dH0cvr0aXh5eWH69Ok4cOAA3nvvPZ1m6ogRI0RHbLaoqCjMmzcPKpUK3bp105mxKUkSrly5IjAdERERyRUbjkRERNTmXLx4EW5ubjAzM8Prr78OADh58iTu3LmD5ORkDB06VHDC5lNybUqm1GZqr169EBwcjOXLl8PIiLstERERkWGw4UhERERt0n/+8x/s3bsXOTk5UKlUcHBwwMKFC2Fubi46mt6UWptarcbhw4eRn58PSZJga2sLHx8ftG/PXXzaKnNzc5w9exZWVlaioxAREZGCsOFIRERERHrLy8uDj48PysvLMXjwYADA5cuXYWFhgfj4eNnPBFRqMzUkJAQWFhZYsWKF6ChERESkIGw4EhERUZtVXV2N0tJS1NTU6Iw7ODgISmQ4SqvNxcUFPXr0QExMDLp27QoAuHXrFmbNmoWKigqkpaUJTth8Sm6mBgcHIzY2Fi+//DIcHBwaHBojtwOniIiIqG1gw5GIiIjanF9//RWzZ89+7AEqcj7NWam1qVQqZGRkYMiQITrjeXl5cHZ2xt27dwUl05+Sm6lPOnxKjgdOERERUdsg7zUgREREpEiLFy/GrVu3kJ6eDnd3dxw+fBjXr1/Hxo0bsWPHDtHx9KLU2gYPHozr1683aDhWVFTA2tpaUCrDyMnJQUZGhrbZCABdu3bFpk2b4OzsLDCZ/lJSUkRHICIiIgViw5GIiIjanOTkZHz77bdwdnaGkZER+vfvjzfeeAOmpqYICwvD+PHjRUdsNiXVdufOHe3XmzdvRnBwMNauXQsXFxcAQHp6OtavX4+PPvpIVESDUHIz9aHCwkIUFRXBzc0NKpUKGo0GkiSJjkVEREQyxYYjERERtTlVVVXo0aMHgAen6P76668YNGgQ7O3tkZWVJTidfpRUm5mZmU5TSqPRYMqUKdqxhzv3/OUvf5HdUvFnpZlaWVmJKVOmICUlBZIkoaCgAJaWlggMDISZmZmsZ90SERGROGw4EhERUZszePBg/PLLLxgwYACGDRuGTz75BAMGDEBkZCR69+4tOp5elFSbkpfjKrmZWl9ISAiMjY1RWloKW1tb7bifnx9CQkLYcCQiIqJmYcORiIiI2pzFixejrKwMALBmzRp4enri888/R4cOHRATEyM4nX6UVNvo0aNFR2gxSm6m1peUlITExES88MILOuM2NjYoKSkRlIqIiIjkjqdUExERUZum0Whw9+5dXLp0CS+++CK6d+8uOpLBKK22e/fuITc3FxUVFairq9O55u3tLSgVPYmJiQmysrJgY2MDExMT5OTkwNLSEmfPnoWXlxcqKytFRyQiIiIZ4gxHIiIiapOio6MRERGBgoICAA9mXC1evBiBgYGCk+lPibUlJCTA398fN27caHBNkiRZLzsGlNtMdXNzQ2xsLDZs2ADgwc+qrq4O27Ztg7u7u+B0REREJFdsOBIREVGbs2rVKkRERCAoKAgjR44EAKSlpSEkJARXr17Fxo0bBSdsPqXWtnDhQkyePBmrV69Gz549RccxKCU3U7dt24YxY8YgIyMDNTU1WLp0KS5cuICbN2/i1KlTouMRERGRTHFJNREREbU53bt3x549e/DOO+/ojMfFxSEoKKjRxo9cKLU2U1NTZGdnw8rKSnQUg7O2toanp6cim6kAUFZWhsjISGRmZqKurg7Dhw/HggULZHeIEREREbUdnOFIREREbY5arYaTk1OD8REjRqC2tlZAIsNRam2TJk1CamqqIhuOFRUVWLJkiSKbjQDQtWtXjB8/Hs7Oztrl4mfPngUg7+XiREREJA5nOBIREVGbExQUBGNjY4SHh+uMf/DBB7h79y4+/vhjQcn0p9TaqqurMXnyZFhYWMDe3h7GxsY614ODgwUl019AQABcXV0xZ84c0VEM7uFy8crKSjz6tkDuy8WJiIhIHDYciYiIqM0JCgpCbGws+vXrBxcXFwBAeno6rl27Bn9/f51m1qONu7ZOqbVFRUVh3rx5UKlU6NatGyRJ0l6TJAlXrlwRmE4/Sm6mKn25OBEREYnBhiMRERG1OU09HVeSJCQnJ7dwGsNSam29evVCcHAwli9fDiMjI9FxDErJzVQl771JRERE4rDhSERERER6Mzc3x9mzZxXZuFJyM1XJy8WJiIhIHDYciYiIiEhvISEhsLCwwIoVK0RHMTglN1OVvFyciIiIxGHDkYiIiIj0FhwcjNjYWLz88stwcHBo0LiS036Uj1JyM1XJy8WJiIhIHDYciYiIiEhvT9qbUm77UT5Kyc1UJS8XJyIiInHYcCQiIiIiegIlN1OVvFyciIiIxGHDkYiIiIgMprCwEEVFRXBzc4NKpYJGo9FZpktti5KXixMREZE47UUHICIiIiL5q6ysxJQpU5CSkgJJklBQUABLS0sEBgbCzMwMO3bsEB1Rb0pspqrVamzduhWJiYmKWy5ORERE4nCjFiIiIiLSW0hICIyNjVFaWopOnTppx/38/JCQkCAwmf4qKysxbtw4DBo0CG+99RbKysoAAIGBgXj//fcFp9PP+fPn4ejoCCMjI+Tl5SE7O1v737lz50THIyIiIpniDEciIiIi0ltSUhISExPxwgsv6Izb2NigpKREUCrDqN9MtbW11Y77+fkhJCRE1rM3U1JSREcgIiIiBWLDkYiIiIj0VlVVpTOz8aEbN26gY8eOAhIZjpKbqUREREQtgUuqiYiIiEhvbm5uiI2N1X4vSRLq6uqwbdu2J57yLAdKbqYSERERtQTOcCQiIiIivW3btg1jxoxBRkYGampqsHTpUly4cAE3b97EqVOnRMfTy8Nm6oYNGwAoq5lKRERE1BIkjUajER2CiIiIiOSvrKwMkZGRyMzMRF1dHYYPH44FCxagd+/eoqPp5eLFixgzZgxGjBiB5ORkeHt76zRTraysREckIiIialPYcCQiIiIig7h37x5yc3NRUVGBuro6nWve3t6CUhmGUpupRERERC2BDUciIiIi0ltCQgL8/f1RWVmJR19eSpIEtVotKJlhKLmZSkRERGRobDgSERERkd6sra3h6emJ1atXo2fPnqLjGJTSm6lEREREhsaGIxERERHpzdTUFNnZ2Yrcz1DJzVQiIiKilmAkOgARERERyd+kSZOQmpoqOkaLqKiowJIlS9hsJCIiImoiznAkIiIiIr1VV1dj8uTJsLCwgL29PYyNjXWuBwcHC0qmv4CAALi6umLOnDmioxARERHJAhuORERERKS3qKgozJs3DyqVCt26dYMkSdprkiThypUrAtPpR8nNVCIiIqKWwIYjEREREemtV69eCA4OxvLly2FkpKxde5TcTCUiIiJqCWw4EhEREZHezM3NcfbsWUUeGqPkZioRERFRS+ArJiIiIiLS27vvvouDBw+KjtEiampq4Ofnx2YjERERURO1Fx2AiIiIiORPrVZj69atSExMhIODQ4N9DsPDwwUl09/DZuqKFStERyEiIiKSBTYciYiIiEhv58+fh6OjIwAgLy9P51r9PQ/lSMnNVCIiIqKWwD0ciYiIiIiewN3d/bHXJElCcnJyK6YhIiIiavvYcCQiIiIiIiIiIiKD4c7XREREREREREREZDBsOBIREREREREREZHBsOFIREREREREREREBsOGIxERERERERERERkMG45ERERERERERERkMGw4EhERERERERERkcGw4UhEREREREREREQG8/8Af5yBDoYmxaMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plotting correlation heatmap\n", "X_train_numeric = pd.merge(X_train, full_training_set.groupby(by='member')['hold_time'].skew(), left_on='member', right_index=True, how='left')\n", "X_train_numeric = X_train_numeric.drop(['member'], axis=1)\n", "X_train_numeric = X_train_numeric.rename({'hold_time': 'member_skew'}, axis=1)\n", "X_train_numeric['skew_std'] = X_train_numeric['member_skew'] * X_train_numeric.member_hold_time_std\n", "X_train_numeric['skew_std'] = X_train_numeric['member_skew'] * X_train_numeric.member_hold_time_std\n", "X_train_numeric['pack_v_member'] = X_train_numeric.pack_hold_time_mean - X_train_numeric.member_hold_time_mean\n", "X_train_numeric['member_dev'] = (y_train - X_train_numeric['member_hold_time_mean'])\n", "X_train_numeric['puzzle_dev'] = (y_train - X_train_numeric['pack_hold_time_mean'])\n", "X_train_numeric['hold_time'] = y_train\n", "plt.figure(figsize=(15,15))\n", "dataplot = sns.heatmap(X_train_numeric.corr(), cmap=\"YlGnBu\", annot=True)\n", " \n", "# displaying heatmap\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 295, "id": "57600336-365b-4498-bff7-229d910a0366", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 295, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzkUlEQVR4nO3df1hU553//9eIwygWJiKFgQ0izRqbK7jGH40/sq0a4ygVSWI2JiEXNa3VdBu1XurVarKu2PwwtduYvXTb2Kw1P9TqbqtpdrUoplFriYmidNWkFlv8DZpYBBEzTOD+/pEP880ICkMGxnt8Pq5rLjj3uc8599t7gJdn5sxxGGOMAAAALNMl0gMAAABoD0IMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKXSM9gI7S2NioM2fOKD4+Xg6HI9LDAQAAbWCM0cWLF5WWlqYuXa59riVqQ8yZM2eUnp4e6WEAAIB2OHnypG6++eZr9onaEBMfHy/p03+EhISEDjuO3+/Xtm3b5PV65XQ6O+w4kRLt9UnRXyP12S/aa6Q++4WzxpqaGqWnpwf+jl9L1IaYppeQEhISOjzExMXFKSEhISqfnNFenxT9NVKf/aK9RuqzX0fU2Ja3gvDGXgAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArdY30AACEV5/5m4OWy572RmgkANCxOBMDAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYKOcTs2rVLEydOVFpamhwOh954442g9Q6Ho8XHj3/840CfUaNGNVv/8MMPB+2nqqpK+fn5crvdcrvdys/P14ULF9pVJAAAiD4hh5hLly5pwIABWrFiRYvrKyoqgh6/+MUv5HA49MADDwT1mzZtWlC/lStXBq3Py8tTaWmpCgsLVVhYqNLSUuXn54c6XAAAEKVCvgFkdna2srOzr7re4/EELf/mN7/R6NGj9aUvfSmoPS4urlnfJh988IEKCwu1Z88eDR06VJL08ssva/jw4Tpy5Ij69esX6rABAECU6dC7WJ89e1abN2/Wq6++2mzd2rVrtWbNGqWkpCg7O1uLFi1SfHy8JOmdd96R2+0OBBhJGjZsmNxut4qLi1sMMT6fTz6fL7BcU1MjSfL7/fL7/eEuLaBp3x15jEiK9vqk6KvRFWOClqOtvitFe31S9NdIffYLZ42h7KNDQ8yrr76q+Ph4TZo0Kaj90UcfVWZmpjwejw4dOqQFCxboj3/8o4qKiiRJlZWVSk5Obra/5ORkVVZWtnisJUuWaPHixc3at23bpri4uDBUc21NY49W0V6fFD01Lr0zeLmprmip72qivT4p+mukPvuFo8a6uro29+3QEPOLX/xCjz76qLp16xbUPm3atMD3WVlZ6tu3r4YMGaL9+/dr0KBBkj59g/CVjDEttkvSggULNGfOnMByTU2N0tPT5fV6lZCQEI5yWuT3+1VUVKSxY8fK6XR22HEiJdrrk6KvxqyCrUHLB566O6rqu1K0zV9Lor1G6rNfOGtseiWlLTosxPz+97/XkSNHtGHDhlb7Dho0SE6nU2VlZRo0aJA8Ho/Onj3brN+HH36olJSUFvfhcrnkcrmatTudzk550nTWcSIl2uuToqdGX0Nw0G+qKVrqu5por0+K/hqpz37hqDGU7Tvsc2JWrVqlwYMHa8CAAa32PXz4sPx+v1JTUyVJw4cPV3V1td57771An3fffVfV1dUaMWJERw0ZAABYJOQzMbW1tTp69Ghguby8XKWlpUpMTFTv3r0lfXoq6L//+7/1k5/8pNn2f/nLX7R27Vp9/etfV1JSkt5//33NnTtXAwcO1F133SVJuu222zR+/HhNmzYtcOn19OnTlZOTw5VJAABAUjvOxOzbt08DBw7UwIEDJUlz5szRwIED9a//+q+BPuvXr5cxRo888kiz7WNjY/XWW29p3Lhx6tevn2bNmiWv16vt27crJiYm0G/t2rXq37+/vF6vvF6v/uEf/kGvv/56e2oEAABRKOQzMaNGjZIx5pp9pk+frunTp7e4Lj09XTt37mz1OImJiVqzZk2owwMAADcI7p0EAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFipa6QHAKD9+szfHOkhAEDEcCYGAABYiRADAACsRIgBAABWIsQAAAArhRxidu3apYkTJyotLU0Oh0NvvPFG0PrHHntMDocj6DFs2LCgPj6fTzNnzlRSUpJ69Oih3NxcnTp1KqhPVVWV8vPz5Xa75Xa7lZ+frwsXLoRcIAAAiE4hh5hLly5pwIABWrFixVX7jB8/XhUVFYHHli1bgtbPnj1bmzZt0vr167V7927V1tYqJydHDQ0NgT55eXkqLS1VYWGhCgsLVVpaqvz8/FCHCwAAolTIl1hnZ2crOzv7mn1cLpc8Hk+L66qrq7Vq1Sq9/vrruueeeyRJa9asUXp6urZv365x48bpgw8+UGFhofbs2aOhQ4dKkl5++WUNHz5cR44cUb9+/UIdNgAAiDId8jkxO3bsUHJysm666SaNHDlSzz77rJKTkyVJJSUl8vv98nq9gf5paWnKyspScXGxxo0bp3feeUdutzsQYCRp2LBhcrvdKi4ubjHE+Hw++Xy+wHJNTY0kye/3y+/3d0SZgf1/9mu0ifb6JLtrdMWYVvvYXF9bRHt9UvTXSH32C2eNoewj7CEmOztbDz74oDIyMlReXq6FCxfq7rvvVklJiVwulyorKxUbG6uePXsGbZeSkqLKykpJUmVlZSD0fFZycnKgz5WWLFmixYsXN2vftm2b4uLiwlDZtRUVFXX4MSIp2uuT7Kxx6Z2t92mqy8b6QhHt9UnRXyP12S8cNdbV1bW5b9hDzEMPPRT4PisrS0OGDFFGRoY2b96sSZMmXXU7Y4wcDkdg+bPfX63PZy1YsEBz5swJLNfU1Cg9PV1er1cJCQntKaVN/H6/ioqKNHbsWDmdzg47TqREe32S3TVmFWxttc+Bp+62tr62sHn+2iraa6Q++4WzxqZXUtqiw287kJqaqoyMDJWVlUmSPB6P6uvrVVVVFXQ25ty5cxoxYkSgz9mzZ5vt68MPP1RKSkqLx3G5XHK5XM3anU5npzxpOus4kRLt9Ul21uhraDnUf1ZTTTbWF4por0+K/hqpz37hqDGU7Tv8c2LOnz+vkydPKjU1VZI0ePBgOZ3OoFNOFRUVOnToUCDEDB8+XNXV1XrvvfcCfd59911VV1cH+gAAgBtbyGdiamtrdfTo0cByeXm5SktLlZiYqMTERBUUFOiBBx5Qamqqjh07pieffFJJSUm6//77JUlut1tTp07V3Llz1atXLyUmJmrevHnq379/4Gql2267TePHj9e0adO0cuVKSdL06dOVk5PDlUkAAEBSO0LMvn37NHr06MBy0/tQpkyZop/97Gc6ePCgXnvtNV24cEGpqakaPXq0NmzYoPj4+MA2y5YtU9euXTV58mRdvnxZY8aM0SuvvKKYmJhAn7Vr12rWrFmBq5hyc3Ov+dk0AADgxhJyiBk1apSMufplnVu3tv5Gw27dumn58uVavnz5VfskJiZqzZo1oQ4PAADcILh3EgAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArhRxidu3apYkTJyotLU0Oh0NvvPFGYJ3f79cPfvAD9e/fXz169FBaWpq+8Y1v6MyZM0H7GDVqlBwOR9Dj4YcfDupTVVWl/Px8ud1uud1u5efn68KFC+0qEgAARJ+QQ8ylS5c0YMAArVixotm6uro67d+/XwsXLtT+/fu1ceNG/fnPf1Zubm6zvtOmTVNFRUXgsXLlyqD1eXl5Ki0tVWFhoQoLC1VaWqr8/PxQhwsAAKJU11A3yM7OVnZ2dovr3G63ioqKgtqWL1+uO++8UydOnFDv3r0D7XFxcfJ4PC3u54MPPlBhYaH27NmjoUOHSpJefvllDR8+XEeOHFG/fv1CHTYAAIgyHf6emOrqajkcDt10001B7WvXrlVSUpJuv/12zZs3TxcvXgyse+edd+R2uwMBRpKGDRsmt9ut4uLijh4yEFWyCrYGvvaZv1l95m+O8IgAIDxCPhMTio8//ljz589XXl6eEhISAu2PPvqoMjMz5fF4dOjQIS1YsEB//OMfA2dxKisrlZyc3Gx/ycnJqqysbPFYPp9PPp8vsFxTUyPp0/fp+P3+cJYVpGnfHXmMSIr2+iS7a3TFmNb7dDFBXyU7a70am+evraK9RuqzXzhrDGUfDmNM678Fr7axw6FNmzbpvvvua3EQDz74oE6cOKEdO3YEhZgrlZSUaMiQISopKdGgQYP03HPP6dVXX9WRI0eC+vXt21dTp07V/Pnzm+2joKBAixcvbta+bt06xcXFhV4cAADodHV1dcrLy1N1dfU1s4PUQWdi/H6/Jk+erPLycv3ud79rdRCDBg2S0+lUWVmZBg0aJI/Ho7Nnzzbr9+GHHyolJaXFfSxYsEBz5swJLNfU1Cg9PV1er7fV438efr9fRUVFGjt2rJxOZ4cdJ1KivT7J7hqbXiq6FlcXo6eHNGrhvi7yNTokSYcKxnX00DqNzfPXVtFeI/XZL5w1Nr2S0hZhDzFNAaasrExvv/22evXq1eo2hw8flt/vV2pqqiRp+PDhqq6u1nvvvac777xTkvTuu++qurpaI0aMaHEfLpdLLperWbvT6eyUJ01nHSdSor0+yc4afQ2OtvdtdAT621ZnW9g4f6GK9hqpz37hqDGU7UMOMbW1tTp69Ghguby8XKWlpUpMTFRaWpr+6Z/+Sfv379f//u//qqGhIfAelsTERMXGxuovf/mL1q5dq69//etKSkrS+++/r7lz52rgwIG66667JEm33Xabxo8fr2nTpgUuvZ4+fbpycnK4MgkAAEhqR4jZt2+fRo8eHVhueglnypQpKigo0JtvvilJuuOOO4K2e/vttzVq1CjFxsbqrbfe0r//+7+rtrZW6enpmjBhghYtWqSYmJhA/7Vr12rWrFnyer2SpNzc3BY/mwYAANyYQg4xo0aN0rXeC9za+4TT09O1c+fOVo+TmJioNWvWhDo8AABwg+DeSQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlTrkBpAAOkaf+ZsjPQQAuG5wJgYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJVCDjG7du3SxIkTlZaWJofDoTfeeCNovTFGBQUFSktLU/fu3TVq1CgdPnw4qI/P59PMmTOVlJSkHj16KDc3V6dOnQrqU1VVpfz8fLndbrndbuXn5+vChQshFwgAAKJTyCHm0qVLGjBggFasWNHi+qVLl+qFF17QihUrtHfvXnk8Ho0dO1YXL14M9Jk9e7Y2bdqk9evXa/fu3aqtrVVOTo4aGhoCffLy8lRaWqrCwkIVFhaqtLRU+fn57SgRAABEo66hbpCdna3s7OwW1xlj9OKLL+qpp57SpEmTJEmvvvqqUlJStG7dOj3++OOqrq7WqlWr9Prrr+uee+6RJK1Zs0bp6enavn27xo0bpw8++ECFhYXas2ePhg4dKkl6+eWXNXz4cB05ckT9+vVrb70AACBKhBxirqW8vFyVlZXyer2BNpfLpZEjR6q4uFiPP/64SkpK5Pf7g/qkpaUpKytLxcXFGjdunN555x253e5AgJGkYcOGye12q7i4uMUQ4/P55PP5Ass1NTWSJL/fL7/fH84ygzTtuyOPEUnRXp9kV42uGBP6Nl1M0FfJjlrbyqb5a69or5H67BfOGkPZR1hDTGVlpSQpJSUlqD0lJUXHjx8P9ImNjVXPnj2b9WnavrKyUsnJyc32n5ycHOhzpSVLlmjx4sXN2rdt26a4uLjQiwlRUVFRhx8jkqK9PsmOGpfe2f5tnx7SGPh+y5YtYRjN9cWG+fu8or1G6rNfOGqsq6trc9+whpgmDocjaNkY06ztSlf2aan/tfazYMECzZkzJ7BcU1Oj9PR0eb1eJSQkhDL8kPj9fhUVFWns2LFyOp0ddpxIifb6JLtqzCrYGvI2ri5GTw9p1MJ9XeRr/PTn51DBuHAPLWJsmr/2ivYaqc9+4ayx6ZWUtghriPF4PJI+PZOSmpoaaD937lzg7IzH41F9fb2qqqqCzsacO3dOI0aMCPQ5e/Zss/1/+OGHzc7yNHG5XHK5XM3anU5npzxpOus4kRLt9Ul21OhruPZ/Bq65baMjsP31Xmd72DB/n1e010h99gtHjaFsH9bPicnMzJTH4wk6nVRfX6+dO3cGAsrgwYPldDqD+lRUVOjQoUOBPsOHD1d1dbXee++9QJ93331X1dXVgT4AAODGFvKZmNraWh09ejSwXF5ertLSUiUmJqp3796aPXu2nnvuOfXt21d9+/bVc889p7i4OOXl5UmS3G63pk6dqrlz56pXr15KTEzUvHnz1L9//8DVSrfddpvGjx+vadOmaeXKlZKk6dOnKycnhyuTAACApHaEmH379mn06NGB5ab3oUyZMkWvvPKKvv/97+vy5cv67ne/q6qqKg0dOlTbtm1TfHx8YJtly5apa9eumjx5si5fvqwxY8bolVdeUUxMTKDP2rVrNWvWrMBVTLm5uVf9bBoAAHDjCTnEjBo1SsZc/TJPh8OhgoICFRQUXLVPt27dtHz5ci1fvvyqfRITE7VmzZpQhwcAAG4Q3DsJAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAK3WN9AAAdL4+8zcHLR97fkKERgIA7ceZGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKYQ8xffr0kcPhaPZ44oknJEmPPfZYs3XDhg0L2ofP59PMmTOVlJSkHj16KDc3V6dOnQr3UAEAgMXCHmL27t2rioqKwKOoqEiS9OCDDwb6jB8/PqjPli1bgvYxe/Zsbdq0SevXr9fu3btVW1urnJwcNTQ0hHu4AADAUl3DvcMvfvGLQcvPP/+8brnlFo0cOTLQ5nK55PF4Wty+urpaq1at0uuvv6577rlHkrRmzRqlp6dr+/btGjduXLiHDAAALBT2EPNZ9fX1WrNmjebMmSOHwxFo37Fjh5KTk3XTTTdp5MiRevbZZ5WcnCxJKikpkd/vl9frDfRPS0tTVlaWiouLrxpifD6ffD5fYLmmpkaS5Pf75ff7O6K8wP4/+zXaRHt9kl01umJM6Nt0MUFfW2JD7Vdj0/y1V7TXSH32C2eNoezDYYwJ/bdiG/3Xf/2X8vLydOLECaWlpUmSNmzYoC984QvKyMhQeXm5Fi5cqE8++UQlJSVyuVxat26dvvnNbwYFEknyer3KzMzUypUrWzxWQUGBFi9e3Kx93bp1iouLC39xAAAg7Orq6pSXl6fq6molJCRcs2+Hhphx48YpNjZW//M//3PVPhUVFcrIyND69es1adKkq4aYsWPH6pZbbtFLL73U4n5aOhOTnp6ujz76qNV/hM/D7/erqKhIY8eOldPp7LDjREq01yfZVWNWwdaQt3F1MXp6SKMW7usiX6OjxT6HCux9mdam+WuvaK+R+uwXzhpramqUlJTUphDTYS8nHT9+XNu3b9fGjRuv2S81NVUZGRkqKyuTJHk8HtXX16uqqko9e/YM9Dt37pxGjBhx1f24XC65XK5m7U6ns1OeNJ11nEiJ9vokO2r0NbQcQtq0baPjqttf73W3hQ3z93lFe43UZ79w1BjK9h0WYlavXq3k5GRNmDDhmv3Onz+vkydPKjU1VZI0ePBgOZ1OFRUVafLkyZI+PVtz6NAhLV26tKOGC1x3+szfHOkhAMB1rUNCTGNjo1avXq0pU6aoa9f//xC1tbUqKCjQAw88oNTUVB07dkxPPvmkkpKSdP/990uS3G63pk6dqrlz56pXr15KTEzUvHnz1L9//8DVSgAAAB0SYrZv364TJ07oW9/6VlB7TEyMDh48qNdee00XLlxQamqqRo8erQ0bNig+Pj7Qb9myZeratasmT56sy5cva8yYMXrllVcUExPTEcMFAAAW6pAQ4/V61dL7hbt3766tW1t/Y2K3bt20fPlyLV++vCOGBwAAogD3TgIAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACt1jfQAAHyqz/zN19Wxjz0/IQIjAYC240wMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFgp7CGmoKBADocj6OHxeALrjTEqKChQWlqaunfvrlGjRunw4cNB+/D5fJo5c6aSkpLUo0cP5ebm6tSpU+EeKgAAsFiHnIm5/fbbVVFREXgcPHgwsG7p0qV64YUXtGLFCu3du1cej0djx47VxYsXA31mz56tTZs2af369dq9e7dqa2uVk5OjhoaGjhguAACwUIfcALJr165BZ1+aGGP04osv6qmnntKkSZMkSa+++qpSUlK0bt06Pf7446qurtaqVav0+uuv65577pEkrVmzRunp6dq+fbvGjRvXEUMGAACW6ZAQU1ZWprS0NLlcLg0dOlTPPfecvvSlL6m8vFyVlZXyer2Bvi6XSyNHjlRxcbEef/xxlZSUyO/3B/VJS0tTVlaWiouLrxpifD6ffD5fYLmmpkaS5Pf75ff7O6LMwP4/+zXaRHt90vVToyvGdMx+u5igr20V6X+Ptrpe5q8jRXuN1Ge/cNYYyj4cxpiw/ub87W9/q7q6Ot166606e/asnnnmGf3pT3/S4cOHdeTIEd111106ffq00tLSAttMnz5dx48f19atW7Vu3Tp985vfDAokkuT1epWZmamVK1e2eNyCggItXry4Wfu6desUFxcXzhIBAEAHqaurU15enqqrq5WQkHDNvmE/E5OdnR34vn///ho+fLhuueUWvfrqqxo2bJgkyeFwBG1jjGnWdqXW+ixYsEBz5swJLNfU1Cg9PV1er7fVf4TPw+/3q6ioSGPHjpXT6eyw40RKtNcnXT81ZhVs7ZD9uroYPT2kUQv3dZGv8do/Z591qMCOl26vl/nrSNFeI/XZL5w1Nr2S0hYd8nLSZ/Xo0UP9+/dXWVmZ7rvvPklSZWWlUlNTA33OnTunlJQUSZLH41F9fb2qqqrUs2fPoD4jRoy46nFcLpdcLlezdqfT2SlPms46TqREe31S5Gv0NbQ9YLRr/42OkI5h23xHev46Q7TXSH32C0eNoWzf4Z8T4/P59MEHHyg1NVWZmZnyeDwqKioKrK+vr9fOnTsDAWXw4MFyOp1BfSoqKnTo0KFrhhgAAHBjCfuZmHnz5mnixInq3bu3zp07p2eeeUY1NTWaMmWKHA6HZs+ereeee059+/ZV37599dxzzykuLk55eXmSJLfbralTp2ru3Lnq1auXEhMTNW/ePPXv3z9wtRIAAEDYQ8ypU6f0yCOP6KOPPtIXv/hFDRs2THv27FFGRoYk6fvf/74uX76s7373u6qqqtLQoUO1bds2xcfHB/axbNkyde3aVZMnT9bly5c1ZswYvfLKK4qJiQn3cAEAgKXCHmLWr19/zfUOh0MFBQUqKCi4ap9u3bpp+fLlWr58eZhHBwAAogX3TgIAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsFKH33YAgJ36zN8ctHzs+QkRGgkAtIwzMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRtAAhFw5c0VAQCh40wMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKfE4MgDZp6bNtjj0/IQIjAYBPcSYGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFgp7CFmyZIl+spXvqL4+HglJyfrvvvu05EjR4L6PPbYY3I4HEGPYcOGBfXx+XyaOXOmkpKS1KNHD+Xm5urUqVPhHi4AALBU2EPMzp079cQTT2jPnj0qKirSJ598Iq/Xq0uXLgX1Gz9+vCoqKgKPLVu2BK2fPXu2Nm3apPXr12v37t2qra1VTk6OGhoawj1kAABgobDfO6mwsDBoefXq1UpOTlZJSYm+9rWvBdpdLpc8Hk+L+6iurtaqVav0+uuv65577pEkrVmzRunp6dq+fbvGjRsX7mEDAADLdPgNIKurqyVJiYmJQe07duxQcnKybrrpJo0cOVLPPvuskpOTJUklJSXy+/3yer2B/mlpacrKylJxcXGLIcbn88nn8wWWa2pqJEl+v19+vz/sdTVp2ndHHiOSor0+qXNqzCrYGrTsiumwQzXj6mKCvobT9fC84DlqP+qzXzhrDGUfDmNM+H+z/T/GGN17772qqqrS73//+0D7hg0b9IUvfEEZGRkqLy/XwoUL9cknn6ikpEQul0vr1q3TN7/5zaBQIkler1eZmZlauXJls2MVFBRo8eLFzdrXrVunuLi48BcHAADCrq6uTnl5eaqurlZCQsI1+3bomZgZM2bo//7v/7R79+6g9oceeijwfVZWloYMGaKMjAxt3rxZkyZNuur+jDFyOBwtrluwYIHmzJkTWK6pqVF6erq8Xm+r/wifh9/vV1FRkcaOHSun09lhx4mUaK9P6pwarzwT05lcXYyeHtKohfu6yNfY8s9Pex0qiPxLuzxH7Ud99gtnjU2vpLRFh4WYmTNn6s0339SuXbt08803X7NvamqqMjIyVFZWJknyeDyqr69XVVWVevbsGeh37tw5jRgxosV9uFwuuVyuZu1Op7NTnjSddZxIifb6pI6t0dcQ3vDQrjE0OsI+jr4LtwUtH3t+Qlj3Hwqeo/ajPvuFo8ZQtg/71UnGGM2YMUMbN27U7373O2VmZra6zfnz53Xy5EmlpqZKkgYPHiyn06mioqJAn4qKCh06dOiqIQYAANxYwn4m5oknntC6dev0m9/8RvHx8aqsrJQkud1ude/eXbW1tSooKNADDzyg1NRUHTt2TE8++aSSkpJ0//33B/pOnTpVc+fOVa9evZSYmKh58+apf//+gauVAADAjS3sIeZnP/uZJGnUqFFB7atXr9Zjjz2mmJgYHTx4UK+99pouXLig1NRUjR49Whs2bFB8fHyg/7Jly9S1a1dNnjxZly9f1pgxY/TKK68oJqYTL+sAAADXrbCHmNYudurevbu2bm39TY7dunXT8uXLtXz58nANDQAARBHunQQAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYKUOv4s1cKPpM39zpIcQMS3VHslbEQCIbpyJAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJa5OAtChrrxiiauVAIQLZ2IAAICVOBMDoFPxWTIAwoUzMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArMTVScDndCPftRoAIokzMQAAwEqciQEQcXyqL4D24EwMAACwEiEGAABYiZeTgBDwJt7Owa0JALQFZ2IAAICVCDEAAMBKhBgAAGAlQgwAALASb+wFEDX4vBngxkKIAf6frIKt8jU4Ij0MXMXVrgxzxRgtvfPT+ZOYP+BGwstJAADASpyJAXBD4SUnIHoQYnBD+uwfsqaXIxB92vLhhHywHmAvQgwAXIGzNYAdCDEA0EEIQ0DHuu5DzE9/+lP9+Mc/VkVFhW6//Xa9+OKL+upXvxrpYeE60pY/FNzzCJ9HW15y4jkGdL7rOsRs2LBBs2fP1k9/+lPdddddWrlypbKzs/X++++rd+/ekR4erlP8MUFn4HkGRN51HWJeeOEFTZ06Vd/+9rclSS+++KK2bt2qn/3sZ1qyZEmER4fPqy1/BPjfLqJdW57TZU97W92mPT8rvLwF2123Iaa+vl4lJSWaP39+ULvX61VxcXGz/j6fTz6fL7BcXV0tSfrb3/4mv9/fYeP0+/2qq6vT+fPn5XQ6O+w4kdLe+oYueavVPm158v39vP8KeZtQdW00qqtrVFd/FzU0Rt+HpVHf9ePK57PUtuf0HU9t1L8MbNQdT22Ur9HR4jbnz58P3u8nl9o1nnB5d8GYVvs0/Z5wdTH6l4GNbfo909LvllCOFep24RDtfyek8NZ48eJFSZIxpvXO5jp1+vRpI8n84Q9/CGp/9tlnza233tqs/6JFi4wkHjx48ODBg0cUPE6ePNlqVrhuz8Q0cTiC/2dljGnWJkkLFizQnDlzAsuNjY3629/+pl69erXYP1xqamqUnp6ukydPKiEhocOOEynRXp8U/TVSn/2ivUbqs184azTG6OLFi0pLS2u173UbYpKSkhQTE6PKysqg9nPnziklJaVZf5fLJZfLFdR20003deQQgyQkJETtk1OK/vqk6K+R+uwX7TVSn/3CVaPb7W5Tv+v23kmxsbEaPHiwioqKgtqLioo0YsSICI0KAABcL67bMzGSNGfOHOXn52vIkCEaPny4fv7zn+vEiRP6zne+E+mhAQCACLuuQ8xDDz2k8+fP64c//KEqKiqUlZWlLVu2KCMjI9JDC3C5XFq0aFGzl7KiRbTXJ0V/jdRnv2ivkfrsF6kaHca05RomAACA68t1+54YAACAayHEAAAAKxFiAACAlQgxAADASoSYdtqxY4ccDkeLj7179wb6tbT+pZdeiuDI265Pnz7Nxn7lvaxOnDihiRMnqkePHkpKStKsWbNUX18foRG33bFjxzR16lRlZmaqe/fuuuWWW7Ro0aJmY7d5/iTppz/9qTIzM9WtWzcNHjxYv//97yM9pHZZsmSJvvKVryg+Pl7Jycm67777dOTIkaA+jz32WLO5GjZsWIRGHLqCgoJm4/d4PIH1xhgVFBQoLS1N3bt316hRo3T48OEIjjg0Lf0+cTgceuKJJyTZN3+7du3SxIkTlZaWJofDoTfeeCNofVvmy+fzaebMmUpKSlKPHj2Um5urU6dOdWIV13atGv1+v37wgx+of//+6tGjh9LS0vSNb3xDZ86cCdrHqFGjms3rww8/HLYxEmLaacSIEaqoqAh6fPvb31afPn00ZMiQoL6rV68O6jdlypQIjTp0TZe3Nz3+5V/+JbCuoaFBEyZM0KVLl7R7926tX79ev/71rzV37twIjrht/vSnP6mxsVErV67U4cOHtWzZMr300kt68sknm/W1df42bNig2bNn66mnntKBAwf01a9+VdnZ2Tpx4kSkhxaynTt36oknntCePXtUVFSkTz75RF6vV5cuBd/kcPz48UFztWXLlgiNuH1uv/32oPEfPHgwsG7p0qV64YUXtGLFCu3du1cej0djx44N3Czverd3796g2po+yPTBBx8M9LFp/i5duqQBAwZoxYoVLa5vy3zNnj1bmzZt0vr167V7927V1tYqJydHDQ0NnVXGNV2rxrq6Ou3fv18LFy7U/v37tXHjRv35z39Wbm5us77Tpk0LmteVK1eGb5BhuFcjjDH19fUmOTnZ/PCHPwxql2Q2bdoUmUF9ThkZGWbZsmVXXb9lyxbTpUsXc/r06UDbL3/5S+NyuUx1dXUnjDC8li5dajIzM4PabJ6/O++803znO98Javvyl79s5s+fH6ERhc+5c+eMJLNz585A25QpU8y9994buUF9TosWLTIDBgxocV1jY6PxeDzm+eefD7R9/PHHxu12m5deeqmTRhhe3/ve98wtt9xiGhsbjTF2z9+VvyfaMl8XLlwwTqfTrF+/PtDn9OnTpkuXLqawsLDTxt5Wbfld+N577xlJ5vjx44G2kSNHmu9973sdNi7OxITJm2++qY8++kiPPfZYs3UzZsxQUlKSvvKVr+ill15SY2Nj5w+wnX70ox+pV69euuOOO/Tss88GvdzyzjvvKCsrK+gmXePGjZPP51NJSUkkhvu5VFdXKzExsVm7jfNXX1+vkpISeb3eoHav16vi4uIIjSp8qqurJanZfO3YsUPJycm69dZbNW3aNJ07dy4Sw2u3srIypaWlKTMzUw8//LD++te/SpLKy8tVWVkZNJ8ul0sjR460cj7r6+u1Zs0afetb3wq6Qa/t89ekLfNVUlIiv98f1CctLU1ZWVlWzqn06c+lw+Fodt/CtWvXKikpSbfffrvmzZsX1rOH1/Un9tpk1apVGjdunNLT04Pan376aY0ZM0bdu3fXW2+9pblz5+qjjz4KelnmevW9731PgwYNUs+ePfXee+9pwYIFKi8v13/+539KkiorK5vdjLNnz56KjY1tduPO691f/vIXLV++XD/5yU+C2m2dv48++kgNDQ3N5iclJcW6ubmSMUZz5szRP/7jPyorKyvQnp2drQcffFAZGRkqLy/XwoULdffdd6ukpMSKT0odOnSoXnvtNd166606e/asnnnmGY0YMUKHDx8OzFlL83n8+PFIDPdzeeONN3ThwoWg//TZPn+f1Zb5qqysVGxsrHr27Nmsj40/ox9//LHmz5+vvLy8oBtAPvroo8rMzJTH49GhQ4e0YMEC/fGPf2x2X8R267BzPJZatGiRkXTNx969e4O2OXnypOnSpYv51a9+1er+/+3f/s0kJCR01PBb1Z76mvzqV78yksxHH31kjDFm2rRpxuv1NuvndDrNL3/5yw6t42raU9/p06fN3//935upU6e2uv9Iz19bnT592kgyxcXFQe3PPPOM6devX4RGFR7f/e53TUZGhjl58uQ1+505c8Y4nU7z61//upNGFl61tbUmJSXF/OQnPzF/+MMfjCRz5syZoD7f/va3zbhx4yI0wvbzer0mJyfnmn1smj9d8VJLW+Zr7dq1JjY2ttm+7rnnHvP444936Hjb48oaP6u+vt7ce++9ZuDAga2+lWDfvn1GkikpKQnLuDgTc4UZM2a0+s7pPn36BC2vXr1avXr1avENTVcaNmyYampqdPbs2WYpvTO0p74mTVcKHD16VL169ZLH49G7774b1Keqqkp+vz8itUmh13fmzBmNHj06cIPR1kR6/toqKSlJMTExzf5Hd+7cuet63K2ZOXOm3nzzTe3atUs333zzNfumpqYqIyNDZWVlnTS68OrRo4f69++vsrIy3XfffZI+/d97ampqoI+N83n8+HFt375dGzduvGY/m+ev6aqya82Xx+NRfX29qqqqgs7GnDt3TiNGjOjcAX8Ofr9fkydPVnl5uX73u98FnYVpyaBBg+R0OlVWVqZBgwZ97uMTYq6QlJSkpKSkNvc3xmj16tX6xje+IafT2Wr/AwcOqFu3bs1eM+wsodb3WQcOHJCkwA/l8OHD9eyzz6qioiLQtm3bNrlcLg0ePDg8Aw5RKPWdPn1ao0eP1uDBg7V69Wp16dL6W8QiPX9tFRsbq8GDB6uoqEj3339/oL2oqEj33ntvBEfWPsYYzZw5U5s2bdKOHTuUmZnZ6jbnz5/XyZMng/6I2MTn8+mDDz7QV7/61cDp+KKiIg0cOFDSp+8r2blzp370ox9FeKShWb16tZKTkzVhwoRr9rN5/toyX4MHD5bT6VRRUZEmT54sSaqoqNChQ4e0dOnSiI09FE0BpqysTG+//bZ69erV6jaHDx+W3+8P37yG5XzODWz79u1Gknn//febrXvzzTfNz3/+c3Pw4EFz9OhR8/LLL5uEhAQza9asCIw0NMXFxeaFF14wBw4cMH/961/Nhg0bTFpamsnNzQ30+eSTT0xWVpYZM2aM2b9/v9m+fbu5+eabzYwZMyI48rZpegnp7rvvNqdOnTIVFRWBRxOb588YY9avX2+cTqdZtWqVef/9983s2bNNjx49zLFjxyI9tJD98z//s3G73WbHjh1Bc1VXV2eMMebixYtm7ty5pri42JSXl5u3337bDB8+3Pzd3/2dqampifDo22bu3Llmx44d5q9//avZs2ePycnJMfHx8YH5ev75543b7TYbN240Bw8eNI888ohJTU21pj5jjGloaDC9e/c2P/jBD4LabZy/ixcvmgMHDpgDBw4YSYHfl01X5rRlvr7zne+Ym2++2Wzfvt3s37/f3H333WbAgAHmk08+iVRZQa5Vo9/vN7m5uebmm282paWlQT+XPp/PGGPM0aNHzeLFi83evXtNeXm52bx5s/nyl79sBg4cGLYaCTGf0yOPPGJGjBjR4rrf/va35o477jBf+MIXTFxcnMnKyjIvvvii8fv9nTzK0JWUlJihQ4cat9ttunXrZvr162cWLVpkLl26FNTv+PHjZsKECaZ79+4mMTHRzJgxw3z88ccRGnXbrV69+qrvmWli8/w1+Y//+A+TkZFhYmNjzaBBg4IuSbbJ1eZq9erVxhhj6urqjNfrNV/84heN0+k0vXv3NlOmTDEnTpyI7MBD8NBDD5nU1FTjdDpNWlqamTRpkjl8+HBgfWNjo1m0aJHxeDzG5XKZr33ta+bgwYMRHHHotm7daiSZI0eOBLXbOH9vv/12i8/JKVOmGGPaNl+XL182M2bMMImJiaZ79+4mJyfnuqr5WjWWl5df9efy7bffNsYYc+LECfO1r33NJCYmmtjYWHPLLbeYWbNmmfPnz4dtjA5jjAnPOR0AAIDOw+fEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGCl/w8jg8ujFLxv4QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "X_train_numeric.member_dev.hist(bins=100)" ] }, { "cell_type": "code", "execution_count": 296, "id": "b1963d33-1f4e-422c-8e86-306d45635cb8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 296, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGxCAYAAABiPLw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEcElEQVR4nO3deXhU5fk38O8khJCF7GEJhCwQUAj7vi9WhFpRqYhoZRGxKosKtBVxAapQFWx/Im6VRqmKdlGk9VVBG3aQQEDZhEACCQImhCwkgSQk8/4RZ5jl7HPOrN/PdeVSZs7MPDPJzLnnfu7nfkxms9kMIiIiogAQ5OkBEBEREbkLAx8iIiIKGAx8iIiIKGAw8CEiIqKAwcCHiIiIAgYDHyIiIgoYDHyIiIgoYDDwISIiooDRzNMD8DaNjY04d+4cWrZsCZPJ5OnhEBERkQJmsxmXL19GUlISgoLE8zoMfBycO3cOycnJnh4GERERaVBUVIT27duLXs/Ax0HLli0BNL1wUVFRHh4NERERKVFZWYnk5GTreVwMAx8HlumtqKgoBj5EREQ+Rq5MhcXNREREFDAY+BAREVHAYOBDREREAYOBDxEREQUMBj5EREQUMBj4EBERUcBg4ENEREQBw2sCn23btuG2225DUlISTCYTNmzYYL2uvr4ef/jDH9C9e3dEREQgKSkJU6dOxblz5+zuY9SoUTCZTHY/99xzj5ufCREREXkrrwl8qqur0bNnT7z22mtO19XU1CA3NxfPPPMMcnNz8cknn+DEiROYMGGC07GzZs3C+fPnrT9vvfWWO4ZPREREPsBrOjePHz8e48ePF7wuOjoamzdvtrts9erVGDBgAAoLC9GhQwfr5eHh4WjTpo2hYyUiIiLf5DUZH7UqKipgMpkQExNjd/kHH3yAhIQEdOvWDQsXLsTly5c9M0AiIrKTX1KF7OPFKLhY7emhUADzmoyPGlevXsWTTz6Je++9124/rfvuuw9paWlo06YNDh8+jEWLFuG7775zyhbZqq2tRW1trfXflZWVho6diCjQlNfUYd76g9iWV2K9bERGIlZP6Y3o8BAPjowCkc8FPvX19bjnnnvQ2NiI119/3e66WbNmWf8/MzMTGRkZ6NevH3Jzc9GnTx/B+1uxYgWWLl1q6JiJiALZvPUHsfPkRbvLdp68iLnrD2DdzAEeGhUFKp+a6qqvr8fdd9+NgoICbN68WXb39D59+iAkJAR5eXmixyxatAgVFRXWn6KiIr2HTUQUsPJLqrAtrwQNZrPd5Q1mM7bllXDai9zOZzI+lqAnLy8P2dnZiI+Pl73NkSNHUF9fj7Zt24oeExoaitDQUD2HSkREPztzqUby+tOl1UhLiHDTaIi8KPCpqqrCyZMnrf8uKCjAwYMHERcXh6SkJNx1113Izc3Ff//7XzQ0NODChQsAgLi4ODRv3hynTp3CBx98gF/+8pdISEjA0aNHsWDBAvTu3RtDhw711NMiIgpoKXHhktenxjPoIfcymc0O+UcP2bJlC0aPHu10+bRp07BkyRKkpaUJ3i47OxujRo1CUVERfvOb3+Dw4cOoqqpCcnIybr31Vjz33HOIi4tTPI7KykpER0ejoqJCdiqNiMjT8kuqcOZSDVLjI7w2czJ17V7sPHnRbror2GTC0E4JrPEh3Sg9f3tN4OMtGPgQkS/wpZVSFTX1mLv+gE+MlXwXAx+NGPgQkS/wxSxKwcVqnC6t9ursFPkupedvr6nxISIiZSwrpRzZrpTyxsAiLYEBD3meTy1nJyIiZSuliEgYAx8iIh/DlVJE2jHwISLyMemJkRiRkYhgk8nu8mCTCSMyEjmdRCSBgQ8RkQ9aPaU3hnZKsLtsaKcErJ7S20MjIvINLG4mIvJB0eEhWDdzAFdKEanEwIeIyIdxpRSROpzqIiIiooDBwIeIiIgCBgMfIiIiChgMfIiIiChgsLiZiMgP+cKu7USewMCHiMiP+NKu7USewKkuIiI/Mm/9Qew8edHusp0nL2Lu+gMeGhGRd2HgQ0TkJyy7tjeYzXaX2+7aThToGPgQEfkJ7tpOJI+BDxGRn+Cu7UTyGPgQEfkJ7tpOJI+BDxGRH+Gu7UTSuJydiMgF3tYvJzo8BEsmdMW3BZdgAjAwPd4rxkXkLRj4EBFp4I39crxxTETehlNdREQaiPXLmfleDrKPF3tk6Th7+BDJY8aHiEglS78cRw1mM/adKcOMrBwA7s22SI3J0sPHV6e8vG06kXwbAx8iIpXk+uVYWLIt62YOMHhEynr4+FrQwKk7MgKnuoiIVJLrl2Phzo7J/tjDh1N3ZAQGPkREKon1yxHjjo7J/tbDh9tvkFEY+BARaSDUL0eMu7It/tTDh9tvkFFY40NEpEF0eAjWzRyAgovVOF1ajdezTyL3TLldhiLYZMLQTgluy7Y4jsmXi4H9ceqOvAMzPkRELkhLiMDoLq3wztT+XpNtsYzJV4Me4PrUneNJylen7sh7MONDRKQDf8q2eIPymjpca2xEo8PlA9LifHLqjryH12R8tm3bhttuuw1JSUkwmUzYsGGD3fVmsxlLlixBUlISwsLCMGrUKBw5csTumNraWsydOxcJCQmIiIjAhAkTcPbsWTc+CyIKdP6QbfEG89YfxLf5l+wuCzIBIcFBXMpOLvGawKe6uho9e/bEa6+9Jnj9Sy+9hFdeeQWvvfYacnJy0KZNG9x88824fPmy9ZjHH38cn376KT766CPs2LEDVVVV+NWvfoWGhgZ3PQ0iMlh+SZXHOiOTe4it6Go0gyu6yGVeM9U1fvx4jB8/XvA6s9mMv/zlL1i8eDEmTpwIAHjvvffQunVrfPjhh/jtb3+LiooKrF27Fn//+9/xi1/8AgDw/vvvIzk5GV9//TVuueUWtz0XItIfm9n5Hq0dl/2xGSN5D6/J+EgpKCjAhQsXMHbsWOtloaGhGDlyJHbt2gUA2L9/P+rr6+2OSUpKQmZmpvUYIvJdbGbnO8pr6jB17V6MWbUVM7JyMHrlFkxduxcVNfWKbs8VXWQknwh8Lly4AABo3bq13eWtW7e2XnfhwgU0b94csbGxoscIqa2tRWVlpd0PEXkXNrPzLa4Gqf7WjJG8i08EPhYmhzeB2Wx2usyR3DErVqxAdHS09Sc5OVmXsRKRftjMznfoFaT6UzNG8i5eU+MjpU2bNgCasjpt27a1Xl5cXGzNArVp0wZ1dXUoKyuzy/oUFxdjyJAhove9aNEizJ8/3/rvyspKBj9EXoZTH75Dr/octgcgo/hExictLQ1t2rTB5s2brZfV1dVh69at1qCmb9++CAkJsTvm/PnzOHz4sGTgExoaiqioKLsfIvIunPrwHXoHqWwPQHrzmoxPVVUVTp48af13QUEBDh48iLi4OHTo0AGPP/44li9fjoyMDGRkZGD58uUIDw/HvffeCwCIjo7GzJkzsWDBAsTHxyMuLg4LFy5E9+7drau8iMh3rZ7SG3PXH7Bb1cWpD+9jCVJ3nrzo0e07iMSYzGaHiVgP2bJlC0aPHu10+bRp0/Duu+/CbDZj6dKleOutt1BWVoaBAwdizZo1yMzMtB579epV/O53v8OHH36IK1eu4KabbsLrr7+uauqqsrIS0dHRqKioYPaHyAtx6sP7VdTUOwWpbD1ARlN6/vaawMdbMPAhItIHg1RyJ6Xnb6+Z6iIiIv+SlsCAh7yPTxQ3ExEREemBGR8iIiKDad2+g/THwIeIyMsInSS1nDh5svU87jHnfRj4EJFH8eR8ndBJckjHeJjNwO78UutlcidOnmy9h9T2HetmDvDQqAIbV3U54KouIvfgydnZ1LV7nfrfCLH0xBE7cQrdj9xtSH/5JVUYs2qr6PXZC0cFfLCvJ6XnbxY3E5FHcLd1e2J7XAmR2veKG7p6D+4x550Y+BCRbvJLqpB9vFj25MqTszO5k6SQjd/96PRa8WTrPbjHnHdijQ8RuUzttJVeG1n6E7mTpJA/b87Dnzfn2b3WPNl6D27f4Z2Y8SEil6mdtuLJ2ZnYRqxK2L7W3NDVu6ye0htDOyXYXcY95jyLGR8icoll2sqR7bSV48mW34SFCW3EqoTja80NXb1HdHgI1s0cwO07vAgDHyJyidZpK56cndmeJOeuz8XRc5VotCmDMgGQKn22vNY82Xofbt/hPRj4EJFLtE5bWU7O204U40BROfp0iMXwjERdxuTrvYHSEiLwwcxBToFhv9RY5JwuE72d42vNky2RMwY+ROQSrdNWRvTx8afeQGJZm7ve2IXcM2VotDk2yAT0TYl1Ocjx9YCRSAk2MHTABoZE6lXU1DtlJ+QCDiOa7Plz4z6hoM6R1iDPnwJGClxKz98MfBww8CHSTmlNiREdbf29S66Srs5agzx/DhgpcLBzMxG5XVpCBEZ3aSUbYBjRZM+fG/cp7eqspQEkm0lSoGHgQ0RuZ0QfH3/uDaS2q7OaIM+fA0YiIQx8iMjtjGiy58+N+9R2dVYT5PlzwEgkhIEPEelG6V5dgDEdbf21S67Srs5agjx/DhiJhLC42QGLm4nUc2VVkBFN9vyxcZ/QyrnY8BCU1dRb/611JZaWVXl641J6chVXdWnEwIdIPV9fFaTnSdfoE7hjUCcW5GkZhycCRi6lJ70w8NGIgQ+ROr68jFzPk66RJ3A1QYyvBRK+HjST9+BydiJyC3evClJTRyRH7a7y7rovi/KaOkxduxdjVm3FjKwcjF65BVPX7kWFzfSWO8ZhFC6lJ0/glhVE5BJ3rQrSO5OhZVd5d9yXLakgRigbYtQ4jKJ1g1siVzDjQ0QucdeqIL0zGXpmquTu69v8UsX3ZaElG+JrPXm4lJ48gYEPEbnM6GXkRkyJ6HnSlbuvJz85JDtF5UhLEONrgQSX0pMnMPAhIpdZdhLPXjgKWTP6I3vhKKybOUC3YlojMhl6nnSV9NlRm53SEsT4YiAhFDT36RDj872XyHsx8CEi3Sjdq0stozIZemaqhO7LltrslNYgxteaOEaHh+DVKb3QPzXWelnOmTLMXX9AVYaMSCkuZ3fA5exE3snIZc969q9Zv7cQiz45JHp91oz+GN2llaL7cqWxoC81ceSSdtKD0vM3V3URkU9YPaW3UxCgVyYjLUG/4GBgWpzk9WqyU5YpRC1BjJ7PyUi+thKNfJ/PTHWlpqbCZDI5/cyePRsAMH36dKfrBg0a5OFRE5FeHOuI1j0wADOGpeJSTZ3L961nbyAjCE0hevuYlfK1lWjk+3wm45OTk4OGhgbrvw8fPoybb74ZkyZNsl42btw4ZGVlWf/dvHlzt46RiIwXGx6C5z477bXdlo3uTePpzsx6b8nhayvRyPf5TMYnMTERbdq0sf7897//RceOHTFy5EjrMaGhoXbHxMVJp5yJyPd4e7dlo0/knurMrKWLtC2xDJUvrkQj3+YzgY+turo6vP/++3jggQdgsnmzbNmyBa1atULnzp0xa9YsFBcXe3CURP7FG6ZW9OznY9R2CUaeyD25xYPWgEtJwORrK9HIt/nMVJetDRs2oLy8HNOnT7deNn78eEyaNAkpKSkoKCjAM888gzFjxmD//v0IDQ0Vva/a2lrU1tZa/11ZWWnk0Il8jqenVmzpOY1k5JSUUYXYntriwZUCZCXbbrhSxE2klk8GPmvXrsX48eORlJRkvWzy5MnW/8/MzES/fv2QkpKCzz//HBMnThS9rxUrVmDp0qWGjpfIl6ndL8pI7uy27MqUlNITudp6Gbkxv559En2SY3UPSLUGXGoDJl9ZiUa+zeemus6cOYOvv/4aDz74oORxbdu2RUpKCvLy8iSPW7RoESoqKqw/RUVFeg6XyKd52+7Z7ui2rGdtiVhDR631MnIdonPPlBtS66M1SOSKLfJGPhf4ZGVloVWrVrj11lsljystLUVRURHatm0reVxoaCiioqLsfoioiTeeuIzutuyO2hJXCpRXT+mN3h1iBK8zKiDVGiRyxRZ5I5+a6mpsbERWVhamTZuGZs2uD72qqgpLlizBr3/9a7Rt2xanT5/GU089hYSEBNx5550eHDGRb/PGE5ee9SCeqC1xtWFfdHgIZo/phBlZOaLHGFHro6VuyRIwiXVl5rQWeYJPBT5ff/01CgsL8cADD9hdHhwcjEOHDmHdunUoLy9H27ZtMXr0aHz88cdo2bKlh0ZL5PvUnrj07vEiRc96EHfWluhRoOyJgFRrkGhkx23yPe78jBDjU4HP2LFjIbS1WFhYGL766isPjIjI/yk5cWlZ+SX3AegNH5BGkAtamgWJ7/BuIRaQBpmAYZ2M7X2jNkjkii0CvGt1KDcpdcBNSomESZ241GwyKfcB6E0fkEYRer1sKXm+FTX1eOSD/dh1qtTu8sHp8XjzN3395rUi/+COjWiVnr99rriZiDxDbIWS2pVfcoW9rhT+bj1ejP/75gS2C9TQeBOhompbSp5vdHgImgUFOX2I7y24pGlllzc0qCT/5G2rQ31qqouIvI+amhW5wt5tJ4o1Ff6eKa3GHWt2osxmOXhseAg2zh6G5HjpqSVPsEz/bDtRgql/2+t0vZJCZ712NQ+EDBt5lqcab4phxoeIXKKm0FbuA/BAUbnk9WLL5x2DHgAoq6nHhDU7JO/P3RyzKmJTXRZS7QLkXss9+aWS11s88n6uUwC1La8ED7+/X9HtieR42+pQZnyIyCVqVn7JfQD2To6RvF7oA3Lr8WKnoMeirKYe2/NKMDwjUfJ+jSaWVVkwtrPk7aROCHKv5aJPDuGLQxdkC8x3iwRIu/NLFWeN6Dp/Lcp3hbe1NWDGh4hcJtcI0JLpMP3c8E6sEd6Izq1UN8o7eLZccmzfHPvJ47UrYnVLqzad0Nw9Wq6Ls+UxpOp9vi24JDluoawRa4GEubp7vb/zpo1omfEhIpeZITxlU3Glzmkp/OD0eAxMj7NbjWT7Aai270uv9jGSY3t31xm8u+sMAM/UrsjV4mycMxQA7I7pkxKj6IQg9FoJPYZ45kZ6qs02pGItkDRv2tPOG3lTWwMuZ3fA5exE6oktVY0Ka4bKK9cE09tLb+8m+QEo9QHpOJ3Qe9km0ekuW3ovn1Ui+3ixZJflrBn90Ts5BrPe24ecM2XWy9UEFR/tLcSTnxySfIzRXVo5XZ5fUoUxq7aKj33hKOtr78pyZH+f/lHzOpJxlJ6/mfEhIpdIZTSEghFLFgKA4MnYQqhRnljW4YOZA3Hf2m9lgx+1K570oKSwc976g8gtLLe7XE22YEBanOxjCElPjMSQjvFOvYAAYEjHeMWr8cRez0DJEnnbqiWSxhofInKJ3Ie+GC0bnIpNJ/zpy+M48OxY/H3mADxxc4Zs0bA7N1eV2+DT/HPw4EqPE1d2mn/jvr4Y4VD8PSIjEW/c19f6728LpFeIib2ervRk8iXetmqJpDHjQ0QukfvQF6P2ZKAk6zA8IxHDMxKRX1KFVZtO6PbYrpKqW8otKpO4pXy2wDKNtPCWpmBP7Z5YUrUXQhkbIUKvp159hnyBt61aImkMfIjIJVIf+lI1PmpPBmqmE/Q4EelZlyIVXGjNFohNI22cPRSlNXWqx+04tZhfUoV5Hx3A0XOVoreRej0DbfqHm7H6DgY+RKSIVCAg9qH/wh2ZWLzhsC4nA7UBgtYTkZF1KUJ1S1qDNLFpJAAuFW8rzfIA0q9noE3/eNOqJZLGVV0OuKqLyJ6aQEDsQ1+vk4HY6q3Y8BAceHas4G3UPrY7NlN0VFFT7xSkSQVbRq4ikttA1WLFxO6YMqCD5vvyxyJn8iyu6iIiXajpTyKU0ZC6XI3visokOzSL1Ywofez8kip8W3DJI3UparMFRk0jidXlCBmUHi97jFSfIfa4IU9h4ENEorypQHXxp4clr9d6slczteO44arj1J+rdUFKgzSjppGUrNBTUycVHR6CJRO6Cman/LHImXwDAx8iEuXJAlXbIMJsNuOwRJEtoP1kL5TRknoMoUBpSMd4mM2w2/fKyKkcqbqg3h1irMvL1f5ulKzQU1ujFWhFzuT9GPgQkShPFKgKBRaZ7aTr7TLbRdmdPLceL8bBs+Xo0yFWcoNSpVM7tlkOS92KLaEGgEZP5QhNI0WFNcO+M2XWTtFqgy+xgCoIQNekKKy+t4/uwZS/FTmT92PgQ0SiPNGfRCgDI7WkGgCW39kdAHCmtBp3rNlpVwsUGx6CjbOHITne+QSstPmiJcuhpgbGlakcJVNmjnVBr2efRO6Zcrtj5IIvx6yaWD+gYS5kr9jjhrwNAx8ikuTO/iRigUXjz+dLE5y31YwND0FKXNPJ0zHoAZoKnyes2SG46ksuG/Gnid0xMP361g1yzQaFqJnKUbOCzjZoSYkLR85p57GJBV9ydU2u9AMSwh435E0Y+BCRKMvJdent3QBAdsWRq8W9chmYiNBgVNU22F1WeaVpKfjMYamSq76255U4TXvJZSPucViuraVLdXxEc8XHKllBJzgVmCQ9FegYfMnVNenRD8gWe9yQN2HgQ0RO1Dbx06vpn1xg4Rj0AECDuWlaJj1R+ra5hWWC9T5qshGWQGnHyRJrFkrOyq9OKAoglKygM5vNmLfeuZuy3FSgbR2Nkuk6o1ZcsW0ceQMGPkR+ypXsi5rePVqOFyOVgbkxqSUO/yh+go+Tyaz06RAreLmSbITta7l6Sm/ct3aP5FhsKQ0g5LJdc9fnij5mo8wYnvvsiDUIVbOprF4rrgJll3byDdydncjPlNfUYeravRizaitmZOVg9MotmLp2LypEpoEcWTICSncLV3u8nNVTemNopwS7yyzbX0i5rWc7xIqcRGPDQyRXdwFNS79Hd2nlVAvj+FrOXX9AdiyOlOwGL5ftUhpoCdmRV2LdEV3NdJ1eK64CZZd28g0MfIj8jKsnGSV9V1w5Xo4lA5O9cBSyZvRH9sJRWDdzAHomx2JERiKCTSa744NNJozISERaQgQ2zh7mFPxYVnVJyS+pQvbxYqcgTey1XLUpT3AsYpQEEJZsl+N96vEh3YjrmSexx7Fl+5q6Su/AmMhVnOoi8iN6dFpW23fFqD4tQl2M5epxkuPDceDZsdieV4LcwjLZPj5SUzCl1bWSr+XG2UMBQLJeRu2SbaHn17FVBPKKpYODIMhPdwHXp66ktpIAmvoBqc1qiWEDQ/I2DHyI/IgeJxm1fVfSEyMRGx4iunmonj1sLNmgbSeKcaBIvEHh8IxE2aktQDo7NmNYquRtS2vq7GqD4iOaY+VXJ1xasi1Ub/S/Hy7gj//9QfJ2wzISca2xEXvySyWLri1BqO3jzF2fi6PnKu1uV3nlGhZvOKzLqi42MCRvw8CHyI/odZJRs9Ipv6RK0+ahjpQUwOpZJCuXHXtweJrk7X+quGp9bmkJTVtZ6MU22/Xl4Z8kj/37zAEYnpEouMO7hVjQajabBWuH9FzVxQaG5G1Y40PkR8TqN9TWbIjV2QgFF1pqfIRqapTUJs1bfxA7HE7sWotk5cbdYDZL1sI8+ckhu8LxR97PdQo6tuWV4OH398uORazGKL+kSrAxoUXv5BhrZsvyO9s4e6hTXx+xoFXv+iwxYgXrSrNhYq8PkRbM+BD5GT275CrZLVxNlkksY7NgbGfZ2qSKmjpdd4pXMm65WhigKfB6cF2OaICyO7/Ubmy2U3kVNXV4+rPDdlkX2wyWXGDy4DDnrFSP5Bj8d95wRc0C42SyZHpNQ2ltYMhl8GQEBj5EBlHTR8fVjse23Nkl1zLu/qmxyD1TLjmVkV9SJdh8b+fJi7hUXSv5OKdLq7Fq03HZY9Q8T6VTMJbXck9+KRZ9csjpfhrMZsmsDADsyS9FbHiI5DYRFpYM1qtTemHN/05KHtu1XbTodUqC1lWb8kSv02tVl9ox2dKrPxSRLZ8JfJYsWYKlS5faXda6dWtcuHABQNNc9dKlS/H222+jrKwMAwcOxJo1a9CtWzdPDJcCmJpvqUZ+o1V7klFDaNyOBc6WLJPcvlANZjMOy3QeDjaZZPvYaMlOKM2OpSVEuDTtY4L8NhEWlgzWrPf24UBhueAxetTHyHVwtmxW6il6rFAkEuIzgQ8AdOvWDV9//bX138HBwdb/f+mll/DKK6/g3XffRefOnfH888/j5ptvxvHjx9GyZUtPDJcClJpvqb76jVZo3JVXrqF/SiweHdPJLss0de1eRSf8zHZROHbusmD2xbEHjNNtk6I0nQSVZsfyS6pwoeKq6vu3SIppoXhXd4ucM+JZpD4pMS5v8Ck3jVZarV+xthZcBk9G8anAp1mzZmjTpo3T5WazGX/5y1+wePFiTJw4EQDw3nvvoXXr1vjwww/x29/+1t1DpQCl5luqr36jlRp3zpkyu+BByb5QFsvv7C66HLxUZips+Z3dVTwDZ2LZMblsFXA9OLvW2Ihdp0qdrh/SMR4NOm9R9ejoTi5nBF1dAajn9KwQLoMno/hU4JOXl4ekpCSEhoZi4MCBWL58OdLT01FQUIALFy5g7Nix1mNDQ0MxcuRI7Nq1i4EPuY2ab6m++o1WyZ5SH8wcpGpfqCEd49GjfYxo9iU6PESwHifIBAzrlIgeyTGan48UJdNTluDsdGk1Fn96yG7azrYZop5S4yNcDjzEapyC0NQXSOw+3VVwzGXwZBSfWc4+cOBArFu3Dl999RX++te/4sKFCxgyZAhKS0utdT6tW7e2u41tDZCY2tpaVFZW2v0QaaXmW6qvfqOVG/fRc5Wq94WynckS2jMLEF4SPaxTouiUj6tLoMW2WnB0rbERD7+/H7ev2WkNejLbRWHjnKHWFgBKtolQqnOrSPz+n99p3ovN1uopvTEgLc7ussafn5PY/Rm175bQ78vVZfBEQnwm4zN+/Hjr/3fv3h2DBw9Gx44d8d5772HQoEEAAJPDh4rZbHa6zNGKFSuciqaJtFLzLdVbvtGqzRxYxr0jr0Rwm4RGs/O+UI7P0ZHjkm8hSutxtGYkHF8HpdkqoemtY+cuY+VXJ+zqtJQsjVfiRHGV02Va68Kiw0MQEhyEIBPsOjd/m39J8P6MmJ49WFgmuaTfXSsUKXBoyvjMmDED33zzDcwy34SMFBERge7duyMvL89a9+OY3SkuLnbKAjlatGgRKioqrD9FRUWGjZkCw/N3dENUmP13CrG9jzz5jdaVXdxXT+mNrg5N8hxZVkEJPUep4+WIZYQs1GYkxF6HuPDmisYjRGgDTstJfN0D/fHEzRn4+88NIjOTopw+iNV+MGvd8NMSyDhucyF2f3o2PLS87ne8vstpxZ7j70vud06khqbAp7S0FLfeeivat2+PBQsW4ODBgzoPS15tbS2OHTuGtm3bIi0tDW3atMHmzZut19fV1WHr1q0YMmSI5P2EhoYiKirK7ofIFU9vOILKK9fsLrPsfeRITYdkvbkyZREdHoJXZYIzx32h1j3QX9HxWlimSbadKFa9E/ijHwh3XH7xyx8wIiMRQS7MTtkGApYT/dS/5eDPm/Nw/9q9eO6zI3jjvr4Y5rCvmFxQqeTxlFAbyOg5PSvUhduCO7eTkTRNdW3cuBHl5eX4xz/+gQ8//BB/+ctf0KVLF/zmN7/Bvffei9TUVJ2HCSxcuBC33XYbOnTogOLiYjz//POorKzEtGnTYDKZ8Pjjj2P58uXIyMhARkYGli9fjvDwcNx77726j4VIjNapACN77ghROk6paTC1U3UjOrfSdWovv6QKR85XYt2u07INBC0cC8bzS6oEp6qApimsjXOG4lJNrWwPITG2gYBYoGnZDNR2OqewtBrTsnJcejwplt+rXM2RYxG1XtOzSlf7eWuBP/k2zTU+MTExeOihh/DQQw/h7NmzWL9+Pf72t7/h2WefxbVr1+TvQKWzZ89iypQpuHjxIhITEzFo0CDs2bMHKSkpAIDf//73uHLlCh599FFrA8NNmzaxhw+5la+s1JIb55EfK/DcZ0dk62TUbo+hx3YaSpaYi2nmkL75tkA46LE4eq4Sr97TG2NWbVX9WP1TYlW3LrAcrzZzI7cSy0Ks8WTllXq7JffBJhMGpscJ/g28cEcmFm847NLvUGn9lLcW+JNvc7m4ub6+Hvv27cO3336L06dPy9bUaPXRRx9JXm8ymbBkyRIsWbLEkMcnUsJXVmrJjfO9XaeR69A12LGA1pIJWHp7U3d0JcWnehSrKu2ALOSaYzELpDMeZohntuRMH5Jq/X+1AbHaGoSuSVGKAg+h166iph7RAl236xsaFWeo1P4O5f7+LG0KvOFLAvkfzYFPdnY2PvzwQ/z73/9GQ0MDJk6ciP/85z8YM2aMnuMj8ineslJLjtQ4+6TECE4dWbIT3xWVYdWmPJdXTWnZv0xNQ0QhjoHnQIel3I4GpccDEM5UZbSKRJ7ACisL23201AbEQqvlpKy+t49sXZjYa9cIoKymHn+fOQDXGs1IjY+A2WwWzHKJZajUkgsm+3aI5ZJ1MoymwKd9+/YoLS3FLbfcgrfeegu33XYbWrRooffYiHySnrujG0lsnHf3by9ZM7P408M4dv6y3WU78koEs0Gp8RGCm3P2T43FtCGp6JYU7XTylFqOrnSKRMjg9HjBOqXB6fHYne885WV7vGOmKi68OVZtOiEY+Ei1LhBqARAZGozLV5uyLddrb5Q9JzUBtdxrd63RjNFdWgEAso8XSx6rx5St1PL+nDNlmLv+gE/uwm50R2tyncmsYU3622+/jUmTJiE2NtaIMXlUZWUloqOjUVFRwRVeAcSIDytf6T3iOM78kipNNS0A8MGDA/DW1gKnGpKKmnrRLEZGq0isursnIkOb4cylGrz+v5PILRTe6X3JhK6axzakYzw+nDXI6fKKmnqnE7BcBsuy/5hQtiKzXRSW39kdPdrHOD3OqJXZdlNKthw3eVVCTcdkud9r9sJRdpk1pce6quBiNeauz8XRc5V2y+otv3Nv3rPOlrs6WpM4pedvTYGPxcmTJ3Hq1CmMGDECYWFhihoGejsGPoElUD6s1AZ2vZdtEjwJR4YGo6q2QfR2kaHBuFLXqKoWRo3shaPw3GdHVNfb2N5e7PkrDVSVBoaOf0euBJSOVkzsjkECGSw5QgGbWICh5lhXuDPIMtK9f90julebUMBN+lN6/tbcx+emm25C586d8ctf/hLnz58HADz44INYsGCBthETeYBR7fe9hZYmhfklVaKZB6mgx3K9UUEP0LQP2At3ZDo1ROyfEotHRqXL3l5qtZTS74BKp9ss039qb6dEm+gWMJvNqrfkUNMw013NNfVsiugpcm0R2I/Iu2iq8XniiScQEhKCwsJC3HjjjdbLJ0+ejCeeeAKrVq3SbYBERvHV3dHVkArsxL6163mC1tvRc5Wiq4ryS6rwxpZ8ydsLrapTk/Urr6nD69knFY21EU2NEL88fB7jMtsiTscM4uv/O4mcM9frsMTG65jpU7Oqzl3bRfjKSkgpcm0Rvs0v9fnPEn+iKfDZtGkTvvrqK7Rv397u8oyMDJw5c0aXgREZzVd67miltUmh0o1FPcF2HzDHVUXpiZGSdTIjRPrcSAWHSyZ0tXtt5q0/iNwz5arG/PD7uRiRkYj6BrVrtYRFtWgm22pALphTsyLL6K2JfGUlpDT5tgiuYMG0vjQFPtXV1QgPd/5wvHjxIkJDQ10eFJE7uOubpqc+tFxpUqilb42YYBMQFaa+cFeKUFAqNUUHAAtv6ex0mVxwaFt70i8lFvvOiK92k7LjpPN+WFpEtWiGyqvODWIdg1ktmT5H7qx/E1rhdWPbllg41vl35o2UtkVQK1BqEN1NU43PiBEjsG7dOuu/TSYTGhsb8fLLL2P06NG6DY7ISJZvmo5t+4NNJtHsgBqubAKqByVNCsVOjko3FlViaKdEvDujPxboeBILNsGpvkUu0CutrnO6TM20Xq7GoAeALkFP93ZRWD6xu+Qxp0urrcGcmv3KhLiz/s0yrfbZ7KHIbNdUlHr4XCUmrNnp1veMVpa2CEKE2igo5e81iJ6iKfB5+eWX8dZbb2H8+PGoq6vD73//e2RmZmLbtm148cUX9R4jKbD1eDH+75sT2O5Cc7dAZGQBp6c/tKQCu/6pscg5UyZ6crxUU2fdPHXFROdd5ZV44uYMfDa7aZPg29fswqpNJ7Q9ERtBpqZl31P/luMUTGrJ4KmZ1tNnokpaRqsIwZ3a+6fE4j9zh6NrW+mVpqnxEboUC+sVPKm1atMJHDtn3yPKV070b/6mL0Y4bDY7IiMRb/6mr6b789TvIBBomurq2rUrvv/+e7zxxhsIDg5GdXU1Jk6ciNmzZ6Nt27Z6j5EknCmtxh1rdtql+GPDQ7Bx9jAkx3tvrYa3MKqA01sKp7U2KbRMJVl+vjj0k+qprwk921mXnuslMrSZ07d/2ykcoSk6qX2stG5HYZRVk3ph5aYTdr+vYT9PbQDK6mHkanLiI5rLjsMT9W/e8p7RSu/PEn+vQfQkzVtWtGnTBkuXLtVzLKSBY9ADNLWfn7BmBw48O9ZDo/I9eu+O7i0fWmIfxvkl4lstAM7ZEakuu0I6t4rAnvyLkscvHNsZ8ZGhGJQej6JLNZj6t72y9ytX37J6Sm88/P5+u07MjQCuNTZa96RypPa5GUlJ6CXXGTw9MRKZSVE4fE54R/mVX52QrfPxxEorb3nPuEqvzxJ/WO3mrRQHPt9//73iO+3Ro4emwZA6W48XixZzltXUY3teCYY7pF7JPYz60NJaKC20AkrpSpr8kiocOV+JK/X2QUezIJPApp9NThRXY9EnhyXH1K1dtHWLBD1WDm387kdM6NkOQj1Ud50qxSMf7BdsJCcUHAo1SQyC8dNdizccEp3qsQQrUpkFoQywIyXZE0+stOKJ3p5/rHbzTooDn169esFkMjl1Z7Z8YNle1tAg3eSM9HHwbLnk9bmFZQx8PETPD638kiocPVeJ93adVtS7RSm5zIHQihJbDY1mBJuABo0xi+2JTI/eQX/enIc/b84TvX7XqVLJLwO2wZfQaxMu07VaD4d/dM7SiE31CGUW5IIeCyXZE7G/jwVjOyP7eLFT8M0l1/rzlX3/fI3iwKegoMD6/wcOHMDChQvxu9/9DoMHDwYA7N69G6tWrcJLL72k/yhJUC+HvYAc9engf3up+RJXP7TkAo9teSWiWQwl5GoShIqzbZnRFPSYTICahI1Q8Cf3bT8IwKCO8Th2vtKlZfH3r93rFDCW19Rh1rp9djVPlmMu1dThdGk1gk3A1L/laH5cOSYA3SSmpwD5YEUqA+xISfbE9u9jT/5F1NQ14MvDF3D7mp3WY0ZkJOL5O7rh6Q3CbRHUBOX+MtWlJ3c1kQw0igOflJQU6/9PmjQJr776Kn75y19aL+vRoweSk5PxzDPP4I477tB1kCRsZJdWog3bYsNDmO0R4a5vpq5+aMkFHsD1dviuPA+hzIFYoakQtbNUQsFfemIkbmzTEscuXBa8zbCMRFytv6ZLLyDbqaPymjqMXrnF6X53nry+23xaQoTsbuWuMgNoFiS9yDY13rnZpEV5TR2e/Ux6atEis12U6N+L4/2X19Q59XqytfPkRdy+Zicqr1xzulxNzyCAU11S9K5BDHSaipsPHTqEtLQ0p8vT0tJw9OhRlwdFym2cPQwT1uwQXNVF9jzVDEzLh5aawEPvdvjlNXWY95H+y4fFNtYsr6nDg+/tEw16gk1waVd2R7ZTR7/753eCwVSDQ4dod3Sz/u5sOSJDg1Fd22BX5BxsMmFAWpxos8no8BA88n4uzly6ouhxlt/p3AtI7L1R39CIvQWXRO+rwWwWef3Ur8RiTQu5i6bA58Ybb8Tzzz+PtWvXokWLFgCA2tpaPP/883Z7d5HxkuPDceDZsdieV4LcwjL06RDLTI8IPbrZuouamhexhItQdkBJtmve+oM4KjHlolaQCeibEospAzo4XSeWcbHVYAbueWu3buOx2JN/UbYT8+nSapjNZnxbcAkZrSJxqrjKsAJnM4Q3gR2Y3tQVWGpbDdtVbFL6p8aih8AUudB7Q49u02qnpxaMzcClmlq7Widfrmlh3ZN30hT4vPnmm7jtttuQnJyMnj17AgC+++47mEwm/Pe//9V1gKTM8IxEBjwSfK1HiJoMg2M7fKFv772TY3C1vsEuqyKU7VKTaVKq0QzknC7D1LV7nR5v1rp9iqaviqucuy67Tnp/JQB4dfMJHDhbYcBjKxMEoPJKvWDtj+Vv9/ND5xXfn9DvQex3rke3aaXTU0J/s5lJUVh+Z3f0SI5xfSBuxq0mvJumzs0DBgxAQUEBXnjhBfTo0QPdu3fH8uXLUVBQgAEDvOubMxGgrHBSL/klVU7bKagl1nXZUXRYiFPAJvTt/UBRudNUklBHXCN3Zrd9vPySKqzfe0ayiaJWMWHyJ5bY8BB0bdtS9jixoCcyNFj1uLRoBCQLngGgoETd35nj792V33mwyYTY8BCXt30R+ps9dv4yVurQ7dsTPN21naRpbmAYHh6Ohx56SPKYW2+9Fe+88w67OZPHuaNwUu9veUoa61VcqcdHewsx8Ofama3HixVnbISyXUbWslgeb9Kbu3QNeAanx2P5xO52PXi255VINgMsq6nH4k8PIzwkCDX16ievjF7WrsYnB35Udbzj713JijqxV2hopwS8cEcmFm84rHn1oq9lY+X42/PxR5oDHyW2bduGK1eUFdwRGckdhZN61xBZVoWt31uIRZ8cEj3uyZ+vE1vhJ8e2DiM9MVLz/Si1X8Vmn0Em6SmXjFaRWDT+BmsBuZqpOrlMir+z/N6l3hsD0+PQLCjI7jXtnxKL6UNS0bVdtPXvxpXVi/62jN3fno8/MjTwIfImRjYDk/uWt35voeCKJiUGpsUpOk5rsNIs6Po0RX5JlaFBD6C8diQk2IR6me6IecVVmLBmpzWzZuRUnb+xzXJKvTeiw0MUBTVibRHkinv9bRm7vz0ff8TAhwKGVF8dV1dfyJ1wLRkbqakvsTEYvZGm7bYTRgYOard8kAt6bFkyawvGZqgelz9ZMbE7jl+oxLu7zkgeN9ghCJfrOaW2JYOaaV+5v+/nPjuC1VN6o7S6VvF71JOrqbgs3/uZzHpskiOiZcuW+O6775Cenm7UQ+iusrIS0dHRqKioQFRUlKeHQwbTqy4nv6RKUZ8Zy4ef7dSXkjFU1NQbtpFm9sJR1g/j74rKcPuaXbo/BgBENA9GdZ2xtTFRLZoJbmSq1Y1tW+LYeeH+Qnro1T5GdusZNfqnxiqqnxrSMV5zx28lpq7dK3riF5r2lfr7DoLzdiFi71FvWU0l9Hy4qst4Ss/fmlZ1EfkLvVZfKF2FZVvgqGYM0eEhWDKhq6oxWXRPEv4AEFp5s2qT+F5XrrpicNADCO/e7ooZQ9Lwp4ndsWBsZ8wYkqrrfQeZgKiwEAxIFZ7KDJJfbX/9WDTVeOUqrJ+ydPx2pMeKRMu0r2P2Ruhv30Lq77sRzsXkYu9Rb1lNZcmgZS8chawZ/ZG9cBTWzRzAoMdLcKqLApbeqy+UrMKysBQ4qhmDlmmoYBPw6r19cPlqPZ769JBoY7j8kip8W1BqSEbJwuidzY3w+39/b/3/fin67n3X+HN36Dd/0wctQoKdsgO/GZiMh97PVXRfoSFBqmuzjpyrsP5tyWVK1DTD1Frcq+bvW+j94Y2rqbjVhHdSHfjU19fjoYcewjPPPCM7hfXUU08hLk5ZYSaRu+m9+sJxU8dFn4jvnWQpcFQzBi1LzRvMwOiVWzAiIxEfzBxk3XTTdi+mqWv3GhrwODJBvNu0N1OzGk2Nh9/PtSswB4BDP5ajXWxnxSvsrmpYkv/ertP4VY8kAOKZkkc+2O+0qmtIx3iYzbDrFm0bJMlNIzg+Vwstf9+27w+upiKlVE91hYSE4NNPP1V07KJFixATE6P2IYjcwqjVF2kJEZgyIEVw6stxeknNGJROpwmxpPsdS/qUbISqt8x2vlk7Z2Swds1hqVtZTT1uX7MLlVeUZXG0jC3ndBm+LyqXnJradaoUOxyC4l2nSp22yLCdTpILwRyfq4WWv2/b9wdXU5FSmmp87rzzTmzYsEHnoRC5l9gHrdqus2JWT+mNoZ0S7C5Tu3z+9//6DhU23/hXT+mN3h1iVI/Fku4fs2orZmTlYPTKLbjrjV2CJzyjBKFpG4JHRnV0y+P5umuNZqhY2KbJgn9+J7svm5Jcku10kisBiNB7RkgQ4PQeNfr9TP5D06quF154AStXrsRNN92Evn37IiLCoWX+vHm6DdDduKrLP4nVI7hj9YVUD5Ts48WYkZUjetsgEzCsU6LdShi52yildnk5eT8tK+f0XG2XNaM/RndppXpVl6NtJ4ox9W/if+P9U2LxzrT+Tu9RrqYKbErP35oCn7S0NPE7NJmQn5+v9i5lrVixAp988gl++OEHhIWFYciQIXjxxRfRpUsX6zHTp0/He++9Z3e7gQMHYs+ePYofh4GPf1G6vFVr11lXKV0Gb7vkXOltyDvIdZ/WdJ/wzqDV8nfqagAiF9xbAiwxnno/G4W7vCuj9PytaVVXQUGB5oFptXXrVsyePRv9+/fHtWvXsHjxYowdOxZHjx61yziNGzcOWVlZ1n83b97c7WMl76F0Gwk9V1+o+ZBKT4zE4PR4p5oJR47bSog1SOua1BJ5P1Xh6jVvPC0GphbNtO0HJmZIx3ingmNPc2zOJ9cQUY6r9Tr+sprKW/oS+RuXlrPX1dWhoKAAHTt2RLNmxq6M//LLL+3+nZWVhVatWmH//v0YMWKE9fLQ0FC0adPG0LGQb3D38latH1JKajkdP+jFthhYMLYzbl+zU/3ghcYF31x95W30DHoAYPqQVIzt1gbbTpRg6t/26nrfSgit6hKrXdMagLD7cRO99/+jJpqilZqaGsydO9c6rXTixAmkp6dj3rx5SEpKwpNPPqnrIIVUVFQAgNNy+S1btqBVq1aIiYnByJEj8cILL6BVK/GUKPkvdy9vVfohZZsRMv+8ckYtsW/U2ceLXX4eFt3aRdn1/SHv8OgHuXjsFxlIjAx1+2P/feYADM9IBGD8dJKRe+v5Am/sS+QvNAU+ixYtwnfffYctW7Zg3Lhx1st/8Ytf4LnnnjM88DGbzZg/fz6GDRuGzMxM6+Xjx4/HpEmTkJKSgoKCAjzzzDMYM2YM9u/fj9BQ4Q+J2tpa1NbWWv9dWckPen/hzuWtSj6kYsNDnDJCSpd2b/zuR0zo2c7pg87xG7WWXihiVk/pA6ApQAw2QbLY1BO8tc7FaNcazVi16YRu9ye0JYTUY1sYPZ3k6nSZr2NfIuNoCnw2bNiAjz/+GIMGDYLJJk/ftWtXnDp1SrfBiZkzZw6+//577Nixw+7yyZMnW/8/MzMT/fr1Q0pKCj7//HNMnDhR8L5WrFiBpUuXGjpe8gx3psuVfEg999lpp4yQ3FJiiz9vzsOfN+cpmjoLD1FXU+JYfOv4+lj+q7SZnrt4KuiJDQ9Balw4Dp6t8IupwGEZiYqnSLV+WXClONdf6nXUYl8i42jq41NSUiI4fVRdXW0XCBlh7ty52LhxI7Kzs9G+fXvJY9u2bYuUlBTk5YnvP7Ro0SJUVFRYf4qKivQeMnmQHr10pFj2NgqW+bMPNpkEe+ZYAg6lb0SxfYfKa+pwx2s7MGbVVlVBT/+UWAzrlGh3mdDrk19S5VVBj6dEtWiG16b0wQE/CXosUuMjJJsHqu2FY3lffFdUjqlr99r1j5q6dq9dbyrH27iyT5g/YV8i42jK+PTv3x+ff/455s6dCwDWYOevf/0rBg8erN/obJjNZsydOxeffvoptmzZIrmk3qK0tBRFRUVo27at6DGhoaGi02Dk+4xKlwsVMseGh6Cipt4uE2HJnsg1CeyaFIXDCrI/QvP75TV1GL1yi+rAJDY8BK/c3QvJ8eGyr4+WfcL8UVXtNTy7UXwrEl+0I68Ec9cfwIKxnXGpulbw71DplwWh94WjnScv4sF1OXh0dCekxkcITgH3S4nFjCGp6NouOqBP8IFe52QUTX18du3ahXHjxuG+++7Du+++i9/+9rc4cuQIdu/eja1bt6Jv3766D/TRRx/Fhx9+iM8++8yud090dDTCwsJQVVWFJUuW4Ne//jXatm2L06dP46mnnkJhYSGOHTuGli1bKnoc9vEhJYQbtDXttm0bgFimpkqrayV772QvHAWgaUqsWZAJT284hDOlV0SPt+1jMunNXcg5rW0fqcHp8Vj/0CDZ49g7KLBktovCnNGdEBoSbC3CVzJVJfS+kCP0hcEWl2/7X18ioxjax2fIkCHYuXMnVq5ciY4dO2LTpk3o06cPdu/eje7du2setJQ33ngDADBq1Ci7y7OysjB9+nQEBwfj0KFDWLduHcrLy9G2bVuMHj0aH3/8seKgh0gJ8ULmpj2W/j5zAK41mu0+pKLDQxTVG1l2bJcKeoDr8/v5JVWagx6gaUlywcVquxOb2WzGtwWlAExoFxOGBnPTc8n0s1VekaFBqKr1nvLoqBbNcPnqNa+YQjt27jI+/LYIr07ppbhFg9j7Qo5cppLLtwO3zskompvvdO/e3alLspHkElNhYWH46quv3DQaCmRy0z7XGs2CXWWVpq3l7j+zXZTiHamVeGjdPuQVV8ked0PrSJcfy5t4U9ADAJVXr3l6CFaWKdVZ7+1DbmG53XU78kpw3zt7sPrePnYnY6OmQ7l8m/SmOfBpaGjAp59+imPHjsFkMuHGG2/E7bffbngjQyJP07raQqreyHbVi9z9L7/zelZVj+XrJ0vkgx4A+OEnZceR/8g545xNbARw+FwlRq/cYpf90bOVghCxlg5EammKUg4fPozbb78dFy5csNbbnDhxAomJidi4caNh011E3sDVZfK2aWuhYtD+KbEY0jEe3+Zfsrv/IDQtPe7RPsZuLClx4S5923bT5uzkhxynoTLbReHouUrd9yYD1LV0IJKiaTn7gw8+iG7duuHs2bPIzc1Fbm4uioqK0KNHDzz00EN6j5G8gL8vNVX7/PRaJj9v/UHscKiLyDlThsM/ViCyhf33kujwELxwRyYcDekUr+oxiUwAkmJaYOHYzi7dj2UaatIbuzBm1VYc/lE+6AlyWDGv9iS0La8Ej3ywX+WtvJu/f756G02rusLCwrBv3z5069bN7vLDhw+jf//+uHJFujDTm/nqqi6jdu/1903yXH1+rqy2ULtSypJRcizy/Pz7c5j9oXNvH3K/sGZBuBKAG8Sq6aId6dAlOlNhKwdHlp3gfZm/f766m9Lzt6aMT5cuXfDTTz85XV5cXIxOnTppuUvSqLymTnGDMC2k9p/yB4+8n+u0EmVbXgkefl/ZN8q0hAiM7tJK0wew2ukpy7fr1/6XZ/1mmF9ShTe2Gt8tnZTxl6DHMSsjR82zrqlrQP/UWGTN6I/shaPwqsaeNN/mq9/jzh3UZG/8/fPVWymu8bHdw2r58uWYN28elixZgkGDmnqA7NmzB8uWLcOLL76o/yhJ1KMf5DptcmlJBX84S74/ixR/3yQvv6TKbodpW5Zl3kY+P63FoCs3ncDKTScQHRaCiivspkzXhTcPxpX6BpfrtsKbK9u7S4tGM5BzuswuSzoiIxHb80pULeX3ttI0tdkbf/989WaKA5+YmBi77SjMZjPuvvtu62WWGbPbbrsNDQ3GvGHIXn5JlejO3rtOuX7i9vdN8r4tuCR5/Z78Uk3TV7b9cOSmH9MTIpCvcV5fr6BnSMd4PDwy3es2ISX1aur0+ew1KuixZfn8KK+pQ31Do+pAZlC6d9W2SWVvhHoQ+fvnqzdTHPhkZ2cbOQ7SoKnJnMT1Gk7ctvx/kzzpj1qhbL9YLZVcq37bb35K2vq70y3dWuNAUbmnh0EBxvL5MW/9QeyV+RLiKDqsmVcFBVqyN/7/+eq9FAc+I0eONHIcpIn0RLyrqWB37m7uCQPTpL8xdrD5YJJLYwt927Nl+81v3vqD2HHSO4IeAHhu41FPD4EC0NmyGph/DgzUqrhyzaumgrRkb/z989Wbae42ePXqVXz//fcoLi5GY6N9aduECRNcHhjJG5gWJ3m9Hqlgf94kLz0xEs2CTLgmsv529oe5OPDsWADSaewlE7rKfnhbvvl9ceic12R6iPT2xM0ZmNCzHQDg/745gQ0Hzokem1tYJvreU8KbpoK0Zm/UfL4atXI3EGkKfL788ktMnToVFy86f8M1mUys8XGT9MRIDE6PFyzQHZwer8ubw6jdzb3B1uPFkh+8ZTX1+Me+QjQ0Cn8rtQQzcrVCtv70xQ+axkrkCyydlfNLqpCeIL3FSZ8OsWgXE6b5saSmgtwdJBTJZHzOltWgsLQaB8+Wo0+HWAzPSASg7POVS971pynwmTNnDiZNmoRnn30WrVu31ntMpMKbv+nr9I3B8qbQkz9uknfwbLnsMb//1yEF96T8W+uZS77b44pIjAnA8IxExIaHYOravbJZzdjwEOvJf0jHeNFFGmp5KkiQ+yyZ9d4+XLVpdRAbHoKNs4chOb4pUyT1+aq2aJrkaQp8iouLMX/+fAY9XsCfMzJ6EvoG2Mtm6wdXDEpPQL+UWOwT2NfIIthkwo1JLf1qd3NSLya8Gcpr9NuM1ATgxrYtERRk8ujfVr+UWOu0jVStG3D9pG+hdem90FSXWJDw4LocPDq6k2Gfj3KfJVcd+juV1dRjwpod1ql0MVzybgxNgc9dd92FLVu2oGPHjnqPhzTyx4yMHqS+AY7s0gpRLZq5tCv2iIxEpCVE4KTM7uZDOyVgwdgM3L5ml+gx9w1IRpvoFli1OU/zeMi76Rn0AE25xqPnL2NERiI6JkbgVIn7tzzo0iYS/3xkCD7eWyiZ6UmKboFnf9UV47q3tV4m1UtLjuNUl1SQkHO6DDOymto1GJEBGtmllWS9oJCymnpszyuxZr6EcMm7MTQFPq+99homTZqE7du3o3v37ggJsf8Dmjdvni6DI+/hq4V1Qt8Ad5wssaaJn/7VjQqns4QtHNsZW48Xo1yip87Ld/XApH7JAJo+dHfklQh2uv1gb5HmcVBgU9v8T08nf6pC72WbUCbTLf5CxVV8uLfILvDRsrmuZbNex88hpfdlxDRRfkmVpkLt3MIyycCHS96NoSnw+fDDD/HVV18hLCwMW7ZssWtsaDKZGPj4EV8urNt6vFjwG2Cjuam79fdF5ejcqqVLj1FaU4fvZeb3z1U01fWU19ThWmOjqvb+QoJMMGT3a/JdnvxzaDBDNugBmra1cJye0dK9vBHAtcZGVNTU230GKb0vI6aJtARwQFOBtxQueTeGpr26nn76aSxbtgwVFRU4ffo0CgoKrD/5+fl6j5E86NEPhPey8ubdkS37l03Lku5E/NSnh/DSV8ddeqzU+AjZ+X3Lh9u89Qfxbb66Rm1CGPSQLztden06znJiDzaJ9ySLDQ9x6lj2bf4lp/2slNyX2DhcpSWAaxZkksz2WKye0htDOyXYXeYvLUU8RVPGp66uDpMnT0ZQkKa4iXyE3JYY358tRw+dCoSVjkfJdJtcM0ELuR2heyfHiHY0tnzjMpvNaAQQGdoMVbXO9RvRYU2rV8TqD4gCTWp8hN17WaiXjS2hbJJY1kbuvhzHoZf0xEjVq9OuNZoVZZ38bQHLx3sLsbugFEM7JlhLANxNU+Azbdo0fPzxx3jqqaf0Hg95EbktMRb84ztsnm98R2810216BhhCgYzFgLQ4XGtsxJhVWyXvo0vrpl4mWlPhRP4i2GTCgLQ4PPfZEaf38vN3ZGLBPw8i57T4ykghjsW9jkHC6/87idzCcrdME2lZnaa0ONlXayxtHTpbjjtf32Wthdpw4BwWfXIIG2cPRdd20W4di6bAp6GhAS+99BK++uor9OjRw6m4+ZVXXtFlcORp0injvOIq2VUJagm9wdX0sdAzwHBcqRVkAromRWH1lD5Y/OkhRd/u9p4uQ8HFas07sRP5KsdVTkM7JeBK/TWnVVzb8kpw22s7cFnDprtiWRvLKtc+ybFu6TyvdXWaXNbJl2ssHU14badTLdq1RjNuXb0DBX+61a1j0RT4HDp0CL17N/3hHD582O46k8L51UDjixG73JYYAHD/2r26vBHF3uALxmao6mOhZ4Dh+CZtNAOHf6zE3oJSVSnt06XVGN2llWCRIpE/cGwLYenVc81stk7PmM1m0QxphcqgR2nWxl3TRHJfuIIAu0UNSsfvL80LP95bKFqAbwbwz31Fbp320hT4cKd25Xw5Yk9PjESv9jGyXUn1eCOKvcEv1dRK3s4xVSy2CkJPf/i3uuXvzYKavgysntIbj3ywX7cutUTe4v+m9EZJ5VXsym+q3eibEouTF6uQGh+B0V1aAQDW7y3U7fHUZm2M7nMm94Wrb0oscmwanCoZvz81L5T73X/47RnvD3wsTp48iVOnTmHEiBEICwuD2WxmxseBr0fsv7ulM+5bu1fyGFffiFJvcLlutJagwpbSAsf2sWE4W2b8FhKWdH9pdS0qNaTzibzdis+P4kRx0yopx41JM9tFYfaoTjh+wbXO0gtuzkAjYLfXlVJGZ9zllp1ryTr5U/PCyqvSn3uVV/Rt7ClHU+BTWlqKu+++G9nZ2TCZTMjLy0N6ejoefPBBxMTEYNWqVXqP0yf5Q8S+QsWmmlrfiHJv8MykKBw7f1kwgyM01eaY3n716zzB1Vm19a521FEmLry5ov2LiHxVXrH40vDDP1bikQ9yXX4M247mcllzS6ATFx6CVZvy3JJxF/rC1btDDCb3a2/9rFfz+ehPzQujWki/1tFhLuVgVNO0Hv2JJ55ASEgICgsLER5+/ZczefJkfPnll7oNztcpidi9QX5JFbKPF6PgYrXT5XJLvm1pfSPKvcGX39ndqY+FLUsGzVFaQgRS4sJFl6SXVElPo7kq2GTCiIxErNp0QtHyeiJfpcekcohA9laMWC8xSw+vMau2YkZWDm5fs8vpC4fY54Wryq/U4dCP5XaX7TtThtnrD2D0yi2YunYvKhQ0evRHiS1DJa9PkLleb5oCn02bNuHFF19E+/bt7S7PyMjAmTNndBmYP/D2iN3xQ8Lxzal0hZTlBK81eyXWeMxyvz2SY7Bu5gCse0B4atA2g+bIk8vIm/bn6oxteSUsaCaSUa+yM+euU6VO73klPbykPi9ccceanZIdrHecLMF9a/cofly5diLfatzjzBO6t5deru7OfnCAxsCnurraLtNjcfHiRYSGujdy82aWplZChnSM9/g0l1T9EaD8j0OP5aFKupPKBQ+2GTRLFktpF1c9rZjYHdkLR2HdzAG4VFPn9scnChS2J39LaYHSLxl6Zty3Hi+W3bbDsipUKPsjlHUvuSz92WF0xlpPv+qRJHn9rTLX603TxNqIESOwbt06/PGPfwTQtIS9sbERL7/8MkaPHq3rAH3dtQbhOhKxy12x9XgxDp4tV1T8p6T+yD0VME2ULDtVkkETWkWndtdkPbiyFxERKWP7rlab3dUz4y638tWR5Qvmq1N6ia76TWzZXPI+gmT6rHmT9MRI0T0Gg0xwexJAU+Dz8ssvY9SoUdi3bx/q6urw+9//HkeOHMGlS5ewc+dOvcfos/JLqrBXpBOppbGdHr/wM6XVTmlWSx+N5HjhE6+S+iOlJ209V6mZZb6tpSdGIL/E+Ztan+QYpCVEYOravU5ZLHcHPaU+9E2MyJcNSr+eUVf7JUPPk63cfn2OLF8wZ63bh9wz5XbXWT5Pl0zoKnkfb207hdljOqkcqWdsPV4susdgoxm6N8KVo2mqq2vXrvjuu+8wYMAA3HzzzaiursbEiRNx4MABdOzYUe8x+ix3zdEKzS2X1dRjwpodordRkj1RuumfHnPmUvVGttcJBT0A8P2P5apT3UaJj7w+3fttgeubkhKRvPTESMSqWKn1z31Fuj32yC6tVD22Rc7pMqfPK8vn6ReHzkvetvLqNWz3kZWi2celx/nNsWI3jaSJ5l1GY2Njceutt+Lhhx/Gww8/jAEDBiAnJwcbN27Uc3w+zR1ztFJzy2U19S6/MZ6/oxuiFC41dGXOXKreSEnB4rVG4P093lFYb/stVJ/1LkQkxLGuT67OxtbOU/qutHz/gYGCfcW02nzsJ9ljcgvV7W3mKSaZz8FgN8/aaZrq+vLLLzF16lSUlpY6TU2YTCY0NDToMjitXn/9dbz88ss4f/48unXrhr/85S8YPny428chN0ebGOl6Ibjc3HJuYZlgClFpc6ynNxxRvART65y5XL2RUoVesBHogNRYuxT6wDTh4nYicp3tZ47aGp+QIM3f+wW98MUxVdPqvZNjRFttAECryBYAKiTvo0+HWMWP51neVY+k6Tc/Z84cTJo0CefOnUNjY6Pdj6eDno8//hiPP/44Fi9ejAMHDmD48OEYP348Cgv1a5eulNxJb2C66ydFubllsTeGkqkuS0AiV+Ts6nJ2vZac39KtDaJauLcRlqNghw/T9MRItIniSkcivYWFBNl95qg9mR35UTqoUCO/pEr1VjS19dLnynaxLSSvDw02ubUuxhVbj0tPZW2RmQrTm6bAp7i4GPPnz0fr1q31Ho/LXnnlFcycORMPPvggbrzxRvzlL39BcnIy3njjDbePxR3L2aXmlmPDQ0TfGHK9c9ISIhQHJK4uZ9dj5VOzIBP6psTabZToCbvznXuL9E+R3+yViNS5Ut9o915Tuwr1fIV+29XI1XMKOXrhsuT1xy9USV5f2+A70+g/Xb4qef2FSunr9aYp8LnrrruwZcsWnYfiurq6Ouzfvx9jx461u3zs2LHYtWuX4G1qa2tRWVlp96OnN+7rixEOwceIjES8cV9f3R5j4+xhTsGPZVWXFLneOUoCkj9N7I51MwcYuuFq/5RYyQLrZkEmbJw91KPNCm051jpdrOYqLyIj7LFZIHLkrLoMzhWZjIsaJZf1f4+XyWzQDOhboG2k2HDpso+4COnr9aZpXuC1117DpEmTsH37dnTv3h0hIfYnvXnz5ukyOLUuXryIhoYGp0xU69atceHCBcHbrFixAkuXLjVsTEr607gqOT4cB54di+15JcgtLFO8iZ/c2NITI9EvJRb7zogX0OkxXScXsEwfkoqw5mft6n06t4pARquWGHVDK+uuvi1KpL8huYtjrVNSdJiHRkLk32xbR5y8qO79X39Nz4yJZ2pY/rajwK27mmt1T/8OWLn5hOj1UwZ0cONoNAY+H374Ib766iuEhYVhy5Ytdjuym0wmjwU+tmOwJbVr/KJFizB//nzrvysrK5GcrP8fktoN6rQYnpGoac5XamzP/Korbl9jbG8mucxS13bRWNczSTZ4tEzf7VBQl2QEy07MjmO7es2zdW9E/so2dBmcFu+0M7wUPd+VcgtZtDjxk3wgd0JmusxbxMu8Pj6R8Xn66aexbNkyPPnkkwjSuTLeFQkJCQgODnbK7hQXF4vWI4WGhnKbDQlyWy5o3ZHdliVg2Xnyol1PC8dAQknwKLRDsruI1TrliDSxJCLXlFd7x5YwRmR1lZTw+M5XKumMmLurlTRFLXV1dZg8ebJXBT0A0Lx5c/Tt2xebN2+2u3zz5s0YMmSIh0bl29y10aqSvbqUsEzfrXtgAJ64OQN/nzkAIzISoWN7DScDUmOte3M51jrll1Sh2ID5fyKy378va+dpj43jO5VbVujFuxaJiyuV+Qwsc3MAqynjM23aNHz88cd46qmn9B6Py+bPn4/7778f/fr1w+DBg/H222+jsLAQDz/8sKeH5pOUZmNcpVctlNBeXYPT49GldUscMygtHBIcJDpWbym4JvJHzWy+fJer3BC4VYR+CzI25P6o232pcVff9h55XLXkmkXuOFmCR0e7b/sNTYFPQ0MDXnrpJXz11Vfo0aOHU3HzK6+8osvgtJg8eTJKS0uxbNkynD9/HpmZmfh//+//ISUlxWNj8nVC00d67MguxNVaKKEuz7t12hpETERosOh13KSUyDhHz19fydUmugUuqMiu7n1mrPxBCpWpDLqUMEF+CujlST11f1wjyE1Jllcr77itB02Bz6FDh9C7d9NJ7/Dhw3bXiRURu9Ojjz6KRx991NPDcLv8kiqcuVSj+8oxd6xM04NYB2ijdZdoIpmeGIkb2rbED+d9owiRyJdcrbu+jCGxpfJazTt7tdV3HDoujbdoHgzUStxtuPj3La9T2yC93OTqNfcuR9EU+GRnZ+s9DnKB0PTOiIxErJ7SW9f+Ou5YmaaUUJDnqWmlkTIr6eJkelgQkTa2AYeSXjqtIkJ0zfRYXNF1aXwTqaAHAK74TmWzbOrK3ekS76pOJk2kNvhUIr+kCtnHi13aXd1dpHZx99S00spN4v0ptLSyJyJlbFtFhDeX/h4/tGO8IUGPK+7u107w8o9nDZI9OXt+bkW5epklavUyGSG9eXZjI3KZ3AafBRfFl5u7K1OkJ6kgb93PK7gcC7GNJvU6s7iZyDi9bfYiHNQxHrsk6vkGiWwf5El9OsThpbt64fXsk9ieV4LhGYnWIt9f3NgKm46J73E1tpv3bRkl5nKtdA3P5avurfFhxsfHKdllXYyrmSJ3swR5jkGNbZAntCzeHcReZ77BiIxzR+/rGZOe7aMlj+2VHGPwaNSzdL5/dHQnrH9osN3Kpren9Ze87Zv39zN0bHpqJtNPJNjIfiMC+Lns47T22VESRHgbJUGepRA7e+EoZM3oj41zhjrtlWYEsdfZEx2kiQLFtcbrn19y7zXbY/UWEaL+VBrVoplszeSf7sxUdbm3igqTnkGIDnNvHSQDHx+nZJd1Ia5kijxFTZCXlhCB0V1aoUf7GGsglJkUZcgffGx4iOjrzOXsRMaxfc+7q9mqkCN/HK/6NpVXr8l+wbxnYApO/+lWjOvWGvGRIRjXrTVO/+lW3DPQt9qzpCdGSl7fMdG9i2YY+PgBLV2PPfkhIcWoQuu0hAh88OAgDDMg+1NWUy86XrHAlIhc0z811mlTZS1fAvUyurP6GqI9CnuMvXl/P+x/eqxPTW/Z6hArfb7p4ObzDYub/YCWPjvu6sislJJC628LpD8k5PYNc3ydDp8tx6rNebqMX+qxPbl/GJE/Cm1mwjtTnWtg3Nls1VHWA4MAAJnPfIGq+kYEm+T327LdXd6fXboi3cDwYrV7XwcGPn5EbZ8dVz4k9G6WKFVo/eqUXk5BkRDHLJXYGC2v04WKqy6P28JSvCf0mJaA67uicizecAiHf6zU7XGJAlF6QqTgylNvaLZ62Gbaa/X/TmDVJvEvVwmRgbFBdqcE6amuzq1aumkkTRj4BDAtHxJGLIGXW5I/6719yC0sF729Y5ZK6RgHpsVpGq+Q+9fuRWx4CMpqri/LdHzMVZtO4Ng5dnAmctWxC5clW3V4S7PVHu1iJK9vF6v/ru7eSK7w3J3tRwDW+BCuFwIr+aAwYgm8XKF1zpkyyTeGY5bKU8v0bYMex8cUW0VH5I+CALRoZmxdmzcuwHAkt2v7d0XS1/uLSzJTWZeq3Ls7OwMfUsyoJfCurHxaMbE71s0cYM2qyI1x/d5C6zi/Lbik+XGVsH1d2MiQAkl0eAjqDNjGwdaxc94/ZXxJZvPNi24+4XvK6C6tJK8fc6P09XrjVBcppmQJvJb0slShdZ+UGOScLhO97aB0+5UUcmNc9MkhAE3TUKO6uKfR4enSai5rJ6/RPBio03mfp4jmwfjr1H6obWhEsMmEqX/bq+8DCDhR7P3TxgkR0v1pWqnYWNWXjezSCs2CTIK9lJoFmTDcDb3WbDHjQ4oZuQRebEn+O1P7q1qiqjTA2HnyIr44fEHzeNVIjY/gsnbyGiM66//tumvbKHRLisboLq3cNp07tKP7O7SrdepileT1J30geNNDfkmVaAPJa41mtzfMZeBDihnZJ8Ox43L2wlHWKSw1fYqUBhgNZjNyTpchIiRY85iVGNIx3vq6eGo7DSJbY7vqv8fT/jNl1no2d51UlOzG7v0C44uQtzXMZeBDqmhplqiGUKG1VFCkdIxiquulc/4zhqYqHrsQ2y+/0eEhWDA2Q/L4IBPflGSstjFhGJAaK3+gCo24vlmvu7Zp2e4DfbHu6CW8+7rFnX2kr/cX3tYwlzU+pIon+2QoXaJqO8b/fPcjXnGhSWHWztOabwsAu/NL7ZbdLv70sOTxXZOicHff9nh241GXHpdIzDfHfoJRs1HurGfrliS9Kak3SJZ5LdrLdDT2F97WMJdfLkkTNUvgPSUtIQLd28d4ehjWNG5+SRUOy6xE6Z8Sh6/cVHtEgeny1WvIOSO+YMAVlnq2IR3Vb9+g1tAM75829rYpHk8yerZADWZ83ETvTsee4IvPIVZmV2B3sKRxlSxpz9p12uDRUKAzKttjW+fnjvrmnXkXZZdJe5q3TfF4kjd01bZg4GMwIzodu5svPwepaa7+qbGSS+X1crasBmkJEVzSTl6hqla6t4wWqXFh1m/u+SVV2K1w801XHDlXYfhjuMrbpni8gTd01eZUl8E81UVYT/PWH8SOk/aFhL7wHMS2wrB45taugivA9H5TfHPsJwDcqZ28gxGroe7s2976JchdzTrd3ftFK2+a4qEmDHwMZFSnY3f6rqgM2/JK4NiCwReeg9wHcGlNneCH0rCMRAzpGK9bgPLurjOYunYvKmrquaQ9wEW18HySPTEyVPcanKTo63tOqT2pdGmtbYPK8d3barqdu6ldlUrGY+BjIH8obJNbheTNz0HJ/LrYh9Ib9/WVDVCCTSb0T4lF1oz+sic0S4bM8fFe/HV31c+LXLdwbGfc7OY2+SMyErH992MwY0iqWx/XUa8OsXjjvr4YoSJjkpkUJXl9gk0H4i3H1S0zn3tTJ6ex9EuRX27vzZ89QnxhQUig8PzXDz/m64VtSlYhefNzUDO/7jjv7FiIFx/eHCs3nbCbOrOkq6PDQ/D53OH41WvbUXHlmuBYbDNklseyPN6fvvjBaYNTAKIt3j0hOTYMRWVXPD0M3dzaIwkNZjM2Hyt2y+NN7N0Or0zuBQAY1SXRo0Xs9Y2Ndn/fM9/NQb5E5vbvMwegXUwYxqzaKnqM7edAUZm6qa7oMOGi10lv7pKswfPmzx7ybgx8DOTrhW1yGavMdlFe/xxWT+mNuesPCAYstsRWrNkGKFIrEpLjw9GzfSy255VAKlQR2s9s4+xhmLBmh13wExsego2zh+Ga2YzTpdXWIKhZkAlny65Y9xxzF38Jekxoqg1JS4hAm5Yt3Pa46Yk2fyseLnK3nZZKS4jAgps7Y7ZEvd61RrOqz7Kbb2yNr1UElJbg3vHLxztT+2PUymynLwVBaJqO9vbPHvJeDHwMpvTE643kMlbL7/T+aRq5JZRqV6yJrUiQK6S2EPqW2igRKgk9XvZx92Qp/FFwkAkv3JEJAPjp8lW3PW6QTb2Yu4p/xSQ4bIx5o8w0luVvVuln2eQBHfAHFYG5WOYmOjwEn80ehl+t3o7Kq9fsLrf8Dom0YOBjMG/qXaCW2Lc8yzeuHl7QHFApsYBFatXdupkDFN+/3MksyAQM6yT8LfWONTudvtWW1dRjwpod+PcjQ5wyUVwWr12D2YzFGw5j3cwB2H3K+CXXFrmF16dsPP370zpFpPSzLL9EemNOW4PT4yU/D5/ecBjVtfbbylReuWb9HRJpwcDHTbyhd4EWQt/yhv2cEfF1Ylkax3ocufs4c6kGwTILwPqmxAq+ZluPFwvW9wBNwY9tXYUlEyUWkJI8s/n6nlI/Vbgv4xNj00jT8vvbkVfitn2tLIQ2E1ayCEOqHs6RmoyW1MJJPd6fREIY+JAkX85YyVH7gW9LaIosNjwEFTX1diezIDQFPf98eIjg/Rw8W654vLaZKKGANJAFmZqCGqVh4OnSakSp7OodBKBncjTqG804/KN00b+jvqlxdv9ePaU37ntnj+ziAb0tHNvZ6TK9F2GoyWjtOlUqGsC48v4kksLl7KSIPy7FdOUDX2iKrPJKvVNd0LCMRLwzrb/o/fRSMV1o+aa7fm8hLtXUWZfF39k7SfF9+KtGFUEPALz+v5MYprKfUnR4CN6dMRD/nTvc2o5g4+yhipaFD0q375sTHR6CVz2QNRUKlKX21hrSUXoqSojavbrElqX7+qpY8l7M+FDAuj5lVIIGh7NmbHgI4sKbC95OPAXfND3195kDcK3RLFkDYanbGdmlFWLDQ0Snu4RYVnRZpr4GpMXh0wPnFN+egNzCcpRfUbd1Q1lNPb47W4YGc9NJ17JP1LqZA7DtRAmm/m2vqvuz/P3JrQTU08WqOsHLxWZMtc6kqrndRZFO0r6+Kpa8l09kfE6fPo2ZM2ciLS0NYWFh6NixI5577jnU1dm/iU0mk9PPm2++6aFRky9YPaW34JRHRU296JYccin4a41mwexYeU0dpq7dizGrtmJGVg5Gr9yCqWv34oOZAxGroYurZeprYJrxO2HrwZs26mgwm5FXrLwI12Lq33LsfncVPwescrVWYlmN1VN6o6+CZn16uUmgaaPU3lq780tVd2dXu1fXuQrxVgnc7oGM4BMZnx9++AGNjY1466230KlTJxw+fBizZs1CdXU1Vq5caXdsVlYWxo0bZ/13dHS0u4dLPqS0ulYw29IIiBZQqk3BWzI8r2efRO6Zcrvrdp68iD99CRx4dixuW70dh3+sVPzt3zL1tbfgEnp3iMGBwnLZ23hSt6Qot9e0GMm25ipOJnCVWrL9r0eGYNKbu7DvdJmhmZ+o0GaC+1vpXUujdrl+nw7igZ8/1xiS5/hE4DNu3Di7YCY9PR3Hjx/HG2+84RT4xMTEoE2bNu4eIvkoLR/6SlPwQgXQjizBy7YTxTiksmDW4smfp768qdOzrZS4cKy+tzeOnKt0e+NFOb2TY3CgqFzTbW1XFz332VHJY8+W1SAtIQJbjxfj4Nly9OkQaxeEvDO1P+5bu0d10bQqIik3TxY3x4aHKNps1FdXxZJ38ompLiEVFRWIi4tzunzOnDlISEhA//798eabb6KxUXrBaG1tLSorK+1+KHBo/dBXkoIXKoAWo/Xka0uPoCfIgPmowks1WPnVCZS4sWGgnCA01Uj93z29naYZo8OaYUCq82eLmD35pbKr8+5fuxednvp/mJaVgz9vzsP9a/ei97JNKCptCryjw0OwYGwXtU9Dlcqr17BdpLh5REai06a8wSaT4PJ3OWL358jSnZzI3Xwi4+Po1KlTWL16NVatWmV3+R//+EfcdNNNCAsLwzfffIMFCxbg4sWLePrpp0Xva8WKFVi6dKnRQyYvpbWAUi4Fr7STs0Xv5BjNz8EV0WHN7PYX65gYqan2RYoZTdOG/dPcV8six9KLau76A6h02F+t6moDWoQEI3vhKJwurUawqam2R4xYca4jx8DU0qTywLNjAbinsWFuYZlghkXvDvNC9zciIxH3DkzG8Z8uO2W8iNzJo4HPkiVLZIOOnJwc9OvXz/rvc+fOYdy4cZg0aRIefPBBu2NtA5xevXoBAJYtWyYZ+CxatAjz58+3/ruyshLJyclqngb5OFc+9MVS8ErrHCwB1ojOrdzelDCzXRQ+mDkIl2rqrMHbnvyLWPTJYUMeLyFSeJWcrebNTKi7Ztzzz2wXheV3dkeP9jGyDfIAWFduSQXHCS3ln5eYspp6bM8rwfCMRKQnRmJweryqwmBHXdu2xNHzl0WvF6un0buWRur+xmW21Xy/RHrwaOAzZ84c3HPPPZLHpKamWv//3LlzGD16NAYPHoy3335b9v4HDRqEyspK/PTTT2jdurXgMaGhoQgNDRW8jgKDEQWUSr+92wZYDw1PQ27hJVQ5tOg3yuopfRAdHoLo8BDr8zUrCLoyWkUgr1jdSh8AGJSeIHlijw0PwcyhaVi5+YTq+1bi7zMH2GUZ1NR3SQXHpdXKMj5ibLMwMrNDss5LdKNWUk+jdy0Na3PIG3k08ElISEBCgrImYj/++CNGjx6Nvn37IisrC0FB8uVJBw4cQIsWLRATE+PiSCkQ6PkhLTWF1qdDDB4d08kaYFmWuburC7PUNF56YiRubNMSxy6IZw06xIapCnxsH+/J8Tfg9jU7BY8rq6nHRReDCClnHXaYV1PfJRUcR4eHuFQkbcnC5JdUYZeL+4dJ9YNac28fl+6byF/4RHHzuXPnMGrUKCQnJ2PlypUoKSnBhQsXcOHCBesx//nPf/DXv/4Vhw8fxqlTp/DOO+9g8eLFeOihh5jRIY8QK4B+Z1p/uz4/89YfxA4Dg56MVvYBjtw03pzRnSTv75vjygq2hR7vUo1wAz2LuAjt00ZyHJMpWop6xTqYPzgsTdOYbLMwSqZHM9tJ76QupbbB3TuDEXknnyhu3rRpE06ePImTJ0+iffv2dtdZUvMhISF4/fXXMX/+fDQ2NiI9PR3Lli3D7NmzPTFkIkVTaEqLoBMim4t23ZXz9tSmLTOUTuPdmKT95AoArSKb457+yeidGuf0eHJZloxWLSWvbxnaDJdrr0keI6ZdbJjTZXoV9Wp5zRxXNcm9Nn+fOQDtYsLsNq5Vg1s8EDXxicBn+vTpmD59uuQxjr1+iGzZbhPh7poDqSk0pUXQWoIexyktpc87PTESme2iNPeUKa6qw6vZpzAio9IugLD8DvqnxiLndJngbV/ZfFzyvuMiQjQHPkLL/T3RIO/mG1th6pBUp3obuRWGluPV7uwehKZVbKy1IWriE4EPkVZCTQQte1w5biiqNyXBlpFzzUKZC6UB4At3ZOL2NbtcevxteSV4+P39eOM3fTBr3T7RYMeWXO3QmUvi2xvIaSbRpMjV+i413YqfurWr6GMJZaB6d4jB5H7trV3EhY6xCDYBkS1CUGGzD1kjgGuNjaiocd5ElygQmcxKlnEEkMrKSkRHR6OiogJRUa6l/Mnzpq7dK/oNet3MAYY8pppgK/t4MWZkifeIUcOyVLu0us4psFEbAJ4prcZNq7bq0hQxMjTYbSvV5BgV9OaXVCmaghrSMR4fzhoke1zBxWocPleBdbtO2wWMtuP//mw5nvr0kF1mbkRGIuobGrGnoNRuo1Cj/+aJvIHS87dPFDcTaWGpn3Hsi2O71YDtsdnHi1VvyChEqGOzZV8nR3o2rVs9pQ96tI8RLL5VMyYAuP21nbptf6E26OndIUaXxxUi9ZxdUaQg4zMiIxFv3NdX0f2lJUTgnzlnBfd2s4y/R/sY/HfucGQvHIWsGf2RvXAUHhqRht35pU67owv9zRMFKgY+fkLPE7e/UNKnRWzH9AqJZcFS1ARbgPjKIjVvTLmtBdSOaevxYpRf0fb8XZWZFIV3pw/ACIf6l/6p+nR9NiIAyC+pwqcHf5Q8ZsaQVKybOUBxpknN78x2pdnD7++XvF+xXeKJAglrfHycu2pYPFkcrJWSPi1SmRAt0wJaNj0VqtkYlpGIa42N+Db/ksM0HRAVFmLXr0VsFZLld3ZBoqmd0JiyjxdLHv+LG1uhtKoWB4oqJI/TYlLf9qIFx3e9sQv7zkjXCXX+ubmiXK5K7Y7jQpRsQmsx5sZWqu5by9/R1uPFstk1ruwiYuDj8/Q+cTvyZHGwq+RWyZhttiawZfutWu3JUcump2In+oqaeoGl1k2vve02E45jVHNCBppej+zjxdb7iouQ7nvVMzkGUwelihbYuqL86vWAzrHg+JW7e2HMqi2iU3CWv0sl49IjAFC6Ca3SHchtafk7ktsoNSU+3Ge+tBAZiYGPD5Pba0jLiduR0YGV0aT6tOQWSWcPtGQFtG56Cjif6OW6BYvd1yPv5yra7yno5/uZ+re91stGZCRiwdgMvCKxbcSveiQhOjwESyZ01dxTRozYXlIA8PSGw2gUCXoGp8dbg3HLazZ3fS6OnqtEo0CRr6vvC6X9l7TuQK7l76hX+xjJ+1w0/gbV4yDyRwx8fJiWdLga7gisjCYVPGj5Vq2E3jtdq1lqnV9SpXiTy5YOU2ZA0xL0a42N6J8SixyBaaX+KbHWsShdwp0cG4aiMvll6FKZEblAY/nE7nYZyLSECHwwc5Cuvwdbcs99cHocJvZpj0n9tG94rPbvaGSXVogNd/6dAk2vLTcHJWrCwMeHGXXitjA6sHInoeAhPTFS8kSh9bl5oimexbcFlySvXzi2M7q1i0awyWSX6bG161QpNs4eipWbTghOcVooXZG2buZAAMCe/FKYAHSIC8fsD3PtXne5zIiWv0Ujfw9yz313/iXszr+E/3x3XvO0sJbxb5w9DBPW7FD12hIFGgY+PsyVaRUljA6sPC2/pEp0U8eymnqXM1qe2Zlauqw3ITIUo7u0wvq9ZySPO3q+EutmDsC2EyU4UFSGPh1iFXcatjUg9XqGyPa1OPDsWGzPK0FuofB9O5Jb5VZbb1/U61iMr/fvQclzB/SZFlYz/uT4cNWvLVGgYeDj4/SeVrFldGDlaf6U0bIYmBYvfX265XrxLsYAUF13zWnHeKGidqli4tjwEKya1Ev0MYZnJCo+Kcttz7Dwn99hcHoCzDC7rRj/+Tu64fY1OyV3RPfUtLCa15Yo0LCPj4+zpMNtm5ip6RciR2yHcT0CK0/zx4xWemIkhnQUDn5ubHt9A9CBaXGS9/Pl4QuKGh5a/v66JzlvLlpWU4/5/ziocOTS5H5XVbUNePC9HNWNGl3x9IYjqLyibN8w9s8h8h7M+PgJo6ZVPFmvYjSjMlqe7nn0xn19BbMwx85fxuiVW6wZkMHp8YKF0L3axwjuqyWWvcgvqcKhc5cFx5JzpkyXbEd6YiQyk6Jw+Jz4xqlCxdhS43aF0lVdFr4YRBP5K2Z8SBHb7rD+RM+Mlt5doLWyzQJmJkU5vcktGZA3f9PXqUPyiIxEzBqeJnn/jtmL/35/XvL4/35/TvHYpbxwZ3eXbq9n1kXpija5rtpE5H7M+FBA0zOj5UrPI6VZIjXZJLPZLJghsWRALtXUCT73/JIqyft1zF5cqq6VPP5SVZ3k9UqfU8/kGPRPjVW0y7sQtVkXqXEpXdHmL9PCRP6EgQ8FHKETmqtThVp7HintjK2lg7bS4m3H5652CvDGNuK7IANA1yTh69U+p/KaOjQLEk5SB6Fpmw8ALk9d6tGt/E8Tu2NgejwzPUReiFNdFDCMnIpSEmQIUVqMq6VoV+7NLZUBUTMF2CizhL5BpNvyI+/nOgWL2/JKRDfafPQD8Y7Uw34OTPSYulTyWsv9vltHt9A96OFGxET6YMaHAoaR229oWSGmNEukNpskt1eXkgyI0BSg2WxGblGZwNSP9NJ4obBHqsP07vxSwQLqXafEO1Ivvb2bNRvjytSl0tfanSsCfXm/PCJvxIwPBQTLCc2x2ZztCc0VlumhYJN9ECBV3Ko0S6Q2myS3eaaaDEhaQgR6J8fguc+OiGbK5JbGD0p3Xl4v12F6j0NQ9G2B9DYc3zocr7UYX+lrreX3rZU7l+gTBQIGPhQQtE5FqaF2mkVp1kBNdkEswLP4+8wBqvs8GXPilZ4ec84hqc8qaaHmtXZHjyujA3aiQMSpLgoI7piaULtCTGkRsZpiY7kA75pIvY0YJVM/WjpgK+8wbTlefVZJCzWvtTt6XPljd3EiT2PGhwKCO6cm1EyzKM0aKD1O7wBPyYlX7kOkWZDJqTBXqsP0kI6eXQ2lNpNjZI8rf+wuTuRpzPhQwDByXzOtzAonaZRmF/TuRq3kxLsnX7yeCACW/eco8oqv9wayFOYKdZh23AHewp2ZD2/qVu7v++UReYLJbJbYWjgAVVZWIjo6GhUVFYiKku5PQr7JG05oFlPX7hU9qWldaVZRUy8aUGhZBdR72SbBjThjw0Nw4NmxWL+3EIs+OSR6exPsa3Acn5+S30d+SRXGrNoq+hjZC0e53IfJk9uMSNH790nkr5Sev5nxoYBj1L5mYsROqlqbHsrRM2ORX1Iluvt4WU09Ci5WIym6heR9OH6zcnx+Sn4fRmU+fGGpuDdloIj8AQMfIoPInVSNnr7RI8AzcjWc5fkpzbYYMVVpZG8nvbk7YCfyVwx8iAwid1L1hcJVJWPUOlseF94cU9fuVZxt0TvzYVTGjYi8G1d1ERlASf8Vd64000rJGKWOiQ0PEb3tqk0nNPUH0msVlTt6OxGR92HgQwT990FSelJ1RxM8VykZo9gxG2cPE7x8wdjOHm/M5wsZNyLSH6e6KKAZVdyq9KTqC4WrSsYodYzQ5dnHiyUf0x2N+bhUnCgwMeNDAc2ofZDUTmMZ2QRPL0rGKHaM4+Xekm3xhYwbEenLZwKf1NRUmEwmu58nn3zS7pjCwkLcdtttiIiIQEJCAubNm4e6ujoPjZi8ndH7IPnbSVXP6UBvqW+yZKqyF45C1oz+yF44SvVeZkTkW3xqqmvZsmWYNWuW9d+RkZHW/29oaMCtt96KxMRE7NixA6WlpZg2bRrMZjNWr17tieGSlzN6ObkvTGMpYdR0oDd10uZScaLA4VOBT8uWLdGmTRvB6zZt2oSjR4+iqKgISUlJAIBVq1Zh+vTpeOGFF9iFmZy4a7rF10+qRvW68ZfAkIh8i89MdQHAiy++iPj4ePTq1QsvvPCC3TTW7t27kZmZaQ16AOCWW25BbW0t9u/fL3qftbW1qKystPuhwOAt0y3ezOjpQMA36puIyH/4TODz2GOP4aOPPkJ2djbmzJmDv/zlL3j00Uet11+4cAGtW7e2u01sbCyaN2+OCxcuiN7vihUrEB0dbf1JTk427DmQ9/G3Ohy9uaPXjd6tBIiIpHh0qmvJkiVYunSp5DE5OTno168fnnjiCetlPXr0QGxsLO666y5rFggATA7f3AHAbDYLXm6xaNEizJ8/3/rvyspKBj8BhNMt0oycDvSFfbKIyP94NPCZM2cO7rnnHsljUlNTBS8fNGgQAODkyZOIj49HmzZt8O2339odU1ZWhvr6eqdMkK3Q0FCEhoaqGzj5HV+vwzGKkb1ufGmfLCLyHx4NfBISEpCQkCB/oIADB5r6rLRt2xYAMHjwYLzwwgs4f/689bJNmzYhNDQUffv21WfARAHIiNVX3CeLiDzFJ1Z17d69G3v27MHo0aMRHR2NnJwcPPHEE5gwYQI6dOgAABg7diy6du2K+++/Hy+//DIuXbqEhQsXYtasWVzRReQCI6YDjW4lQEQkxicCn9DQUHz88cdYunQpamtrkZKSglmzZuH3v/+99Zjg4GB8/vnnePTRRzF06FCEhYXh3nvvxcqVKz04ciL/oed0oLd0biaiwGMymx3WqQa4yspKREdHo6KigpkiIgNNXbtXtHaINT5EpJbS87fPLGcnIv/CVgJE5Ak+MdVFRP6HrQSIyBMY+BCRR7GVABG5E6e6iIiIKGAw8CEiIqKAwcCHiIiIAgYDHyIiIgoYDHyIiIgoYDDwISIiooDBwIeIiIgCBgMfIiIiChgMfIiIiChgMPAhIiKigMEtK4gMkl9ShTOXargHFRGRF2HgQ6Sz8po6zFt/ENvySqyXjchIxOopvREdHuLBkREREae6iHQ2b/1B7Dx50e6ynScvYu76Ax4aERERWTDwIdJRfkkVtuWVoMFstru8wWzGtrwSFFys9tDIiIgIYOBDpKszl2okrz9dysCHiMiTGPgQ6SglLlzy+tR4FjkTEXkSAx8iHaUnRmJERiKCTSa7y4NNJozISOTqLiIiD2PgQ6Sz1VN6Y2inBLvLhnZKwOopvT00IiIisuBydiKdRYeHYN3MASi4WI3TpdXs40NE5EUY+BAZJC2BAQ8RkbfhVBcREREFDAY+REREFDAY+BAREVHAYOBDREREAYOBDxEREQUMBj5EREQUMBj4EBERUcBg4ENEREQBwycCny1btsBkMgn+5OTkWI8Tuv7NN9/04MiJiIjIm/hE5+YhQ4bg/Pnzdpc988wz+Prrr9GvXz+7y7OysjBu3Djrv6Ojo90yRiIiIvJ+PhH4NG/eHG3atLH+u76+Hhs3bsScOXNgctgFOyYmxu5YIiIiIgufmOpytHHjRly8eBHTp093um7OnDlISEhA//798eabb6KxsVHyvmpra1FZWWn344vyS6qQfbwYBRerPT0UIiIir+UTGR9Ha9euxS233ILk5GS7y//4xz/ipptuQlhYGL755hssWLAAFy9exNNPPy16XytWrMDSpUuNHrJhymvqMG/9QWzLK7FeNiIjEaun9EZ0eIgHR0ZEROR9TGaz2eypB1+yZIls0JGTk2NXx3P27FmkpKTgH//4B379619L3nbVqlVYtmwZKioqRI+pra1FbW2t9d+VlZVITk5GRUUFoqKiFD4Tz5m6di92nryIBptfY7DJhKGdErBu5gAPjoyIiMh9KisrER0dLXv+9mjGZ86cObjnnnskj0lNTbX7d1ZWFuLj4zFhwgTZ+x80aBAqKyvx008/oXXr1oLHhIaGIjQ0VPGYvUl+SZVdpseiwWzGtrwSFFysRlpChAdGRkRE5J08GvgkJCQgISFB8fFmsxlZWVmYOnUqQkLkp3EOHDiAFi1aICYmxoVReq8zl2okrz9dysCHiIjIlk/V+Pzvf/9DQUEBZs6c6XTdf/7zH1y4cAGDBw9GWFgYsrOzsXjxYjz00EM+m9GRkxIXLnl9ajyDHiIiIls+FfisXbsWQ4YMwY033uh0XUhICF5//XXMnz8fjY2NSE9Px7JlyzB79mwPjNQ90hMjMSIjUbTGh9keIiIiex4tbvZGSoujvEVFTT3mrj/AVV1ERBTQfKK4mVwXHR6CdTMHoOBiNU6XViM1PoKZHiIiIhEMfPxEWgIDHiIiIjk+2bmZiIiISAsGPkRERBQwGPgQERFRwGDgQ0RERAGDgQ8REREFDAY+REREFDAY+BAREVHAYOBDREREAYOBDxEREQUMBj5EREQUMLhlhQPLnq2VlZUeHgkREREpZTlvy+29zsDHweXLlwEAycnJHh4JERERqXX58mVER0eLXm8yy4VGAaaxsRHnzp1Dy5YtYTKZ3PKYlZWVSE5ORlFREaKiotzymN6GrwFfA4CvAcDXAOBrAPA1ANS/BmazGZcvX0ZSUhKCgsQreZjxcRAUFIT27dt75LGjoqIC9g/cgq8BXwOArwHA1wDgawDwNQDUvQZSmR4LFjcTERFRwGDgQ0RERAGDgY8XCA0NxXPPPYfQ0FBPD8Vj+BrwNQD4GgB8DQC+BgBfA8C414DFzURERBQwmPEhIiKigMHAh4iIiAIGAx8iIiIKGAx8vMjp06cxc+ZMpKWlISwsDB07dsRzzz2Huro6Tw/NrV544QUMGTIE4eHhiImJ8fRw3OL1119HWloaWrRogb59+2L79u2eHpJbbdu2DbfddhuSkpJgMpmwYcMGTw/J7VasWIH+/fujZcuWaNWqFe644w4cP37c08NyqzfeeAM9evSw9m0ZPHgwvvjiC08Py2NWrFgBk8mExx9/3NNDcaslS5bAZDLZ/bRp00a3+2fg40V++OEHNDY24q233sKRI0fw5z//GW+++SaeeuopTw/Nrerq6jBp0iQ88sgjnh6KW3z88cd4/PHHsXjxYhw4cADDhw/H+PHjUVhY6OmhuU11dTV69uyJ1157zdND8ZitW7di9uzZ2LNnDzZv3oxr165h7NixqK6u9vTQ3KZ9+/b405/+hH379mHfvn0YM2YMbr/9dhw5csTTQ3O7nJwcvP322+jRo4enh+IR3bp1w/nz560/hw4d0u/OzeTVXnrpJXNaWpqnh+ERWVlZ5ujoaE8Pw3ADBgwwP/zww3aX3XDDDeYnn3zSQyPyLADmTz/91NPD8Lji4mIzAPPWrVs9PRSPio2NNb/zzjueHoZbXb582ZyRkWHevHmzeeTIkebHHnvM00Nyq+eee87cs2dPw+6fGR8vV1FRgbi4OE8PgwxSV1eH/fv3Y+zYsXaXjx07Frt27fLQqMgbVFRUAEDAvv8bGhrw0Ucfobq6GoMHD/b0cNxq9uzZuPXWW/GLX/zC00PxmLy8PCQlJSEtLQ333HMP8vPzdbtv7tXlxU6dOoXVq1dj1apVnh4KGeTixYtoaGhA69at7S5v3bo1Lly44KFRkaeZzWbMnz8fw4YNQ2ZmpqeH41aHDh3C4MGDcfXqVURGRuLTTz9F165dPT0st/noo4+Qm5uLnJwcTw/FYwYOHIh169ahc+fO+Omnn/D8889jyJAhOHLkCOLj412+f2Z83ECoUMvxZ9++fXa3OXfuHMaNG4dJkybhwQcf9NDI9aPlNQgkJpPJ7t9ms9npMgocc+bMwffff4/169d7eihu16VLFxw8eBB79uzBI488gmnTpuHo0aOeHpZbFBUV4bHHHsP777+PFi1aeHo4HjN+/Hj8+te/Rvfu3fGLX/wCn3/+OQDgvffe0+X+mfFxgzlz5uCee+6RPCY1NdX6/+fOncPo0aMxePBgvP322waPzj3UvgaBIiEhAcHBwU7ZneLiYqcsEAWGuXPnYuPGjdi2bRvat2/v6eG4XfPmzdGpUycAQL9+/ZCTk4P/+7//w1tvveXhkRlv//79KC4uRt++fa2XNTQ0YNu2bXjttddQW1uL4OBgD47QMyIiItC9e3fk5eXpcn8MfNwgISEBCQkJio798ccfMXr0aPTt2xdZWVkICvKPpJya1yCQNG/eHH379sXmzZtx5513Wi/fvHkzbr/9dg+OjNzNbDZj7ty5+PTTT7FlyxakpaV5ekhewWw2o7a21tPDcIubbrrJafXSjBkzcMMNN+APf/hDQAY9AFBbW4tjx45h+PDhutwfAx8vcu7cOYwaNQodOnTAypUrUVJSYr1Ozx4G3q6wsBCXLl1CYWEhGhoacPDgQQBAp06dEBkZ6dnBGWD+/Pm4//770a9fP2uWr7CwEA8//LCnh+Y2VVVVOHnypPXfBQUFOHjwIOLi4tChQwcPjsx9Zs+ejQ8//BCfffYZWrZsac0CRkdHIywszMOjc4+nnnoK48ePR3JyMi5fvoyPPvoIW7ZswZdffunpoblFy5YtnWq6IiIiEB8fH1C1XgsXLsRtt92GDh06oLi4GM8//zwqKysxbdo0fR7AsPVipFpWVpYZgOBPIJk2bZrga5Cdne3poRlmzZo15pSUFHPz5s3Nffr0CbglzNnZ2YK/82nTpnl6aG4j9t7Pysry9NDc5oEHHrC+DxITE8033XSTedOmTZ4elkcF4nL2yZMnm9u2bWsOCQkxJyUlmSdOnGg+cuSIbvfP3dmJiIgoYPhHAQkRERGRAgx8iIiIKGAw8CEiIqKAwcCHiIiIAgYDHyIiIgoYDHyIiIgoYDDwISIiooDBwIeIiIgCBgMfIvI5W7ZsgclkQnl5uaeHYsdkMmHDhg2eHgYRSWDgQ0RERAGDgQ8R0c/q6uo8PQQiMhgDHyJSbNSoUZg7dy4ef/xxxMbGonXr1nj77bdRXV2NGTNmoGXLlujYsSO++OIL622OHj2KX/7yl4iMjETr1q1x//334+LFiy7dp8XOnTvRs2dPtGjRAgMHDsShQ4fsrt+1axdGjBiBsLAwJCcnY968eaiurrZen5qaiueffx7Tp09HdHQ0Zs2aJfn86+rqMGfOHLRt2xYtWrRAamoqVqxYIXr8smXL0Lp1axw8eFB2PKtXr0b37t2tt92wYQNMJhPWrFljveyWW27BokWLJMdIRNIY+BCRKu+99x4SEhKwd+9ezJ07F4888ggmTZqEIUOGIDc3F7fccgvuv/9+1NTU4Pz58xg5ciR69eqFffv24csvv8RPP/2Eu+++W/N92vrd736HlStXIicnB61atcKECRNQX18PADh06BBuueUWTJw4Ed9//z0+/vhj7NixA3PmzLG7j5dffhmZmZnYv38/nnnmGcnn/uqrr2Ljxo34xz/+gePHj+P9999Hamqq03FmsxmPPfYY1q5dix07dqBXr16y4xk1ahSOHDliDQq3bt2KhIQEbN26FQBw7do17Nq1CyNHjlT+yyIiZ7rt805Efm/kyJHmYcOGWf997do1c0REhPn++++3Xnb+/HkzAPPu3bvNzzzzjHns2LF291FUVGQGYD5+/Lim+zSbzebs7GwzAPNHH31kPaa0tNQcFhZm/vjjj81ms9l8//33mx966CG7x96+fbs5KCjIfOXKFbPZbDanpKSY77jjDsXPf+7cueYxY8aYGxsbBa8HYP7nP/9p/s1vfmO+4YYbzEVFRdbr5MbT2NhoTkhIMP/rX/8ym81mc69evcwrVqwwt2rVymw2m827du0yN2vWzHz58mXF4yUiZ8z4EJEqPXr0sP5/cHAw4uPj7aZoWrduDQAoLi7G/v37kZ2djcjISOvPDTfcAAA4deqUpvu0NXjwYOv/x8XFoUuXLjh27BgAYP/+/Xj33XftHvuWW25BY2MjCgoKrLfr16+f4uc+ffp0HDx4EF26dMG8efOwadMmp2OeeOIJ7N69G9u3b0f79u2tl8uNx2QyYcSIEdiyZQvKy8tx5MgRPPzww2hoaMCxY8ewZcsW9OnTB5GRkYrHS0TOmnl6AETkW0JCQuz+bTKZ7C4zmUwAgMbGRjQ2NuK2227Diy++6HQ/bdu21XSfcmyP/e1vf4t58+Y5HdOhQwfr/0dERMjep0WfPn1QUFCAL774Al9//TXuvvtu/OIXv8C//vUv6zE333wz1q9fj6+++gr33Xef9XIl4xk1ahTefvttbN++HT179kRMTAxGjBiBrVu3YsuWLRg1apTisRKRMAY+RGSYPn364N///jdSU1PRrJn+Hzd79uyxBg1lZWU4ceKENaPUp08fHDlyBJ06ddL1MaOiojB58mRMnjwZd911F8aNG4dLly4hLi4OADBhwgTcdtttuPfeexEcHIx77rlH8XhGjRqFxx57DP/617+sQc7IkSPx9ddfY9euXXjsscd0fS5EgYhTXURkmNmzZ+PSpUuYMmUK9u7di/z8fGzatAkPPPAAGhoaXL7/ZcuW4ZtvvsHhw4cxffp0JCQk4I477gAA/OEPf8Du3bsxe/ZsHDx4EHl5edi4cSPmzp2r+fH+/Oc/46OPPsIPP/yAEydO4J///CfatGmDmJgYu+PuvPNO/P3vf8eMGTOs2SAl48nMzER8fDw++OADa+AzatQobNiwAVeuXMGwYcM0j52ImjDjQ0SGSUpKws6dO/GHP/wBt9xyC2pra5GSkoJx48YhKMj1711/+tOf8NhjjyEvLw89e/bExo0b0bx5cwBNdUNbt27F4sWLMXz4cJjNZnTs2BGTJ0/W/HiRkZF48cUXkZeXh+DgYPTv3x//7//9P8Hnctddd6GxsRH3338/goKCMHHiRNnxmEwmjBw5Ehs2bMDw4cOtzyM6Ohrp6emIiorSPHYiamIym81mTw+CiIiIyB041UVEREQBg4EPEdHPli9fbrfc3PZn/Pjxnh4eEemAU11ERD+7dOkSLl26JHhdWFgY2rVr5+YREZHeGPgQERFRwOBUFxEREQUMBj5EREQUMBj4EBERUcBg4ENEREQBg4EPERERBQwGPkRERBQwGPgQERFRwGDgQ0RERAHj/wOm2rV+8wZYbAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "X_train_numeric.plot(x='member_skew', y='member_dev', kind='scatter')" ] }, { "cell_type": "code", "execution_count": 297, "id": "4fa290ec-cfc8-4861-9879-1f21395905ee", "metadata": {}, "outputs": [], "source": [ "# Dropping some things to see\n", "#X_train = X_train.drop(['member_hold_time_mean', 'member_hold_time_std', 'member_hold_time_count', 'pack_hold_time_count'], axis=1)\n", "#X_test = X_test.drop(['member_hold_time_mean', 'member_hold_time_std', 'member_hold_time_count', 'pack_hold_time_count'], axis=1)\n", "\n", "X_train = X_train.drop(['pack_hold_time_mean', 'pack_hold_time_std', 'pack_hold_time_count', 'num_puzzles'], axis=1)\n", "X_test = X_test.drop(['pack_hold_time_mean', 'pack_hold_time_std', 'pack_hold_time_count', 'num_puzzles'], axis=1)" ] }, { "cell_type": "code", "execution_count": 298, "id": "94d38f18-8d45-4830-aaea-223416aad137", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "member557 132\n", "member474 106\n", "member40 87\n", "member414 85\n", "member292 85\n", " ... \n", "member13 1\n", "member642 1\n", "member645 1\n", "member649 1\n", "member520 1\n", "Name: member, Length: 619, dtype: int64" ] }, "execution_count": 298, "metadata": {}, "output_type": "execute_result" } ], "source": [ "record_counts = X_train.member.value_counts()\n", "record_counts" ] }, { "cell_type": "code", "execution_count": 299, "id": "b0bdf3a5-4d7e-42a6-9b2c-c3e35213580b", "metadata": {}, "outputs": [], "source": [ "MAX_STD = 5000\n", "MIN_HISTORY = 75 # Minimum number of data points for a member to get their own model\n", "# 3.6 / 13.2 @ 100\n", "# 3.5 / 12.9 @ 75\n", "# 5.5 / 14.2 @ 50\n", "# 8.5 / 17.2 @ 25\n", "# 11.6 / 22.3 @ 10" ] }, { "cell_type": "code", "execution_count": 300, "id": "562d06ae-1a94-4a38-8763-f9742e080c94", "metadata": {}, "outputs": [], "source": [ "# Fit Scaler on all training data\n", "# TODO Try out other scaler\n", "scaler = StandardScaler()\n", "scaler = scaler.fit(X_train.drop(['member', 'pack_name'], axis=1))" ] }, { "cell_type": "code", "execution_count": 301, "id": "0115819a-0d15-4d0a-af7a-a7193bfc4d48", "metadata": {}, "outputs": [], "source": [ "def train_linear_regression(X, y, scaler):\n", " '''\n", " Trains linear regression model using the given X, y, and scaler\n", " \n", " Returns the trained model\n", " '''\n", " \n", " lr = linear_model.LinearRegression()\n", " \n", " # Scale X\n", " X_s = scaler.transform(X)\n", " #X_s = X.to_numpy()\n", " # Fit linear regression model\n", " lr.fit(X_s, y)\n", " \n", " return lr" ] }, { "cell_type": "code", "execution_count": 302, "id": "5c039167-2222-4045-9908-df6c19fd8595", "metadata": {}, "outputs": [], "source": [ "# For each member with more than MIN_HISTORY data points, train a linear regression model for them and save\n", "# Filter to members with more than MIN_HISTORY points\n", "members = record_counts[(record_counts >= MIN_HISTORY)]\n", "for member, c in members.items():\n", " # Require a max std in hold, only learn for people who seem stable\n", " member_std = hold_summary_by_member.loc[member]\n", " if member_std['std'] > MAX_STD:\n", " continue\n", " \n", " X_train_m = X_train[X_train['member'] == member]\n", " y_train_m = y_train[X_train['member'] == member]\n", " \n", " m = train_linear_regression(X_train_m.drop(['member', 'pack_name'], axis=1), y_train_m, scaler)\n", " \n", " # Save model for later use\n", " with open(f'user_models/{member}.pkl', 'wb') as f:\n", " pickle.dump(m, f)" ] }, { "cell_type": "code", "execution_count": 303, "id": "bcb33c38-ff80-4082-b734-a228a99c09a4", "metadata": {}, "outputs": [], "source": [ "# Create a overall model on all data points for use on users without MIN_HISTORY data points\n", "overall_m = train_linear_regression(X_train.drop(['member', 'pack_name'], axis=1), y_train, scaler)\n", "with open(f'user_models/universal.pkl', 'wb') as f:\n", " pickle.dump(overall_m, f)" ] }, { "cell_type": "code", "execution_count": 304, "id": "cdf83910-387a-4454-970e-5a0c3a07a68c", "metadata": {}, "outputs": [], "source": [ "# Create model just on users with less than MIN_HISTORY data points as a \"new puzzler\" model\n", "newps = record_counts[record_counts < MIN_HISTORY].index\n", "X_train_newps = X_train[X_train['member'].isin(newps)]\n", "y_train_newps = y_train[X_train['member'].isin(newps)]\n", "newps_m = train_linear_regression(X_train_newps.drop(['member', 'pack_name'], axis=1), y_train_newps, scaler)\n", "with open(f'user_models/newps.pkl', 'wb') as f:\n", " pickle.dump(newps_m, f)" ] }, { "cell_type": "code", "execution_count": 305, "id": "34fda117-223f-4d85-a881-6c6db7e1b609", "metadata": {}, "outputs": [], "source": [ "def make_pred(X, member, default):\n", " '''\n", " args:\n", " - X - scaled input data\n", " - member - member string\n", " - default - default model to use\n", " \n", " Look up the proper model and use it, if not use default model\n", " \n", " Returns the (predicted hold time, the model used)\n", " '''\n", " \n", " # Check if trained model for member exists\n", " path = f'user_models/{member}.pkl'\n", "\n", " if os.path.exists(path):\n", " m = pickle.load(open(path, 'rb'))\n", " \n", " return (m.predict(X), member)\n", " \n", " else:\n", " # Use default model\n", " return (default.predict(X), \"default\")" ] }, { "cell_type": "code", "execution_count": 306, "id": "ac87a058-5f90-4730-bb75-076fe10c0431", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['pieces_d1', 'pieces_d2', 'pieces_d3', 'pieces_d4',\n", " 'member_hold_time_count', 'member_hold_time_mean',\n", " 'member_hold_time_std'],\n", " dtype='object')\n", "Universal Coef [ 1.96268797 2.39112375 2.62206506 1.53420493 0.1002531 10.32316364\n", " 0.17189966]\n", "Newps Coef [ 2.03889872 2.4608197 2.69484494 1.56316826 0.13466524 10.33005481\n", " 0.1730354 ]\n" ] } ], "source": [ "# Go through test set and either use the per user model or the universal model\n", "univ_model = pickle.load(open('user_models/universal.pkl', 'rb'))\n", "newps_model = pickle.load(open('user_models/newps.pkl', 'rb'))\n", "print(X_train.drop(['member', 'pack_name'], axis=1).columns)\n", "print(f\"Universal Coef {univ_model.coef_}\")\n", "print(f\"Newps Coef {newps_model.coef_}\")\n", "# Scale test data using scaler fit on the training data\n", "\n", "X_test_members = X_test['member']\n", "X_test_packs = X_test['pack_name']\n", "X_test_scaled = scaler.transform(X_test.drop(['member', 'pack_name'], axis=1))\n", "#X_test_scaled = X_test.drop(['member', 'pack_name'], axis=1).to_numpy()" ] }, { "cell_type": "code", "execution_count": 307, "id": "8ff3dd74-975c-4a72-86d5-55a8f7c079b5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using universal default combined mse: 522.1756476380621, mae: 13.0212957291373\n", "Using universal, user mse: 62.98943021215402, mae: 4.625958495474126\n", "Using universal, default mse: 560.4676104826092, mae: 13.721390656247658\n" ] } ], "source": [ "y_pred_universal, y_pred_universal_models = zip(*[make_pred(x.reshape(1, -1), m, univ_model) for x, m in zip(X_test_scaled, X_test_members)])\n", "y_pred_universal = np.array(list(y_pred_universal))\n", "y_pred_universal_models = np.array(list(y_pred_universal_models))\n", "mse_univ = mean_squared_error(y_test, y_pred_universal)\n", "mae_univ = mean_absolute_error(y_test, y_pred_universal)\n", "print(f'Using universal default combined mse: {mse_univ}, mae: {mae_univ}')\n", "\n", "mse_univ_usermodel = mean_squared_error(y_test[y_pred_universal_models != \"default\"], y_pred_universal[y_pred_universal_models != \"default\"])\n", "mae_univ_usermodel = mean_absolute_error(y_test[y_pred_universal_models != \"default\"], y_pred_universal[y_pred_universal_models != \"default\"])\n", "print(f'Using universal, user mse: {mse_univ_usermodel}, mae: {mae_univ_usermodel}')\n", "\n", "mse_univ_default = mean_squared_error(y_test[y_pred_universal_models == \"default\"], y_pred_universal[y_pred_universal_models == \"default\"])\n", "mae_univ_default = mean_absolute_error(y_test[y_pred_universal_models == \"default\"], y_pred_universal[y_pred_universal_models == \"default\"])\n", "print(f'Using universal, default mse: {mse_univ_default}, mae: {mae_univ_default}')" ] }, { "cell_type": "code", "execution_count": 308, "id": "904bcf18-4257-4766-ab5a-f29b22d02ca0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using newps combined mse: 522.0700482259101, mae: 13.021581398932065\n", "Using newps, user mse: 62.98943021215402, mae: 4.625958495474126\n", "Using newps, default mse: 560.3532050379303, mae: 13.721700148310497\n" ] } ], "source": [ "y_pred_newps, y_pred_newps_models = zip(*[make_pred(x.reshape(1, -1 ), m, newps_model) for x, m in zip(X_test_scaled, X_test_members)])\n", "y_pred_newps = np.array(list(y_pred_newps))\n", "y_pred_newps_models = np.array(list(y_pred_newps_models))\n", "mse_newps = mean_squared_error(y_test, y_pred_newps)\n", "mae_newps = mean_absolute_error(y_test, y_pred_newps)\n", "print(f'Using newps combined mse: {mse_newps}, mae: {mae_newps}')\n", "\n", "mse_newps_usermodel = mean_squared_error(y_test[y_pred_newps_models != \"default\"], y_pred_newps[y_pred_newps_models != \"default\"])\n", "mae_newps_usermodel = mean_absolute_error(y_test[y_pred_newps_models != \"default\"], y_pred_newps[y_pred_newps_models != \"default\"])\n", "print(f'Using newps, user mse: {mse_newps_usermodel}, mae: {mae_newps_usermodel}')\n", "\n", "mse_newps_default = mean_squared_error(y_test[y_pred_newps_models == \"default\"], y_pred_newps[y_pred_newps_models == \"default\"])\n", "mae_newps_default = mean_absolute_error(y_test[y_pred_newps_models == \"default\"], y_pred_newps[y_pred_newps_models == \"default\"])\n", "print(f'Using newps, default mse: {mse_newps_default}, mae: {mae_newps_default}')\n" ] }, { "cell_type": "code", "execution_count": 309, "id": "1e0b18b4-59c0-41f1-b62b-932af2f3756c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'member117',\n", " 'member279',\n", " 'member292',\n", " 'member324',\n", " 'member363',\n", " 'member40',\n", " 'member402',\n", " 'member414',\n", " 'member474',\n", " 'member557',\n", " 'member608'}" ] }, "execution_count": 309, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set(y_pred_universal_models[y_pred_universal_models != \"default\"])" ] }, { "cell_type": "code", "execution_count": 310, "id": "b7ff982a-8195-4301-bcc1-5415818b921e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4703\n", "362\n", "340\n" ] }, { "data": { "text/plain": [ "4.59828444364085" ] }, "execution_count": 310, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(len(y_test))\n", "print(len(y_test[y_pred_newps_models != \"default\"]))\n", "print(len(y_test[(y_pred_newps_models != \"default\") & (X_test_not_missing)]))\n", "mean_absolute_error(y_test[(y_pred_newps_models != \"default\") & (X_test_not_missing)], y_pred_newps[(y_pred_newps_models != \"default\") & (X_test_not_missing)])" ] }, { "cell_type": "code", "execution_count": 311, "id": "e0861599-0052-41a9-8905-b3db2f84b482", "metadata": {}, "outputs": [], "source": [ "file = glob.glob('user_models/*')\n", "for f in file:\n", " os.remove(f)\n", " pass" ] }, { "cell_type": "code", "execution_count": 312, "id": "0d9ee3ff-dd72-420a-bfbd-8bf3e70dd473", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuNUlEQVR4nO3deVxN+f8H8NdNddtXWqWF7GTJFiqDsjODMJayDSP7WMduhjBmGPswKYaxr2PPUphClmyFEDHKXlmj+vz+8Ot8XXVaKC1ez8fjPmbOOZ/zOe9z3Ht63bNdhRBCgIiIiIgoE2oFXQARERERFV4Mi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEORQYGAiFQgGFQoHg4OAM04UQKFeuHBQKBdzd3TPt49GjR1AqlVAoFDh9+nSmbXx8fKTlZPbKjkKhwODBg3OzarkWHBwMhUKBzZs3Zzp98ODBOao1v73/b5bVy87OrqBLLRBTp07N0b/Th+9JXV1d2NnZoV27dggICEBycvIn1bFw4UKUK1cOmpqaUCgUSEhI+KT+5NjZ2cHHx0cavnfvHqZOnYqIiIgczZ/+vlcoFAgMDMy0zVdffZUv76kPa88NhUKBqVOn5mk99GVRL+gCiIoafX19+Pv7ZwiEISEhuHHjBvT19WXn/euvv/DmzRsAgL+/P5ydnTNtp62tjcOHD+dZzV+q1q1bIywsTGVcgwYN0KlTJ/zwww/SOKVS+blLK3Lef0++evUKd+7cwd69e9G/f3/8+uuv2LdvH0qXLp3rfiMiIjB06FD069cP3t7eUFdXz/IzlJfu3buHadOmwc7ODjVq1MjxfOn7gA/DW0xMDIKDg2FgYJC3hRIVMIZFolzq0qUL1q5di8WLF6v8UfD390eDBg2QlJQkO+/KlSthZmYGW1tbrFu3Dr/99hu0tbUztFNTU0P9+vXzpf7iSAiB169fZ9iWpUqVQqlSpTK0Nzc35/bNpczek7169ULv3r3Rpk0bdOrUCSdOnMh1v5cvXwYA9O/fH3Xr1s2TWvNbly5d8OeffyI6OhqOjo7S+JUrV8La2hrVqlVDZGRkAVZIlLd4Gpool7p16wYAWLdunTQuMTERW7ZsQZ8+fWTnO3nyJC5duoSePXuif//+0jz55Y8//kD58uWhVCpRuXJlrF+/Xpp269YtqKurw8/PL8N8R48ehUKhwKZNm/K0nk2bNqFevXowNDSEjo4OHBwcMmyvpKQkjBo1Cvb29tDU1IS1tTWGDx+OFy9eqLRLP9W+bNkyVKpUCUqlEqtWrcp1Tc+fP4eRkREGDBiQYdqtW7dQokQJ/PLLLwD+d0o7KCgIvXv3homJCXR1ddG2bVvcvHkzw/wHDx5E06ZNYWBgAB0dHTRs2BCHDh3KtqbXr1/jhx9+QI0aNWBoaAgTExM0aNAAO3bsyNA2fTv89ddfqFSpEnR0dODk5IRdu3ZlaLt7927UqFEDSqUS9vb2mDt3bk42UbY8PDzQv39/nDx5EkePHlWZtmHDBjRo0AC6urrQ09ODp6cnzp07J013d3dHjx49AAD16tWDQqGQjtYFBQWhffv2KF26NLS0tFCuXDkMGDAAjx49UlmGj49Ppqd8szvFHhwcjDp16gAAevfuLZ1ezsnp2ubNm8PGxgYrV66UxqWlpWHVqlXw9vaGmlrGP62vX7/G+PHjVd7bvr6+GU65v337FmPGjIGFhQV0dHTQqFEjnDp1KtM64uPjMWDAAJQuXRqampqwt7fHtGnTkJKSku06EOUGwyJRLhkYGKBTp04qfyjWrVsHNTU1dOnSRXY+f39/AECfPn3QtWtX6OjoSOMyk5KSkuGVlpaWoxp37tyJBQsWYPr06di8eTNsbW3RrVs36RrD9OvNli1bhtTUVJV5Fy1aBCsrK3z99dc5WlZOhIWFoUuXLnBwcMD69euxe/duTJ48WeWP2suXL+Hm5oZVq1Zh6NCh2Lt3L8aOHYvAwEC0a9cOQgiVPrdv346lS5di8uTJ2L9/Pxo3bpzruvT09NCnTx+sXbsWiYmJKtOWLFkCTU3NDIG2b9++UFNTw99//4358+fj1KlTcHd3V/mjv2bNGnh4eMDAwACrVq3Cxo0bYWJiAk9Pz2wDY3JyMp48eYJRo0Zh+/btWLduHRo1aoRvvvkGq1evztB+9+7dWLRoEaZPn44tW7bAxMQEX3/9tUqAPXToENq3bw99fX2sX78ev/zyCzZu3IiAgIBcb7PMtGvXDgBUwuLMmTPRrVs3VK5cGRs3bsRff/2FZ8+eoXHjxtJRtyVLlmDixIkAgICAAISFhWHSpEkAgBs3bqBBgwZYunQpDhw4gMmTJ+PkyZNo1KgR3r59+8k116pVS1r/iRMnIiwsDGFhYejXr1+286qpqcHHxwerV6+WPj8HDhzA3bt30bt37wzthRDo0KED5s6di549e2L37t0YOXIkVq1aha+++krlms/+/ftj7ty56NWrF3bs2IGOHTvim2++wdOnT1X6jI+PR926dbF//35MnjwZe/fuRd++feHn54f+/ft/yqYhykgQUY4EBAQIACI8PFwcOXJEABCXLl0SQghRp04d4ePjI4QQokqVKsLNzU1l3hcvXggDAwNRv359aZy3t7dQKBTi+vXrKm29vb0FgExfTZs2zbZOAEJbW1vEx8dL41JSUkTFihVFuXLlpHHp67Bt2zZp3H///SfU1dXFtGnTslxG+rybNm3KdLqvr694f/cyd+5cAUAkJCTI9unn5yfU1NREeHi4yvjNmzcLAGLPnj0q62hoaCiePHmSZZ2ZASB8fX2l4Rs3bgg1NTUxb948adyrV6+Eqamp6N27tzQu/d//66+/Vunv33//FQDEzz//LIR4929tYmIi2rZtq9IuNTVVODk5ibp16+aq3pSUFPH27VvRt29fUbNmzQzrYm5uLpKSkqRx8fHxQk1NTfj5+Unj6tWrJ6ysrMSrV6+kcUlJScLExETk5M+At7e30NXVlZ0eFRUlAIjvv/9eCCFEbGysUFdXF0OGDFFp9+zZM2FhYSG8vLykce9/ruSkpaWJt2/fitu3bwsAYseOHSq12draZphnypQpGdbN1tZWeHt7S8Ph4eECgAgICJBd9vvef9/fvHlTKBQKsWvXLiGEEJ07dxbu7u5CCCFat26tUtO+ffsEADFnzhyV/jZs2CAAiOXLlwsh/rcdR4wYodJu7dq1AoBK7QMGDBB6enri9u3bKm3TP2uXL1+WxgEQU6ZMydE6EmWGRxaJPoKbmxvKli2LlStX4uLFiwgPD8/yFPTGjRuRlJSk0qZPnz4QQmR6dEdbWxvh4eEZXkuWLMlRfU2bNoW5ubk0XKJECXTp0gXXr1/H3bt3Abw7Bejk5ITFixdL7ZYtWwaFQoHvvvsuR8vJqfTTfV5eXti4cSP++++/DG127dqFqlWrokaNGipHUz09PTO9A/2rr76CsbHxJ9fm4OCANm3aYMmSJdLRy7///huPHz/O9K7y7t27qwy7uLjA1tYWR44cAQCEhobiyZMn8Pb2znBUuEWLFggPD89wWv1DmzZtQsOGDaGnpwd1dXVoaGjA398fUVFRGdo2adJE5YYQc3NzmJmZ4fbt2wCAFy9eIDw8HN988w20tLSkdvr6+mjbtm0Ot1LWxAdHfffv34+UlBT06tVLZRtoaWnBzc0t06cJfOjBgwcYOHAgbGxspG1ga2sLAJluh8/N3t4e7u7uWLlyJR4/fowdO3bI7gPSbwz68IaYzp07Q1dXVzranP4e+vA95uXlBXV11VsMdu3ahSZNmsDKykplG7ds2RLAuxvuiPIKb3Ah+ggKhQK9e/fGggUL8Pr1a5QvXz7L06D+/v7Q0tJCixYtpNOV1atXh52dHQIDAzFt2jSUKFFCaq+mpiZ7p3ROWFhYyI57/PixdNdq+l2oV69ehYODA1asWIFOnTplOv/70v9wfXgKO11KSorKHzdXV1ds374dCxYsQK9evZCcnIwqVapgwoQJ0jWg9+/fx/Xr16GhoZFpnx9eq2ZpaZlljbkxbNgwNG3aFEFBQfDw8MDixYvRoEED1KpVK0NbuW37+PFjAO/WAwA6deoku7wnT55AV1c302lbt26Fl5cXOnfujNGjR8PCwgLq6upYunSpyqUP6UxNTTOMUyqVePXqFQDg6dOnSEtLy/I98anSg6mVlRWA/22D9C8JH8rsmr73paWlwcPDA/fu3cOkSZNQrVo16OrqIi0tDfXr15fWraD17dsXvXv3lm5Uk/s3f/z4MdTV1TPcbKVQKFTeO+n//fDfRV1dPcO/8/379/HPP//k+PNC9CkYFok+ko+PDyZPnoxly5ZhxowZsu2uXbuG48ePAwDKlCmTaZv9+/ejVatWeVZbfHy87Lj3/+h8++23GDt2LBYvXoz69esjPj4evr6+2fafftQysyOE6ePfP7IJAO3bt0f79u2RnJyMEydOwM/PD99++y3s7OzQoEEDlCxZEtra2pkGIgAoWbKkynBePsfxq6++QtWqVbFo0SLo6enh7NmzWLNmTaZt5bZtuXLlVOpcuHCh7B3XH26b961Zswb29vbYsGGDyjp+7LMMjY2NoVAosnxPfKqdO3cCgPQ4qfRtkH69bG5dunQJ58+fR2BgILy9vaXx169fz9BWS0sr023zOcLSN998A19fX8yaNQv9+/fP9MkGwLvPXEpKCh4+fKgSGIUQiI+Pl0J1+mczPj4e1tbWUruUlBQpSKYrWbIkqlevLrvvSQ/uRHmBYZHoI1lbW2P06NG4cuWKyh+0D6XfxLJixQopUKR79eoV2rdvj5UrV+ZpWDx06BDu378vhZLU1FRs2LABZcuWVXkWnpaWFr777jssWrQIoaGhqFGjBho2bJht/46OjrC1tcWmTZswYsQIlVDz8OFDHDlyRPYoi1KphJubG4yMjLB//36cO3cODRo0QJs2bTBz5kyYmprC3t7+E7dA7g0dOhQDBw5EYmIizM3N0blz50zbrV27Fh07dpSGQ0NDcfv2benGiIYNG8LIyAiRkZEf9XB0hUIhPZw6XXx8fKZ3Q+eErq4u6tati61bt+KXX36RTkU/e/YM//zzz0f1+b6goCD8+eefcHFxQaNGjQAAnp6eUFdXx40bN1S2VU6lr/uHz7/8448/MrS1s7PDgwcPVN7vb968wf79+7NdTnr/H3ukUltbG5MnT8bRo0fx/fffy7Zr2rQp5syZgzVr1mDEiBHS+C1btuDFixdo2rQpgP+F7bVr16J27dpSu40bN2a4w7lNmzbYs2cPypYtmyeXYxBlhWGR6BPMmjUry+kpKSlYvXo1KlWqJHuXZdu2bbFz506Vow5paWmyz6yrWbNmtg+RLlmyJL766itMmjQJurq6WLJkCa5cuaLy+Jx0gwYNwpw5c3DmzBn8+eefWfb7vrlz58LLywtNmzZF//79YWFhgejoaMyaNQuamprSXa0AMHnyZNy9exdNmzZF6dKlkZCQgN9//x0aGhpwc3MDAAwfPhxbtmyBq6srRowYgerVqyMtLQ2xsbE4cOAAfvjhB9SrVy/H9eVWjx49MH78eBw9ehQTJ06EpqZmpu1Onz6Nfv36oXPnzrhz5w4mTJgAa2trDBo0CMC7O6wXLlwIb29vPHnyBJ06dYKZmRkePnyI8+fP4+HDh1i6dKlsHW3atMHWrVsxaNAgdOrUCXfu3MFPP/0ES0tLREdHf9S6/fTTT2jRogWaN2+OH374AampqZg9ezZ0dXXx5MmTHPXx/nsyOTkZsbGx2Lt3LzZu3IhKlSph48aNUls7OztMnz4dEyZMwM2bN9GiRQsYGxvj/v37OHXqFHR1dTFt2jTZZVWsWBFly5bFuHHjIISAiYkJ/vnnHwQFBWVo26VLF0yePBldu3bF6NGj8fr1ayxYsED2Eon3lS1bFtra2li7di0qVaoEPT09WFlZ5eqo3MiRIzFy5Mgs2zRv3hyenp4YO3YskpKS0LBhQ1y4cAFTpkxBzZo10bNnTwBApUqV0KNHD8yfPx8aGhpo1qwZLl26hLlz52Z40Pf06dMRFBQEFxcXDB06FBUqVMDr169x69Yt7NmzB8uWLfuoh6QTZapAb68hKkJyctemEKp3Q2/fvl0AEPPnz5dtn36n5K+//iqEyPpuaAAiOjo6y+Xj/+/2XbJkiShbtqzQ0NAQFStWFGvXrpWdx93dXZiYmIiXL19m2feHDh48KDw8PISRkZFQV1cXlpaWokePHhlq3LVrl2jZsqWwtrYWmpqawszMTLRq1UocO3ZMpd3z58/FxIkTRYUKFYSmpqYwNDQU1apVEyNGjFC5uxsf3NGcG1nN6+PjI9TV1cXdu3czTEv/9z9w4IDo2bOnMDIyEtra2qJVq1aZ/puEhISI1q1bCxMTE6GhoSGsra1F69atZe8gf9+sWbOEnZ2dUCqVolKlSmLFihWZ3t0rty4f3vUrhBA7d+4U1atXF5qamqJMmTJi1qxZmfaZmQ/fk9ra2qJMmTKibdu2YuXKlSI5OTnT+bZv3y6aNGkiDAwMhFKpFLa2tqJTp07i4MGDUhu5z1VkZKRo3ry50NfXF8bGxqJz584iNjY20zt79+zZI2rUqCG0tbWFg4ODWLRoUY7uhhZCiHXr1omKFSsKDQ2NbO8azu4pAOk+vBtaiHd32I8dO1bY2toKDQ0NYWlpKb7//nvx9OlTlXbJycnihx9+EGZmZkJLS0vUr19fhIWFZVr7w4cPxdChQ4W9vb3Q0NAQJiYmonbt2mLChAni+fPnUrvs1osoOwohPriNjYi+KA8ePICtrS2GDBmCOXPmFHQ5BebNmzews7NDo0aNVI6SpQsMDETv3r0RHh7+STcfEREVNTwNTfSFunv3Lm7evIlffvkFampqGDZsWEGXVCAePnyIq1evIiAgAPfv38e4ceMKuiQiokKFz1kk+kL9+eefcHd3x+XLl7F27VqVuy+/JLt370bjxo2xd+9eLFmyJNPH5RARfcl4GpqIiIiIZBXokUU/Pz/UqVMH+vr6MDMzQ4cOHXD16lWVNkIITJ06FVZWVtDW1paOhGRny5YtqFy5MpRKJSpXroxt27bl12oQERERFVsFGhZDQkLg6+uLEydOICgoCCkpKfDw8FD5Kaw5c+bgt99+w6JFixAeHg4LCws0b94cz549k+03LCwMXbp0Qc+ePXH+/Hn07NkTXl5eOHny5OdYLSIiIqJio1Cdhn748CHMzMwQEhICV1dXCCFgZWWF4cOHY+zYsQDePd/L3Nwcs2fPxoABAzLtp0uXLkhKSsLevXulcenP+Vq3bt1nWRciIiKi4qBQ3Q2dmJgIADAxMQEAxMTEID4+Hh4eHlKb9F9/CA0NlQ2LYWFhKk/JB979osD8+fMzbZ+cnKzyc1FpaWl48uQJTE1N8/QnxYiIiIgKCyEEnj17Bisrqyx/s73QhEUhBEaOHIlGjRqhatWqAP73u6Uf/o6qubm59MP1mYmPj890HrnfQfXz88vy1wSIiIiIiqs7d+5k+Ys/hSYsDh48GBcuXMDx48czTPvw6J4QItsjfrmZZ/z48So/15SYmIgyZcrgzp07GX5iiYiIiKg4SEpKgo2NDfT19bNsVyjC4pAhQ7Bz504cPXpUJdlaWFgAeHek0NLSUhr/4MGDDEcO32dhYZHhKGJW8yiVykx/a9fAwIBhkYiIiIq17A7AFejd0EIIDB48GFu3bsXhw4dhb2+vMt3e3h4WFhYqPx7/5s0bhISEwMXFRbbfBg0aZPjB+QMHDmQ5DxERERFlVKBHFn19ffH3339jx44d0NfXl44GGhoaQltbGwqFAsOHD8fMmTPh6OgIR0dHzJw5Ezo6Ovj222+lfnr16gVra2v4+fkBAIYNGwZXV1fMnj0b7du3x44dO3Dw4MFMT3ETERERkbwCDYtLly4FALi7u6uMDwgIgI+PDwBgzJgxePXqFQYNGoSnT5+iXr16OHDggMr59djYWJW7eFxcXLB+/XpMnDgRkyZNQtmyZbFhwwbUq1cv39eJiIiIqDgpVM9ZLCySkpJgaGiIxMRE2WsWhRBISUlBamrqZ66OiIio4JQoUQLq6up8tFwxkJO8AxSSG1yKmjdv3iAuLg4vX74s6FKIiIg+Ox0dHVhaWkJTU7OgS6HPgGExl9LS0hATE4MSJUrAysoKmpqa/HZFRERfBCEE3rx5g4cPHyImJgaOjo5ZPsyZigeGxVx68+YN0tLSYGNjAx0dnYIuh4iI6LPS1taGhoYGbt++jTdv3kBLS6ugS6J8xq8DH4nfpIiI6EvFv4FfFv5rExEREZEshkUiIiIiksVrFvOQ3bjdn3V5t2a1/qzL+xQKhQLbtm1Dhw4dMp1+69Yt2Nvb49y5c6hRo0aB1pKvphp+5uUlft7lUZ6qtqraZ13eRe+Ln3V5H8vd3R01atTA/PnzZdvY2dlh+PDhGD58OIDcfe7zax+Rk7qJCiMeWfzCxMfHY8iQIXBwcIBSqYSNjQ3atm2LQ4cOFWhdNjY2iIuLQ9WqVQu0ji+dj48PFAoFZs2apTJ++/btn/Wu/1u3bkGhUCAiIiLDtA4dOkgP7aeClf5++fDVokWLHM1vZ2f32YJTXFwcWrZs+VmW9bGmTp2a6ZflhIQEKBQKBAcHf/aaiAAeWfyi3Lp1Cw0bNoSRkRHmzJmD6tWr4+3bt9i/fz98fX1x5cqVAqutRIkSsLCwKLDl0/9oaWlh9uzZGDBgAIyNjQu6nM9KCIHU1FSoq3PXmFMtWrRAQECAyjilUllA1cjj/kXemzdv+LxEyhKPLH5BBg0aBIVCgVOnTqFTp04oX748qlSpgpEjR+LEiRMA3v10Yvv27aGnpwcDAwN4eXnh/v37Uh/p33xXrlyJMmXKQE9PD99//z1SU1MxZ84cWFhYwMzMDDNmzMiw/PRv9tra2rC3t8emTZukaR8eSQoODoZCocChQ4fg7OwMHR0duLi44OrVqyp9/vPPP6hduza0tLTg4OCAadOmISUlRZoeHR0NV1dXaGlpoXLlyggKCsrLTVosNWvWDBYWFtJvrcsJDQ2Fq6srtLW1YWNjg6FDh+LFixcAgIULF6Jatf+dQk0/Mrl48WJpnKenJ8aPH//J9S5ZsgSOjo7Q0tKCubk5OnXqJE0TQmDOnDlwcHCAtrY2nJycsHnzZml6+vts//79cHZ2hlKpxLFjx3D+/Hk0adIE+vr6MDAwQO3atXH69OlPrrU4UiqVsLCwUHm9/yVj6tSpKFOmDJRKJaysrDB06FAA707J3r59GyNGjJCOSALA48eP0a1bN5QuXRo6OjqoVq0a1q1bl2G5KSkpGDx4MIyMjGBqaoqJEyciqx8kUygU2L59O4B34Wjw4MGwtLSElpYW7OzsMrzfHz16hK+//ho6OjpwdHTEzp07VaZHRkaiVatW0NPTg7m5OXr27IlHjx5J01+8eIFevXpBT08PlpaW+PXXX3O3YbPw9OlTdO/eHaVKlYK2tjYcHR1VAvt///2HLl26wNjYGKampmjfvj1u3bolTffx8UGHDh3g5+cHKysrlC9fHkDWnyX6sjEsfiGePHmCffv2wdfXF7q6uhmmGxkZQQiBDh064MmTJwgJCUFQUBBu3LiBLl26qLS9ceMG9u7di3379mHdunVYuXIlWrdujbt37yIkJASzZ8/GxIkTpQCabtKkSejYsSPOnz+PHj16oFu3boiKisqy7gkTJuDXX3/F6dOnoa6ujj59+kjT9u/fjx49emDo0KGIjIzEH3/8gcDAQCmopqWl4ZtvvkGJEiVw4sQJLFu2DGPHjv3YTfjFKFGiBGbOnImFCxfi7t27mba5ePEiPD098c033+DChQvYsGEDjh8/jsGDBwN4FwQuX74s/fEMCQlByZIlERISAuDdH/rQ0FC4ubl9Uq2nT5/G0KFDMX36dFy9ehX79u2Dq6urNH3ixIkICAjA0qVLcfnyZYwYMQI9evSQ6kg3ZswY+Pn5ISoqCtWrV0f37t1RunRphIeH48yZMxg3bhw0NDQ+qdYv0ebNmzFv3jz88ccfiI6Oxvbt26UvEVu3bkXp0qUxffp0xMXFIS4uDgDw+vVr1K5dG7t27cKlS5fw3XffoWfPnjh58qRK36tWrYK6ujpOnjyJBQsWYN68efjzzz9zVNeCBQuwc+dObNy4EVevXsWaNWtgZ2en0mbatGnw8vLChQsX0KpVK3Tv3h1PnjwB8O6Lr5ubG2rUqIHTp09j3759uH//Pry8vKT5R48ejSNHjmDbtm04cOAAgoODcebMmY/dlComTZqEyMhI7N27F1FRUVi6dClKliwJAHj58iWaNGkCPT09HD16FMePH4eenh5atGiBN2/eSH0cOnQIUVFRCAoKwq5du7L9LNGXjedavhDXr1+HEAIVK1aUbXPw4EFcuHABMTExsLGxAQD89ddfqFKlCsLDw1GnTh0A70LYypUroa+vj8qVK6NJkya4evUq9uzZAzU1NVSoUAGzZ89GcHAw6tevL/XfuXNn9OvXDwDw008/ISgoCAsXLsSSJUtka5oxY4YUKMaNG4fWrVvj9evX0NLSwowZMzBu3Dh4e3sDABwcHPDTTz9hzJgxmDJlCg4ePIioqCjcunULpUuXBgDMnDmz0F+3VBh8/fXXqFGjBqZMmQJ/f/8M03/55Rd8++230s0Djo6OWLBgAdzc3LB06VJUrVoVpqamCAkJQceOHREcHIwffvgB8+bNAwCEh4fj9evXaNSo0SfVGRsbC11dXbRp0wb6+vqwtbVFzZo1Abw7svPbb7/h8OHDaNCgAYB375Hjx4/jjz/+UAmq06dPR/PmzVX6HT16tPR5cXR0/KQ6i7Ndu3ZBT09PZdzYsWMxadIkxMbGwsLCAs2aNYOGhgbKlCmDunXrAgBMTExQokQJ6Ovrq5witra2xqhRo6ThIUOGYN++fdi0aRPq1asnjbexscG8efOgUChQoUIFXLx4EfPmzUP//v2zrTk2NhaOjo5o1KgRFAoFbG1tM7Tx8fFBt27dAED68nTq1Cm0aNECS5cuRa1atTBz5kyp/cqVK2FjY4Nr167BysoK/v7+WL16tfS+WrVqlbQf+lSxsbGoWbMmnJ2dAUAl6K5fvx5qamr4888/paO1AQEBMDIyQnBwMDw8PAAAurq6+PPPP6XTz1u3bpX9LBHxyOIXIv30TFY3KURFRcHGxkYKigBQuXJlGBkZqRwBtLOzg76+vjRsbm6OypUrqzyk1dzcHA8ePFDpP/0P9vvD2R1ZrF69uvT/lpaWACD1e+bMGUyfPh16enrSq3///tLvdkdFRaFMmTIqO+gPayB5s2fPxqpVqxAZGZlh2pkzZxAYGKiy7T09PaWfw1QoFHB1dUVwcDASEhJw+fJlDBw4EKmpqYiKikJwcDBq1aqVIWTkVvPmzWFrawsHBwf07NkTa9eulX6zPTIyEq9fv0bz5s1V6ly9ejVu3Lih0k/6H910I0eORL9+/dCsWTPMmjUrQ3v6nyZNmiAiIkLl5evrC+DdF8RXr17BwcEB/fv3x7Zt21QuE8lMamoqZsyYgerVq8PU1BR6eno4cOAAYmNjVdrVr19fZX/WoEEDREdHIzU1NduafXx8EBERgQoVKmDo0KE4cOBAhjbv73t0dXWhr6+vsu85cuSIyvsq/YvFjRs3cOPGDbx580Zlf2NiYoIKFSpkW1tOfP/991i/fj1q1KiBMWPGIDQ0VJp25swZXL9+Hfr6+lJtJiYmeP36tcr7uFq1airXKWb1WSJiWPxCODo6QqFQZBnOhBCZhskPx394Ok6hUGQ6Li0tLdu6srvD9v1+09um95uWloZp06ap/JG6ePEioqOjoaWllen1S/wd75xzdXWFp6cnfvzxxwzT0tLSMGDAAJVtf/78eURHR6Ns2bIA3p2KDg4OxrFjx+Dk5AQjIyO4uroiJCQEwcHBcHd3l122oeG7RwwlJmZ89E9CQoI0XV9fH2fPnsW6detgaWmJyZMnw8nJCQkJCdL7ZPfu3Sp1RkZGqly3CCDDpRlTp07F5cuX0bp1axw+fBiVK1fGtm3bcr7xviC6urooV66cysvExATAu6N/V69exeLFi6GtrY1BgwbB1dUVb9++le3v119/xbx58zBmzBgcPnwYERER8PT0VDmF+qlq1aqFmJgY/PTTT3j16hW8vLwyXJ+X1T4tLS0Nbdu2zRCS06+RzurayawYGBjIvueB/30uWrZsidu3b2P48OG4d+8emjZtKh2NTUtLQ+3atTPUdu3aNXz77bdSnx++57P6LBExLH4hTExM4OnpicWLF0s3IbwvISEBlStXRmxsLO7cuSONj4yMRGJiIipVqvTJNXx4DeOJEyeyPC2enVq1auHq1asZ/lCVK1cOampq0vrcu3dPmicsLOyjl/clmjVrFv755x+VIxfAu21/+fLlTLd9+tGK9OsWN2/eLAVDNzc3HDx4MNvrFY2NjVGqVCmEh4erjH/16hUuX76scoRGXV0dzZo1w5w5c3DhwgXcunVLCnhKpRKxsbEZanz/6Lmc8uXLY8SIEThw4AC++eabDHf8Us5oa2ujXbt2WLBgAYKDgxEWFoaLF989z1FTUzPDkcBjx46hffv26NGjB5ycnODg4IDo6OgM/Wa2P3F0dESJEiVyVJeBgQG6dOmCFStWYMOGDdiyZYt0TWJ20t//dnZ2Gd5b6eFZQ0NDpcanT5/i2rVrWfZbsWJF3L17F/Hx8Srjw8PDoaamhnLlyknjSpUqBR8fH6xZswbz58/H8uXLpdqio6NhZmaWobb0sClH7rNExGsWvyBLliyBi4sL6tati+nTp6N69epISUlBUFAQli5disjISOni/vnz5yMlJQWDBg2Cm5tbhtN0H2PTpk1wdnZGo0aNsHbtWpw6dSrT6+FyavLkyWjTpg1sbGzQuXNnqKmp4cKFC7h48SJ+/vlnNGvWDBUqVECvXr3w66+/IikpCRMmTPjk9fiSVKtWDd27d8fChQtVxo8dOxb169eHr68v+vfvD11dXeli+fS26dctrl27Fjt27ADwLkD+8MMPAJDt9YqjRo3CzJkzYW5uDhcXFzx9+hSzZ8+Guro6evToAeDd9XI3b96Eq6srjI2NsWfPHqSlpaFChQrQ19fHqFGjMGLECKSlpaFRo0ZISkpCaGgo9PT0pGtdP/Tq1SuMHj0anTp1gr29Pe7evYvw8HB07Njxk7ZlcZWcnJwh3Kirq6NkyZIIDAxEamoq6tWrBx0dHfz111/Q1taWrhG0s7PD0aNH0bVrVyiVSpQsWRLlypXDli1bEBoaCmNjY/z222+Ij4/P8IX1zp07GDlyJAYMGICzZ89i4cKFOb7jeN68ebC0tESNGjWgpqaGTZs2wcLCAkZGRjma39fXFytWrEC3bt0wevRolCxZEtevX8f69euxYsUK6OnpoW/fvhg9ejRMTU1hbm6OCRMmZPt7yh4eHqhUqRK6du2KGTNmwMrKChcuXMCoUaMwcOBA6fKfyZMno3bt2qhSpQqSk5Oxa9cuaft0794dv/zyC9q3b4/p06ejdOnSiI2NxdatWzF69GjZ6yaz+iwRQVAGiYmJAoBITEzMMO3Vq1ciMjJSvHr1qgAq+3T37t0Tvr6+wtbWVmhqagpra2vRrl07ceTIESGEELdv3xbt2rUTurq6Ql9fX3Tu3FnEx8dL80+ZMkU4OTmp9Ont7S3at2+vMs7NzU0MGzZMGgYgFi9eLJo3by6USqWwtbUV69atk6bHxMQIAOLcuXNCCCGOHDkiAIinT59Kbc6dOycAiJiYGGncvn37hIuLi9DW1hYGBgaibt26Yvny5dL0q1evikaNGglNTU1Rvnx5sW/fPgFAbNu27WM2X7GX2b/lrVu3hFKpFB/uLk6dOiWaN28u9PT0hK6urqhevbqYMWOGSpuOHTuKEiVKSJ+ltLQ0YWJiIpydnbOtJTU1VSxevFhUr15d6OrqCmtra9GxY0cRHR0ttTl27Jhwc3MTxsbGQltbW1SvXl1s2LBBmp6WliZ+//13UaFCBaGhoSFKlSolPD09RUhIiBAi8/dZcnKy6Nq1q7CxsRGamprCyspKDB48uMh+5vOTt7e3AJDhVaFCBSGEENu2bRP16tUTBgYGQldXV9SvX18cPHhQmj8sLExUr15d5f31+PFj0b59e6GnpyfMzMzExIkTRa9evVTel25ubmLQoEFi4MCBwsDAQBgbG4tx48aJtLQ0qY2tra2YN2+eNPz+53758uWiRo0aQldXVxgYGIimTZuKs2fPZto2naGhoQgICJCGr127Jr7++mthZGQktLW1RcWKFcXw4cOlGp49eyZ69OghdHR0hLm5uZgzZ06G/WJm4uLiRO/evYWtra3U7/Tp08Xr16+lNj/99JOoVKmS0NbWFiYmJqJ9+/bi5s2bKn306tVLlCxZUiiVSuHg4CD69+8vfQ4z+5xn91n6UFH/W0jvZJV33qcQ4iMvrijGkpKSYGhoiMTERBgYGKhMe/36NWJiYmBvbw8tLa0CqpCIiKjg8G9h8ZBV3nkfr1kkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIbFj8T7goiI6EvFv4FfFobFXEp/qj9/BomIiL5U6X8DP/ylGyqe+FDuXCpRogSMjIyk3wjV0dHhT8gREdEXQQiBly9f4sGDBzAyMsrxL+ZQ0caw+BEsLCwAQAqMREREXxIjIyPpbyEVfwyLH0GhUMDS0hJmZmZ4+/ZtQZdDRET02WhoaPCI4heGYfETlChRgh8YIiIiKtZ4gwsRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiklWgYfHo0aNo27YtrKysoFAosH37dpXpCoUi09cvv/wi22dgYGCm87x+/Tqf14aIiIio+CnQsPjixQs4OTlh0aJFmU6Pi4tTea1cuRIKhQIdO3bMsl8DA4MM82ppaeXHKhAREREVa+oFufCWLVuiZcuWstMtLCxUhnfs2IEmTZrAwcEhy34VCkWGeYmIiIgo94rMNYv379/H7t270bdv32zbPn/+HLa2tihdujTatGmDc+fOZdk+OTkZSUlJKi8iIiIiKkJhcdWqVdDX18c333yTZbuKFSsiMDAQO3fuxLp166ClpYWGDRsiOjpadh4/Pz8YGhpKLxsbm7wun4iIiKhIUgghREEXAbw7dbxt2zZ06NAh0+kVK1ZE8+bNsXDhwlz1m5aWhlq1asHV1RULFizItE1ycjKSk5Ol4aSkJNjY2CAxMREGBga5Wh4RERFRUZCUlARDQ8Ns806BXrOYU8eOHcPVq1exYcOGXM+rpqaGOnXqZHlkUalUQqlUfkqJRERERMVSkTgN7e/vj9q1a8PJySnX8wohEBERAUtLy3yojIiIiKh4K9Aji8+fP8f169el4ZiYGERERMDExARlypQB8O4Q6aZNm/Drr79m2kevXr1gbW0NPz8/AMC0adNQv359ODo6IikpCQsWLEBERAQWL16c/ytEREREVMwUaFg8ffo0mjRpIg2PHDkSAODt7Y3AwEAAwPr16yGEQLdu3TLtIzY2Fmpq/ztAmpCQgO+++w7x8fEwNDREzZo1cfToUdStWzf/VoSIiIiomCo0N7gUJjm94JOIiIioqMpp3ikS1ywSERERUcFgWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESyGBaJiIiISBbDIhERERHJYlgkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESyGBaJiIiISBbDIhERERHJYlgkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJKtAw+LRo0fRtm1bWFlZQaFQYPv27SrTfXx8oFAoVF7169fPtt8tW7agcuXKUCqVqFy5MrZt25ZPa0BERERUvBVoWHzx4gWcnJywaNEi2TYtWrRAXFyc9NqzZ0+WfYaFhaFLly7o2bMnzp8/j549e8LLywsnT57M6/KJiIiIij2FEEIUdBEAoFAosG3bNnTo0EEa5+Pjg4SEhAxHHLPSpUsXJCUlYe/evdK4Fi1awNjYGOvWrctRH0lJSTA0NERiYiIMDAxyvGwiIiKioiKneafQX7MYHBwMMzMzlC9fHv3798eDBw+ybB8WFgYPDw+VcZ6enggNDZWdJzk5GUlJSSovIiIiIirkYbFly5ZYu3YtDh8+jF9//RXh4eH46quvkJycLDtPfHw8zM3NVcaZm5sjPj5edh4/Pz8YGhpKLxsbmzxbByIiIqKiTL2gC8hKly5dpP+vWrUqnJ2dYWtri927d+Obb76RnU+hUKgMCyEyjHvf+PHjMXLkSGk4KSmJgZGIiIgIhTwsfsjS0hK2traIjo6WbWNhYZHhKOKDBw8yHG18n1KphFKpzLM6iYiIiIqLQn0a+kOPHz/GnTt3YGlpKdumQYMGCAoKUhl34MABuLi45Hd5RERERMVOgR5ZfP78Oa5fvy4Nx8TEICIiAiYmJjAxMcHUqVPRsWNHWFpa4tatW/jxxx9RsmRJfP3119I8vXr1grW1Nfz8/AAAw4YNg6urK2bPno327dtjx44dOHjwII4fP/7Z14+IiIioqCvQsHj69Gk0adJEGk6/btDb2xtLly7FxYsXsXr1aiQkJMDS0hJNmjTBhg0boK+vL80TGxsLNbX/HSB1cXHB+vXrMXHiREyaNAlly5bFhg0bUK9evc+3YkRERETFRKF5zmJhwucsEhERUXFXbJ6zSEREREQFh2GRiIiIiGQxLBIRERGRLIZFKlaOHj2Ktm3bwsrKCgqFIsPvik+dOhUVK1aErq4ujI2N0axZM5w8eTLLPt3d3aFQKDK8WrduLbXx8/NDnTp1oK+vDzMzM3To0AFXr15V6Wfr1q3w9PREyZIloVAoEBERIbtMIQRatmyZ6ToQUdFVlPdRt27dynQ5CoUCmzZt+qTtQoUbwyIVKy9evICTkxMWLVqU6fTy5ctj0aJFuHjxIo4fPw47Ozt4eHjg4cOHsn1u3boVcXFx0uvSpUsoUaIEOnfuLLUJCQmBr68vTpw4gaCgIKSkpMDDwwMvXrxQqa1hw4aYNWtWtusxf/78LH91iIiKpqK8j7KxsVFZTlxcHKZNmwZdXV20bNnyI7cIFQmCMkhMTBQARGJiYkGXQp8AgNi2bVuWbdL/rQ8ePJjjfufNmyf09fXF8+fPZds8ePBAABAhISEZpsXExAgA4ty5c5nOGxERIUqXLi3i4uJytA5EVDQV1X3U+2rUqCH69OmT49qocMlp3uGRRfpivXnzBsuXL4ehoSGcnJxyPJ+/vz+6du0KXV1d2TaJiYkAABMTk1zV9PLlS3Tr1g2LFi2ChYVFruYlouKlMO6j3nfmzBlERESgb9++H90HFQ1F6rehifLCrl270LVrV7x8+RKWlpYICgpCyZIlczTvqVOncOnSJfj7+8u2EUJg5MiRaNSoEapWrZqr2kaMGAEXFxe0b98+V/MRUfFRmPdR7/P390elSpX4c7pfAIZF+uI0adIEERERePToEVasWAEvLy+cPHkSZmZm2c7r7++PqlWrom7durJtBg8ejAsXLuT6JyZ37tyJw4cP49y5c7maj4iKl8K6j3rfq1ev8Pfff2PSpEkf3QcVHTwNTV8cXV1dlCtXDvXr14e/vz/U1dWz/Bae7uXLl1i/fj369esn22bIkCHYuXMnjhw5gtKlS+eqrsOHD+PGjRswMjKCuro61NXffZfr2LEj3N3dc9UXERVdhXUf9b7Nmzfj5cuX6NWr10f3QUUHjyzSF08IgeTk5Gzbbdy4EcnJyejRo0emfQwZMgTbtm1DcHAw7O3tc13HuHHjMuzkq1Wrhnnz5qFt27a57o+IiofCso96n7+/P9q1a4dSpUp9Uj9UNDAsUrHy/PlzXL9+XRqOiYlBREQETExMYGpqihkzZqBdu3awtLTE48ePsWTJEty9e1flERO9evWCtbU1/Pz8VPr29/dHhw4dYGpqmmG5vr6++Pvvv7Fjxw7o6+sjPj4eAGBoaAhtbW0AwJMnTxAbG4t79+4BgPSMMwsLC5XXh8qUKfPJO3YiKhyK8j4q3fXr13H06FHs2bMnj7YKFXr5fl92EcRH5xRdR44cEQAyvLy9vcWrV6/E119/LaysrISmpqawtLQU7dq1E6dOnVLpw83NTXh7e6uMu3r1qgAgDhw4kOlyM1smABEQECC1CQgIyLTNlClTZNcHfHQOUbFSHPZR48ePF6VLlxapqal5sUmoAOU07yiEECJf02gRlJSUBENDQyQmJsLAwKCgyyEiIiLKcznNO7zBhYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFouIo0ePom3btrCysoJCocD27dtVpk+dOhUVK1aErq4ujI2N0axZM5w8eTLbfrds2YLKlStDqVSicuXK2LZtm8p0Pz8/1KlTB/r6+jAzM0OHDh2kxymk27p1Kzw9PVGyZEkoFApERERkWM6AAQNQtmxZaGtro1SpUmjfvj2uXLmS6+1ARIVTUd9HAUBYWBi++uor6OrqwsjICO7u7nj16lWutgNRccSwWES8ePECTk5OWLRoUabTy5cvj0WLFuHixYs4fvw47Ozs4OHhgYcPH8r2GRYWhi5duqBnz544f/48evbsKf2sVLqQkBD4+vrixIkTCAoKQkpKCjw8PPDixQuV2ho2bIhZs2bJLqt27doICAhAVFQU9u/fDyEEPDw8kJqa+hFbg4gKm6K+jwoLC0OLFi3g4eGBU6dOITw8HIMHD4aaGv9MEvHROZko7I/OUSgU2LZtGzp06CDbJn0dDh48iKZNm2bapkuXLkhKSsLevXulcS1atICxsTHWrVuX6TwPHz6EmZkZQkJC4OrqqjLt1q1bsLe3x7lz51CjRo0s1+HChQtwcnLC9evXUbZs2SzbAgCmGmbfht6ZmljQFdAXrijuo+rXr4/mzZvjp59+ytlKfoj7qJzh/qlQ4aNzvmBv3rzB8uXLYWhoCCcnJ9l2YWFh8PDwUBnn6emJ0NBQ2XkSE9990E1MTD66vhcvXiAgIAD29vawsbH56H6IqGgqbPuoBw8e4OTJkzAzM4OLiwvMzc3h5uaG48eP57gPouKMYbEY2bVrF/T09KClpYV58+YhKCgIJUuWlG0fHx8Pc3NzlXHm5ubSz0B9SAiBkSNHolGjRqhatWqu61uyZAn09PSgp6eHffv2ISgoCJqamrnuh4iKpsK6j7p58yaAd9dV9u/fH/v27UOtWrXQtGlTREdH57gfouKKYbEYadKkCSIiIhAaGooWLVrAy8sLDx48yHIehUKhMiyEyDAu3eDBg3HhwgXZ0z/Z6d69O86dO4eQkBA4OjrCy8sLr1+//qi+iKjoKaz7qLS0NADvbsTr3bs3atasiXnz5qFChQpYuXJlrvoiKo4YFosRXV1dlCtXDvXr14e/vz/U1dXh7+8v297CwiLDN/QHDx5k+CYPAEOGDMHOnTtx5MgRlC5d+qPqMzQ0hKOjI1xdXbF582ZcuXIlw52NRFR8FdZ9lKWlJQCgcuXKKuMrVaqE2NjYXPVFVBwxLBZjQggkJyfLTm/QoAGCgoJUxh04cAAuLi4qfQwePBhbt27F4cOHYW9v/9nqI6LirbDso+zs7GBlZZXhkTvXrl2Dra1trvsjKm7UC7oAypnnz5/j+vXr0nBMTAwiIiJgYmICU1NTzJgxA+3atYOlpSUeP36MJUuW4O7du+jcubM0T69evWBtbQ0/Pz8AwLBhw+Dq6orZs2ejffv22LFjBw4ePKhyUbevry/+/vtv7NixA/r6+tK3fENDQ2hrawMAnjx5gtjYWNy7dw8ApB2uhYUFLCwscPPmTWzYsAEeHh4oVaoU/vvvP8yePRva2tpo1apV/m44IvosivI+SqFQYPTo0ZgyZQqcnJxQo0YNrFq1CleuXMHmzZvzd8MRFQEMi0XE6dOn0aRJE2l45MiRAABvb28sW7YMV65cwapVq/Do0SOYmpqiTp06OHbsGKpUqSLNExsbq/LMMBcXF6xfvx4TJ07EpEmTULZsWWzYsAH16tWT2ixduhQA4O7urlJPQEAAfHx8AAA7d+5E7969pWldu3YFAEyZMgVTp06FlpYWjh07hvnz5+Pp06cwNzeHq6srQkNDYWZmljcbiIgKVFHeRwHA8OHD8fr1a4wYMQJPnjyBk5MTgoKCcvZoL6Jijs9ZzERhf87iF4nPMMs5PseM6PPjPipnuH8qVPicRSIiIiL6ZAyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESy+JzFAmY3bndBl1Ak3NIq6AqIvkzcR+UM91FUnPHIIhERERHJYlgkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpJVoGHx6NGjaNu2LaysrKBQKLB9+3Zp2tu3bzF27FhUq1YNurq6sLKyQq9evXDv3r0s+wwMDIRCocjwev36dT6vDREREVHxU6Bh8cWLF3BycsKiRYsyTHv58iXOnj2LSZMm4ezZs9i6dSuuXbuGdu3aZduvgYEB4uLiVF5aWnwIFhEREVFuFehDuVu2bImWLVtmOs3Q0BBBQUEq4xYuXIi6desiNjYWZcqUke1XoVDAwsIiT2slIiIi+hIVqWsWExMToVAoYGRklGW758+fw9bWFqVLl0abNm1w7ty5LNsnJycjKSlJ5UVERERERSgsvn79GuPGjcO3334LAwMD2XYVK1ZEYGAgdu7ciXXr1kFLSwsNGzZEdHS07Dx+fn4wNDSUXjY2NvmxCkRERERFTpEIi2/fvkXXrl2RlpaGJUuWZNm2fv366NGjB5ycnNC4cWNs3LgR5cuXx8KFC2XnGT9+PBITE6XXnTt38noViIiIiIqkAr1mMSfevn0LLy8vxMTE4PDhw1keVcyMmpoa6tSpk+WRRaVSCaVS+amlEhERERU7hfrIYnpQjI6OxsGDB2FqaprrPoQQiIiIgKWlZT5USERERFS8FeiRxefPn+P69evScExMDCIiImBiYgIrKyt06tQJZ8+exa5du5Camor4+HgAgImJCTQ1NQEAvXr1grW1Nfz8/AAA06ZNQ/369eHo6IikpCQsWLAAERERWLx48edfQSIiIqIirkDD4unTp9GkSRNpeOTIkQAAb29vTJ06FTt37gQA1KhRQ2W+I0eOwN3dHQAQGxsLNbX/HSBNSEjAd999h/j4eBgaGqJmzZo4evQo6tatm78rQ0RERFQMFWhYdHd3hxBCdnpW09IFBwerDM+bNw/z5s371NKIiIiICIX8mkUiIiIiKlgMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZH/ULLm/fvkV8fDxevnyJUqVKwcTEJK/rIiIiIqJCIMdHFp8/f44//vgD7u7uMDQ0hJ2dHSpXroxSpUrB1tYW/fv3R3h4eH7WSkRERESfWY7C4rx582BnZ4cVK1bgq6++wtatWxEREYGrV68iLCwMU6ZMQUpKCpo3b44WLVogOjo6v+smIiIios8gR6ehQ0NDceTIEVSrVi3T6XXr1kWfPn2wbNky+Pv7IyQkBI6OjnlaKBERERF9fjkKi5s2bcpRZ0qlEoMGDfqkgoiIiIio8Pjku6GTkpKwfft2REVF5UU9RERERFSI5Dosenl5YdGiRQCAV69ewdnZGV5eXqhevTq2bNmS5wUSERERUcHJdVg8evQoGjduDADYtm0bhBBISEjAggUL8PPPP+d5gURERERUcHIdFhMTE6XnKu7btw8dO3aEjo4OWrduzbugiYiIiIqZXIdFGxsbhIWF4cWLF9i3bx88PDwAAE+fPoWWllaeF0hEREREBSfXv+AyfPhwdO/eHXp6erC1tYW7uzuAd6en5R6tQ0RERERFU67D4qBBg1C3bl3cuXMHzZs3h5rau4OTDg4OvGaRiIiIqJjJdVgMDg6Gu7s7nJ2dVca3bt06z4oiIiIiosIh19cstmjRAmXLlsXPP/+MO3fu5EdNRERERFRI5Dos3rt3D8OGDcPWrVthb28PT09PbNy4EW/evMmP+oiIiIioAOU6LJqYmGDo0KE4e/YsTp8+jQoVKsDX1xeWlpYYOnQozp8/nx91EhEREVEB+KSf+6tRowbGjRsHX19fvHjxAitXrkTt2rXRuHFjXL58Oa9qJCIiIqIC8lFh8e3bt9i8eTNatWoFW1tb7N+/H4sWLcL9+/cRExMDGxsbdO7cOa9rJSIiIqLPLNd3Qw8ZMgTr1q0DAPTo0QNz5sxB1apVpem6urqYNWsW7Ozs8qxIIiIiIioYuQ6LkZGRWLhwITp27AhNTc1M21hZWeHIkSOfXBwRERERFaxch8VDhw5l36m6Otzc3D6qICIiIiIqPHIdFtNFRkYiNjY2wyNz2rVr98lFEREREVHhkOuwePPmTXz99de4ePEiFAoFhBAAAIVCAQBITU3N2wqJiIiIqMDk+m7oYcOGwd7eHvfv34eOjg4uX76Mo0ePwtnZGcHBwflQIhEREREVlFwfWQwLC8Phw4dRqlQpqKmpQU1NDY0aNYKfnx+GDh2Kc+fO5UedRERERFQAcn1kMTU1FXp6egCAkiVL4t69ewAAW1tbXL16NW+rIyIiIqIClesji1WrVsWFCxfg4OCAevXqYc6cOdDU1MTy5cvh4OCQHzUSERERUQHJdVicOHEiXrx4AQD4+eef0aZNGzRu3BimpqbYsGFDnhdIRERERAUn12HR09NT+n8HBwdERkbiyZMnMDY2lu6IJiIiIqLi4aOfs/g+ExOTvOiGiIiIiAqZHIXFb775Jscdbt269aOLISIiIqLCJUd3QxsaGkovAwMDHDp0CKdPn5amnzlzBocOHYKhoWG+FUpEREREn1+OjiwGBARI/z927Fh4eXlh2bJlKFGiBIB3j9MZNGgQDAwM8qdKIiIiIioQuX7O4sqVKzFq1CgpKAJAiRIlMHLkSKxcuTJPiyMiIiKigpXrsJiSkoKoqKgM46OiopCWlparvo4ePYq2bdvCysoKCoUC27dvV5kuhMDUqVNhZWUFbW1tuLu74/Lly9n2u2XLFlSuXBlKpRKVK1fGtm3bclUXEREREb2T67DYu3dv9OnTB3PnzsXx48dx/PhxzJ07F/369UPv3r1z1deLFy/g5OSERYsWZTp9zpw5+O2337Bo0SKEh4fDwsICzZs3x7Nnz2T7DAsLQ5cuXdCzZ0+cP38ePXv2hJeXF06ePJmr2oiIiIgIUAghRG5mSEtLw9y5c/H7778jLi4OAGBpaYlhw4bhhx9+UDk9natCFAps27YNHTp0APDuqKKVlRWGDx+OsWPHAgCSk5Nhbm6O2bNnY8CAAZn206VLFyQlJWHv3r3SuBYtWsDY2Bjr1q3LdJ7k5GQkJydLw0lJSbCxsUFiYmK+X4dpN253vvZfXNzS+ragSyg6piYWdAVUjHAflTPcR+UQ90+FSlJSEgwNDbPNO7k+sqimpoYxY8bgv//+Q0JCAhISEvDff/9hzJgxHx0UMxMTE4P4+Hh4eHhI45RKJdzc3BAaGio7X1hYmMo8wLsHiWc1j5+fn8od3zY2Np++AkRERETFQK7D4vsMDAzy7chbfHw8AMDc3FxlvLm5uTRNbr7czjN+/HgkJiZKrzt37nxC5URERETFR47CYosWLbI8Mpfu2bNnmD17NhYvXvzJhaX78CcEhRDZ/qxgbudRKpVS8M3PAExERERU1OToOYudO3eGl5cX9PX10a5dOzg7O8PKygpaWlp4+vQpIiMjcfz4cezZswdt2rTBL7/88smFWVhYAHh3pNDS0lIa/+DBgwxHDj+c78OjiNnNQ0RERESZy9GRxb59++LmzZuYNGkSrly5ggEDBqBx48aoU6cOPD09sWLFCpQpUwZnzpzB+vXr8+SaP3t7e1hYWCAoKEga9+bNG4SEhMDFxUV2vgYNGqjMAwAHDhzIch4iIiIiylyOjiwCgKamJr799lt8++27O74SExPx6tUrmJqaQkND46MW/vz5c1y/fl0ajomJQUREBExMTFCmTBkMHz4cM2fOhKOjIxwdHTFz5kzo6OhINQBAr169YG1tDT8/PwDAsGHD4OrqitmzZ6N9+/bYsWMHDh48iOPHj39UjURERERfshyHxQ+l3zn8KU6fPo0mTZpIwyNHjgQAeHt7IzAwEGPGjMGrV68waNAgPH36FPXq1cOBAwegr68vzRMbGws1tf8dIHVxccH69esxceJETJo0CWXLlsWGDRtQr169T6qViIiI6EuU6+csfgly+tyhvMBnmOUMn2GWC3yOGeUh7qNyhvuoHOL+qVDJt+csEhEREdGXg2GRiIiIiGQxLBIRERGRrByHxVOnTiE1NVUa/vBSx+TkZGzcuDHvKiMiIiKiApfjsNigQQM8fvxYGjY0NMTNmzel4YSEBHTr1i1vqyMiIiKiApXjsPjhkcTMbqLmjdVERERExUueXrOY3W82ExEREVHRwhtciIiIiEhWrn7BJTIyEvHx8QDenXK+cuUKnj9/DgB49OhR3ldHRERERAUqV2GxadOmKtcltmnTBsC7089CCJ6GJiIiIipmchwWY2Ji8rMOIiIiIiqEchwWbW1ts20TERGRo3ZEREREVDR88g0uiYmJWLJkCWrVqoXatWvnRU1EREREVEh8dFg8fPgwevToAUtLSyxcuBCtWrXC6dOn87I2IiIiIipgubrB5e7duwgMDMTKlSvx4sULeHl54e3bt9iyZQsqV66cXzUSERERUQHJ8ZHFVq1aoXLlyoiMjMTChQtx7949LFy4MD9rIyIiIqICluMjiwcOHMDQoUPx/fffw9HRMT9rIiIiIqJCIsdHFo8dO4Znz57B2dkZ9erVw6JFi/Dw4cP8rI2IiIiICliOw2KDBg2wYsUKxMXFYcCAAVi/fj2sra2RlpaGoKAgPHv2LD/rJCIiIqICkOu7oXV0dNCnTx8cP34cFy9exA8//IBZs2bBzMwM7dq1y48aiYiIiKiAfNJzFitUqIA5c+bg7t27WLduXV7VRERERESFxCc/lBsASpQogQ4dOmDnzp150R0RERERFRI5vhu6T58+2bZRKBTw9/f/pIKIiIiIqPDIcVgMDAyEra0tatasCSFEftZERERERIVEjsPiwIEDsX79ety8eRN9+vRBjx49YGJikp+1EREREVEBy/E1i0uWLEFcXBzGjh2Lf/75BzY2NvDy8sL+/ft5pJGIiIiomMrVDS5KpRLdunVDUFAQIiMjUaVKFQwaNAi2trZ4/vx5ftVIRERERAXko++GVigUUCgUEEIgLS0tL2siIiIiokIiV2ExOTkZ69atQ/PmzVGhQgVcvHgRixYtQmxsLPT09PKrRiIiIiIqIDm+wWXQoEFYv349ypQpg969e2P9+vUwNTXNz9qIiIiIqIDlOCwuW7YMZcqUgb29PUJCQhASEpJpu61bt+ZZcURERERUsHIcFnv16gWFQpGftRARERFRIZOrh3ITERER0ZclT34bmoiIiIiKJ4ZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkaxCHxbt7OygUCgyvHx9fTNtHxwcnGn7K1eufObKiYiIiIq+HP/cX0EJDw9HamqqNHzp0iU0b94cnTt3znK+q1evwsDAQBouVapUvtVIREREVFwV+rD4YcibNWsWypYtCzc3tyznMzMzg5GRUT5WRkRERFT8FfrT0O978+YN1qxZgz59+kChUGTZtmbNmrC0tETTpk1x5MiRLNsmJycjKSlJ5UVERERERSwsbt++HQkJCfDx8ZFtY2lpieXLl2PLli3YunUrKlSogKZNm+Lo0aOy8/j5+cHQ0FB62djY5EP1REREREWPQgghCrqInPL09ISmpib++eefXM3Xtm1bKBQK7Ny5M9PpycnJSE5OloaTkpJgY2ODxMRElese84PduN352n9xcUvr24IuoeiYmljQFVAxwn1UznAflUPcPxUqSUlJMDQ0zDbvFPprFtPdvn0bBw8exNatW3M9b/369bFmzRrZ6UqlEkql8lPKIyIiIiqWisxp6ICAAJiZmaF169a5nvfcuXOwtLTMh6qIiIiIircicWQxLS0NAQEB8Pb2hrq6asnjx4/Hf//9h9WrVwMA5s+fDzs7O1SpUkW6IWbLli3YsmVLQZROREREVKQVibB48OBBxMbGok+fPhmmxcXFITY2Vhp+8+YNRo0ahf/++w/a2tqoUqUKdu/ejVatWn3OkomIiIiKhSIRFj08PCB3H05gYKDK8JgxYzBmzJjPUBURERFR8VdkrlkkIiIios+PYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESyGBaJiIiISBbDIhERERHJYlgkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESyGBaJiIiISBbDIhERERHJYlgkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRwc/PDwqFAsOHD8+yXXJyMiZMmABbW1solUqULVsWK1eulKavWLECjRs3hrGxMYyNjdGsWTOcOnVKpY+pU6dCoVCovCwsLFTa3L9/Hz4+PrCysoKOjg5atGiB6OjoDPWEhYXhq6++gq6uLoyMjODu7o5Xr159/IYgokKH+6eCp17QBRBRwQoPD8fy5ctRvXr1bNt6eXnh/v378Pf3R7ly5fDgwQOkpKRI04ODg9GtWze4uLhAS0sLc+bMgYeHBy5fvgxra2upXZUqVXDw4EFpuESJEtL/CyHQoUMHaGhoYMeOHTAwMMBvv/2GZs2aITIyErq6ugDe7YhbtGiB8ePHY+HChdDU1MT58+ehpsbvwETFBfdPhQPDItEX7Pnz5+jevTtWrFiBn3/+Ocu2+/btQ0hICG7evAkTExMAgJ2dnUqbtWvXqgyvWLECmzdvxqFDh9CrVy9pvLq6eoZv6+mio6Nx4sQJXLp0CVWqVAEALFmyBGZmZli3bh369esHABgxYgSGDh2KcePGSfM6OjrmbMWJqNDj/qnwKJoRl4jyhK+vL1q3bo1mzZpl23bnzp1wdnbGnDlzYG1tjfLly2PUqFFZnlZ5+fIl3r59K+2800VHR8PKygr29vbo2rUrbt68KU1LTk4GAGhpaUnjSpQoAU1NTRw/fhwA8ODBA5w8eRJmZmZwcXGBubk53NzcpOlEVPRx/1R4MCwSfaHWr1+Ps2fPws/PL0ftb968iePHj+PSpUvYtm0b5s+fj82bN8PX11d2nnHjxsHa2lplZ1+vXj2sXr0a+/fvx4oVKxAfHw8XFxc8fvwYAFCxYkXY2tpi/PjxePr0Kd68eYNZs2YhPj4ecXFxUi3Au+uL+vfvj3379qFWrVpo2rRpptcOEVHRwv1T4VKow2JOLjT9UEhICGrXrg0tLS04ODhg2bJln6laoqLjzp07GDZsGNasWaPyDTkraWlpUCgUWLt2LerWrYtWrVrht99+Q2BgYKbf3ufMmYN169Zh69atKsto2bIlOnbsiGrVqqFZs2bYvXs3AGDVqlUAAA0NDWzZsgXXrl2DiYkJdHR0EBwcjJYtW0rXDqWlpQEABgwYgN69e6NmzZqYN28eKlSooHJBOxEVPdw/FT6FOiwC7y40jYuLk14XL16UbRsTE4NWrVqhcePGOHfuHH788UcMHToUW7Zs+YwVExV+Z86cwYMHD1C7dm2oq6tDXV0dISEhWLBgAdTV1ZGampphHktLS1hbW8PQ0FAaV6lSJQghcPfuXZW2c+fOxcyZM3HgwIFsL0zX1dVFtWrVVL5x165dGxEREUhISEBcXBz27duHx48fw97eXqoFACpXrqzSV6VKlRAbG5u7jUFEhQr3T4VPoQ+L6Reapr9KlSol23bZsmUoU6YM5s+fj0qVKqFfv37o06cP5s6dm+UykpOTkZSUpPIiKs6aNm2KixcvIiIiQno5Ozuje/fuiIiIULn7L13Dhg1x7949PH/+XBp37do1qKmpoXTp0tK4X375BT/99BP27dsHZ2fnbGtJTk5GVFSUtIN9n6GhIUqVKoXo6GicPn0a7du3B/DuwnUrKytcvXpVpf21a9dga2ub4+1ARIUP90+FT6EPi1ldaPqhsLAweHh4qIzz9PTE6dOn8fbtW9n5/Pz8YGhoKL1sbGzyrH6iwkhfXx9Vq1ZVeenq6sLU1BRVq1YFAIwfP17lDsFvv/0Wpqam6N27NyIjI3H06FGMHj0affr0gba2NoB3p3YmTpyIlStXws7ODvHx8YiPj1fZgY8aNQohISGIiYnByZMn0alTJyQlJcHb21tqs2nTJgQHB+PmzZvYsWMHmjdvjg4dOkifb4VCgdGjR2PBggXYvHkzrl+/jkmTJuHKlSvo27fv59iERJRPuH8qfAr1o3PSLzQtX7487t+/j59//hkuLi64fPkyTE1NM7SPj4+Hubm5yjhzc3OkpKTg0aNHmX4zAN696UaOHCkNJyUlMTDSFy8uLk7llImenh6CgoIwZMgQODs7w9TUFF5eXiqPtFiyZAnevHmDTp06qfQ1ZcoUTJ06FQBw9+5ddOvWDY8ePUKpUqVQv359nDhxQuUbd1xcHEaOHIn79+/D0tISvXr1wqRJk1T6HD58OF6/fo0RI0bgyZMncHJyQlBQEMqWLZsPW4OIChPunz4vhRBCFHQROfXixQuULVsWY8aMUQl36cqXL4/evXtj/Pjx0rh///0XjRo1QlxcXLY3x6RLSkqCoaEhEhMTYWBgkGf1Z8Zu3O587b+4uKX1bUGXUHRMTSzoCqgY4T4qZ7iPyiHunwqVnOadQn8a+n2ZXWj6PgsLC8THx6uMe/DgAdTV1TM9EklEREREWStSYTGrC00BoEGDBggKClIZd+DAATg7O0NDQ+NzlEhERERUrBTqsJjdhaYfXuA6cOBA3L59GyNHjkRUVBRWrlwJf39/jBo1qqBWgYiIiKhIK9Q3uGR3oemHF7ja29tjz549GDFiBBYvXgwrKyssWLAAHTt2LKhVICIiIirSCnVYXL9+fZbTAwMDM4xzc3PD2bNn86kiIiIioi9LoQ6LRJR71VZVK+gSioSL3vK/BkVE+YP7p5wrTPuoQn3NIhEREREVLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESyGBaJiIiISBbDIhERERHJYlgkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZGsQh0W/fz8UKdOHejr68PMzAwdOnTA1atXs5wnODgYCoUiw+vKlSufqWoiIiKi4qNQh8WQkBD4+vrixIkTCAoKQkpKCjw8PPDixYts57169Sri4uKkl6Oj42eomIiIiKh4US/oArKyb98+leGAgACYmZnhzJkzcHV1zXJeMzMzGBkZ5WN1RERERMVfoT6y+KHExEQAgImJSbZta9asCUtLSzRt2hRHjhzJsm1ycjKSkpJUXkRERERUhMKiEAIjR45Eo0aNULVqVdl2lpaWWL58ObZs2YKtW7eiQoUKaNq0KY4ePSo7j5+fHwwNDaWXjY1NfqwCERERUZFTqE9Dv2/w4MG4cOECjh8/nmW7ChUqoEKFCtJwgwYNcOfOHcydO1f21PX48eMxcuRIaTgpKYmBkYiIiAhF5MjikCFDsHPnThw5cgSlS5fO9fz169dHdHS07HSlUgkDAwOVFxEREREV8iOLQggMGTIE27ZtQ3BwMOzt7T+qn3PnzsHS0jKPqyMiIiIq/gp1WPT19cXff/+NHTt2QF9fH/Hx8QAAQ0NDaGtrA3h3Cvm///7D6tWrAQDz58+HnZ0dqlSpgjdv3mDNmjXYsmULtmzZUmDrQURERFRUFeqwuHTpUgCAu7u7yviAgAD4+PgAAOLi4hAbGytNe/PmDUaNGoX//vsP2traqFKlCnbv3o1WrVp9rrKJiIiIio1CHRaFENm2CQwMVBkeM2YMxowZk08VEREREX1ZisQNLkRERERUMBgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESyGBaJiIiISBbDIhERERHJYlgkIiIiIlkMi0REREQki2GRiIiIiGQxLBIRERGRLIZFIiIiIpLFsEhEREREshgWiYiIiEgWwyIRERERyWJYJCIiIiJZDItEREREJIthkYiIiIhkMSwSERERkSyGRSIiIiKSxbBIRERERLIYFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESyGBaJiIiISFaRCItLliyBvb09tLS0ULt2bRw7dizL9iEhIahduza0tLTg4OCAZcuWfaZKiYiIiIqXQh8WN2zYgOHDh2PChAk4d+4cGjdujJYtWyI2NjbT9jExMWjVqhUaN26Mc+fO4ccff8TQoUOxZcuWz1w5ERERUdFX6MPib7/9hr59+6Jfv36oVKkS5s+fDxsbGyxdujTT9suWLUOZMmUwf/58VKpUCf369UOfPn0wd+7cz1w5ERERUdGnXtAFZOXNmzc4c+YMxo0bpzLew8MDoaGhmc4TFhYGDw8PlXGenp7w9/fH27dvoaGhkWGe5ORkJCcnS8OJiYkAgKSkpE9dhWylJb/M92UUB0kKUdAlFBmpr1ILuoQi4XN8vosD7qNyhvuonOH+Kec+xz4qfRlCZP3+LdRh8dGjR0hNTYW5ubnKeHNzc8THx2c6T3x8fKbtU1JS8OjRI1haWmaYx8/PD9OmTcsw3sbG5hOqp7xkWNAFFClRBV1AkWD4Pd9VlHf4bsop7p9y6nPuo549ewZDQ/nlFeqwmE6hUKgMCyEyjMuufWbj040fPx4jR46UhtPS0vDkyROYmppmuRz6siUlJcHGxgZ37tyBgYFBQZdDRCTh/olyQgiBZ8+ewcrKKst2hToslixZEiVKlMhwFPHBgwcZjh6ms7CwyLS9uro6TE1NM51HqVRCqVSqjDMyMvr4wumLYmBgwJ0xERVK3D9RdrI6opiuUN/goqmpidq1ayMoKEhlfFBQEFxcXDKdp0GDBhnaHzhwAM7Ozpler0hERERE8gp1WASAkSNH4s8//8TKlSsRFRWFESNGIDY2FgMHDgTw7hRyr169pPYDBw7E7du3MXLkSERFRWHlypXw9/fHqFGjCmoViIiIiIqsQn0aGgC6dOmCx48fY/r06YiLi0PVqlWxZ88e2NraAgDi4uJUnrlob2+PPXv2YMSIEVi8eDGsrKywYMECdOzYsaBWgYoppVKJKVOmZLiEgYiooHH/RHlJIbK7X5qIiIiIvliF/jQ0ERERERUchkUiIiIiksWwSERERESyGBaJiIiISBbDIhVa7u7uGD58eEGXkS0fHx906NChoMtQsXz5ctjY2EBNTQ3z58/P0TxFZXsTUfETGBiY4ccwPtyPTZ06FTVq1CiQ+r50DIuUp+QCx/bt23P904lbt27FTz/9lEeVFZzg4GAoFAooFAqoqanB0NAQNWvWxJgxYxAXF5fny0tKSsLgwYMxduxY/Pfff/juu+8+qh87O7scB02iws7HxwcKhQKzZs1SGf8x+6ZPcevWLSgUCkRERGSY1qFDB/j4+Hy2WtIdOXIETZo0gYmJCXR0dODo6Ahvb2+kpKR8thq6dOmCa9euScOZ7cdGjRqFQ4cOfbaa6H8YFqnQMjExgb6+fr4u4+3bt/na//uuXr2Ke/fuITw8HGPHjsXBgwdRtWpVXLx4MU+XExsbi7dv36J169awtLSEjo5OnvZPVFRpaWlh9uzZePr0aUGX8tkJITINf5cvX0bLli1Rp04dHD16FBcvXsTChQuhoaGBtLS0z1aftrY2zMzMpOHM9mN6enqyP9tL+YthkQpE+umEv/76C3Z2djA0NETXrl3x7Nkzqc37RynHjx+P+vXrZ+inevXqmDJlijQcEBCASpUqQUtLCxUrVsSSJUukaenf6Ddu3Ah3d3doaWlhzZo1uH37Ntq2bQtjY2Po6uqiSpUq2LNnDwAgNTUVffv2hb29PbS1tVGhQgX8/vvvH7XOZmZmsLCwQPny5dG1a1f8+++/KFWqFL7//nuVdlmtAwCMHTsW5cuXh46ODhwcHDBp0iQp9AYGBqJatWoAAAcHBygUCty6dSvTU+XDhw+Hu7t7prW6u7vj9u3bGDFihHRUlKioa9asGSwsLODn55dlu9DQULi6ukJbWxs2NjYYOnQoXrx4AQBYuHCh9BkD/ndkcvHixdI4T09PjB8//pPrXbJkCRwdHaGlpQVzc3N06tRJmiaEwJw5c+Dg4ABtbW04OTlh8+bN0vT0Mxr79++Hs7MzlEoljh07lmEZQUFBsLS0xJw5c1C1alWULVsWLVq0wJ9//glNTU0A/ztFvH37dpQvXx5aWlpo3rw57ty5o9LXP//8g9q1a0NLSwsODg6YNm2aSkBNSEjAd999B3Nzc2hpaaFq1arYtWuXyjLS/z+z/Vhmp6FXrlyJKlWqQKlUwtLSEoMHD/74DU6yGBapwNy4cQPbt2/Hrl27sGvXLoSEhGQ4RZSue/fuOHnyJG7cuCGNu3z5Mi5evIju3bsDAFasWIEJEyZgxowZiIqKwsyZMzFp0iSsWrVKpa+xY8di6NChiIqKgqenJ3x9fZGcnCx9q549ezb09PQAAGlpaShdujQ2btyIyMhITJ48GT/++CM2btz4yeuvra2NgQMH4t9//8WDBw9yvA76+voIDAxEZGQkfv/9d6xYsQLz5s0D8O5UzsGDBwEAp06dQlxcHGxsbHJd29atW1G6dGnpl5Py43Q50edWokQJzJw5EwsXLsTdu3czbXPx4kV4enrim2++wYULF7BhwwYcP35cCiHu7u64fPkyHj16BAAICQlByZIlERISAgBISUlBaGgo3NzcPqnW06dPY+jQoZg+fTquXr2Kffv2wdXVVZo+ceJEBAQEYOnSpbh8+TJGjBiBHj16SHWkGzNmDPz8/BAVFYXq1atnWI6FhQXi4uJw9OjRLOt5+fIlZsyYgVWrVuHff/9FUlISunbtKk3fv38/evTogaFDhyIyMhJ//PEHAgMDMWPGDADv9qUtW7ZEaGgo1qxZg8jISMyaNQslSpTIsKyc7seWLl0KX19ffPfdd7h48SJ27tyJcuXKZbke9JEEUR5yc3MTw4YNyzB+27Zt4v2325QpU4SOjo5ISkqSxo0ePVrUq1dPtq/q1auL6dOnS8Pjx48XderUkYZtbGzE33//rbLcn376STRo0EAIIURMTIwAIObPn6/Splq1amLq1Kk5XsdBgwaJjh07SsPe3t6iffv2su2PHDkiAIinT59mmLZ3714BQJw8eTJH65CZOXPmiNq1a0vD586dEwBETExMljUOGzZMuLm5ScMfbm9bW1sxb9482eUSFSXvfwbq168v+vTpI4TIuG/q2bOn+O6771TmPXbsmFBTUxOvXr0SaWlpomTJkmLz5s1CCCFq1Kgh/Pz8hJmZmRBCiNDQUKGuri6ePXuWaR3p+6Fz585lmNa+fXvh7e0thBBiy5YtwsDAQGUfme758+dCS0tLhIaGqozv27ev6NatmxDif/ud7du3Z7ldUlJShI+PjwAgLCwsRIcOHcTChQtFYmKi1CYgIEAAECdOnJDGRUVFqey7GjduLGbOnKnS919//SUsLS2FEELs379fqKmpiatXr2ZaR0BAgDA0NJSGM9uPTZkyRTg5OUnDVlZWYsKECVmuH+UNHlmkAmNnZ6dyTaKlpaV0hC0z3bt3x9q1awG8OwWzbt066ajiw4cPcefOHfTt2xd6enrS6+eff1Y5GgkAzs7OKsNDhw7Fzz//jIYNG2LKlCm4cOGCyvRly5bB2dkZpUqVgp6eHlasWKHye+SfQvz/r20qFIocr8PmzZvRqFEjWFhYQE9PD5MmTcqzeoi+BLNnz8aqVasQGRmZYdqZM2cQGBio8hn09PREWloaYmJioFAo4OrqiuDgYCQkJODy5csYOHAgUlNTERUVheDgYNSqVUs6O/GxmjdvDltbWzg4OKBnz55Yu3YtXr58CQCIjIzE69ev0bx5c5U6V69ene3+7kMlSpRAQEAA7t69izlz5sDKygozZsxAlSpVVM4oqKurq/RVsWJFGBkZISoqStpu06dPV6mnf//+iIuLw8uXLxEREYHSpUujfPnyn7Rd0j148AD37t1D06ZN86Q/yhrDIuUpAwMDJCYmZhifkJAAAwMDlXEaGhoqwwqFIssLqr/99ltcu3YNZ8+eRWhoKO7cuSOdBkmfb8WKFYiIiJBely5dwokTJ1T60dXVVRnu168fbt68iZ49e+LixYtwdnbGwoULAQAbN27EiBEj0KdPHxw4cAARERHo3bs33rx5k8MtkrX0Ha2dnV2O1uHEiRPo2rUrWrZsiV27duHcuXOYMGFCtvWoqalJwTTd57y5h6gwcXV1haenJ3788ccM09LS0jBgwACVz+D58+cRHR2NsmXLAnh3Kjo4OBjHjh2Dk5MTjIyM4OrqipCQEAQHB8teCwwAhoaGACC7n0yfrq+vj7Nnz2LdunWwtLTE5MmT4eTkhISEBGlfsXv3bpU6IyMjVa5bBDLu7+RYW1ujZ8+eWLx4sRRGly1bptIms2uX08elpaVh2rRpKvVcvHgR0dHR0NLSgra2do7qyKm87o+ypl7QBVDxUrFiRezduzfD+PDwcFSoUOGT+i5dujRcXV2xdu1avHr1Cs2aNYO5uTkAwNzcHNbW1rh586Z0tDE3bGxsMHDgQAwcOBDjx4/HihUrMGTIEBw7dgwuLi4YNGiQ1PbDb+4f69WrV1i+fDlcXV1RqlQpAMh2Hf7991/Y2tpiwoQJ0rjbt29nu6xSpUrh0qVLKuMiIiIyBPb3aWpqIjU1NSerQlTkzJo1CzVq1MhwpKtWrVq4fPlylte+ubu7Y9iwYdi8ebMUDN3c3HDw4EGEhoZi2LBhsvMaGxujVKlSCA8PV7mu8dWrV7h8+TK8vLykcerq6mjWrBmaNWuGKVOmwMjICIcPH0bz5s2hVCoRGxv7yddGytVoaWkp3dQDvLsW8/Tp06hbty6Ad093SEhIQMWKFQG8225Xr16V3W7Vq1fH3bt3ce3atTw5uqivrw87OzscOnQITZo0+eT+KGsMi5SnBg0ahEWLFkkXHWtrayMoKAj+/v7466+/Prn/7t27Y+rUqXjz5o10U0e6qVOnYujQoTAwMEDLli2RnJyM06dP4+nTpxg5cqRsn8OHD0fLli1Rvnx5PH36FIcPH0alSpUAAOXKlcPq1auxf/9+2Nvb46+//kJ4eDjs7e1zXfuDBw/w+vVrPHv2DGfOnMGcOXPw6NEjbN26NcfrUK5cOcTGxmL9+vWoU6cOdu/ejW3btmW77K+++gq//PILVq9ejQYNGmDNmjW4dOkSatasKTuPnZ0djh49iq5du0KpVKJkyZK5XmeiwqpatWro3r27dBYh3dixY1G/fn34+vqif//+0NXVRVRUFIKCgqS2VatWhampKdauXYsdO3YAeBcgf/jhBwBAo0aNslz2qFGjMHPmTJibm8PFxQVPnz7F7Nmzoa6ujh49egAAdu3ahZs3b8LV1RXGxsbYs2cP0tLSUKFCBejr62PUqFEYMWIE0tLS0KhRIyQlJSE0NBR6enrw9vbO8Xb4448/EBERga+//hply5bF69evsXr1aly+fFll22hoaGDIkCFYsGABNDQ0MHjwYNSvX18Kj5MnT0abNm1gY2ODzp07Q01NDRcuXMDFixfx888/w83NDa6urujYsSN+++03lCtXDleuXIFCoUCLFi1yXO/7pk6dioEDB8LMzAwtW7bEs2fP8O+//2LIkCEf1R9loYCvmaRi6PTp08LT01OYmZkJAwMD4ezsLNatW6fS5sMLlYUQYt68ecLW1lYazuxmmadPnwqlUil0dHQyvYB87dq1okaNGkJTU1MYGxsLV1dXsXXrViGE/IXlgwcPFmXLlhVKpVKUKlVK9OzZUzx69EgIIcTr16+Fj4+PMDQ0FEZGRuL7778X48aNU6k9pze4ABAKhULo6+sLJycnMXr0aBEXF5erdRDi3Y1ApqamQk9PT3Tp0kXMmzcv2wvDhRBi8uTJwtzcXBgaGooRI0aIwYMHZ3mDS1hYmKhevbpQKpWCuwoq6jL7nN66dSvT9/epU6dE8+bNhZ6entDV1RXVq1cXM2bMUGnTsWNHUaJECelGkLS0NGFiYiKcnZ2zrSU1NVUsXrxYVK9eXejq6gpra2vRsWNHER0dLbU5duyYcHNzE8bGxkJbW1tUr15dbNiwQZqelpYmfv/9d1GhQgWhoaEhSpUqJTw9PUVISIgQIusb69539uxZ0aNHD2Fvby+USqUwNTUVrq6uYufOnVKb9JtPtmzZIhwcHISmpqb46quvxK1bt1T62rdvn3BxcRHa2trCwMBA1K1bVyxfvlya/vjxY9G7d29hamoqtLS0RNWqVcWuXbtUlpEuJze4CCHEsmXLpG1gaWkphgwZkuX60sdRCPHBhUxERERE/y8wMBDDhw9HQkJCQZdCBYQ3uBARERGRLIZFIiIiIpLF09BEREREJItHFomIiIhIFsMiEREREcliWCQiIiIiWQyLRERERCSLYZGIiIiIZDEsEhEREZEshkUiIiIiksWwSERERESy/g9U8Qkyewfw+gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "approaches = (\"Universal Deafult\", \"New User Specific\")\n", "model_mae = {\n", " \"Combined\": (mae_univ, mae_newps),\n", " \"New Users\": (mae_univ_default, mae_newps_default),\n", " \"Established Users\": (mae_univ_usermodel, mae_newps_usermodel)\n", "}\n", "\n", "x = np.arange(len(approaches)) # the label locations\n", "width = 0.25 # the width of the bars\n", "multiplier = 0\n", "\n", "fig, ax = plt.subplots(layout='constrained')\n", "\n", "for model, mae in model_mae.items():\n", " offset = width * multiplier\n", " rects = ax.bar(x + offset, mae, width, label=model)\n", " ax.bar_label(rects, padding=3)\n", " multiplier += 1\n", "\n", "# Add some text for labels, title and custom x-axis tick labels, etc.\n", "ax.set_ylabel('MAE (days)')\n", "ax.set_title('MAE by User Type and Default Model')\n", "ax.set_xticks(x + width, approaches)\n", "ax.legend(loc='upper left', ncols=3)\n", "ax.set_ylim(0, 20)\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "cdb75c61-e07a-44b2-a5eb-ca0cf01c66c4", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }